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Abstract. The recent introduction of Unified Virtual Memory (UVM) in GPUs
offers a new programming mode] that allows GPUs and CPUs to share the same
virtual memory space, which shifts the complex memory management from pro-
grammers to GPU driver/ hardware and enables kernel execution even when
memory is oversubscribed. Meanwhile, UVM may also incur considerable per-
formance overhead due to tracking and data migration along with special han-
dling of page faults and page table walk. As UVM is attracting significant atten-
tion from the research community to develop innovative solutions to these prob-
lems, in this paper, we propose a comprehensive UVM benchmark suite named
UVMBench to facilitate future research on this important topic. The proposed
UVMBench consists of 32 representative benchmarks from a wide range of appli-
cation domains. The suite also features unified programming implementation and
diverse memory access patterns across benchmarks, thus allowing thorough eval-
uation and comparison with current state-of-the-art. A set of experiments have
been conducted on real GPUs to verify and analyze the benchmark suite behav-
iors under various scenarios.

Keywords: GPU, Unified Virtual Memroy, Benchmark

1 Introduction

GPUs have been gaining great attention in accelerating traditional and emerging work-
loads, such as machine learning, bioinformatics, electrodynamics, etc. due to GPU’s
massively parallel computing capability. However, there are two major issues in the
mainstream GPU programming model that severely limit further utilization. First, the
physical memory separation between a GPU and a CPU requires explicit memory man-
agement in conventional GPU programming model. Programmers have to explicitly
copy data between CPU and GPU memories to the location where the data is used (i.e.
copy-then-execute). Second, the conventional GPU programming model does not allow
a kernel to be executed if it needs more memory that what the GPU memory can provide
(i.e., memory oversubscription). This has greatly limited the use of GPUs in large data-
intensive machine learning applications [6,20] nowadays. Recently, GPU vendors have
proposed and started to employ a new approach, Unified Virtual Memory (UVM), in the
newly released products [1, 16]. UVM allows GPUs and CPUs to share the same vir-
tual memory space, and offloads memory management to the GPU driver and hardware,
thus eliminating explicit copy-then-execute by the programmers. The GPU driver and
underlying hardware automatically migrate the needed data to destinations. Moreover,
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UVM enables GPU kernel execution while memory is oversubscribed by automatically
evicting data that is no longer needed in the GPU memory to the CPU side. This is ex-
tremely important and helpful in facilitating large workloads (especially deep learning
models) and GPU virtualization [8, 11] with limited memory sizes.

However, the advantages of UVM may come at a price. Analogous to virtual ma-
chines that offer great flexibility over physical machines but sacrifice performance in
some degree [22], UVM also incurs performance overhead. In order to implement auto-
matic data migration between a CPU and a GPU, the GPU driver and the GPU Memory
Management Unit (MMU) have to track data access information and determine the
granularity of data migration over the PCle link [7]. This may reduce performance. For
example, UVM needs special page table walk and page fault handling that introduce
extra latency for memory accesses in GPUs. In addition, the fluctuated page migration
granularity may also under-utilize PCle bandwidth.

Due to the large potential benefits of UVM and its associated performance issues,
UVM has recently drawn significant attention from the research community. Several
optimization techniques have been proposed to mitigate the side effects of UVM [7,
9,10, 13, 21, 23]. The earliest work is Zheng et al. [23], which enables on-demand
GPU memory and proposes prefetching techniques to improve UVM performance. As
the work predates the release of UVM, the developed on-demand memory APIs are
quite different from the version in the current UVM practice. More recently, Ganguly et
al. [7], Yu et al. [21] and Li et al. [10] study prefetching and/or eviction techniques for
UVM in more detail. However, their evaluation includes only benchmarks with limited
number of access patterns, which makes it difficult to assess the effectiveness of their
schemes on a broader range of benchmarks with diverse memory access patterns. In
fact, comprehensive benchmarks (or the lack thereof) have become a common issue in
these and other prior works on GPU UVM. Most of them have used their own modified
versions of existing benchmark suites (e.g., Rodinia [3,4], Parboil [17], Polybench [14])
or several in-house workloads. Our further inspection of these benchmarks shows that
they lack unified implementation and no paper so far has provided a thorough analysis
of the memory behaviors of these benchmarks. This can be a serious limitation for
researchers and developers who aim to propose new optimizations for UVM and who
would like to make comparison with existing research works.

In this paper, we aim to enrich the GPU UVM research community by developing
a comprehensive UVM benchmark suite consisting of 32 representative benchmarks
belonging to different application domains. This suite features unified programming
implementation and diverse memory access patterns across benchmarks, allowing re-
searchers to thoroughly evaluate and compare with current state-of-the-art. In addition
to traditional benchmarks, the proposed suite also includes more machine learning re-
lated workloads, as GPUs have been increasingly used in machine learning tasks. This
would help researchers to understand better the role that GPU UVM plays in machine
learning acceleration.
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Table 1: List of Benchmarks in the proposed UVMBench.

.. . Threads
Application Abbr. Domain Kernels Per Block Type
2D Convolution ZDCONV | Machine Learning I 256 R
2 Matrix Multiplications 2MM Linear Algebra 2 256 R
3D Convolution 3DCONV | Machine Learning 1 256 R
3 Matrix Multiplications 3MM Linear Algebra 3 256 R
Matrix Transpose- .
Vector Multiplication ATAX Linear Algebra 2 256 I
Backpropgation BACKPROP | Machine Learning 2 256 R
Breath First Search BFS Graph Theory 6 1024 I
BiCGStab Linear Solver BICG Linear Algebra 2 256 I
Bayesian Network BN Machine Learning 2 256 R
Convolution Neurak Network CNN Machine Learning 6 64 R
Correlation Computation CORR Statistics 4 256 I
Covariance Computation COVAR Statistics 3 256 I
Discrete Wavelet Transform 2D| DWT2D  |Media Compression| 2 256 R
2-D Finite- .
Different Time Domain FDTD-2D Electrodynamics 3 256 I
Gaussian Elimination GAUSSIAN Linear Algebra 2 512/16 I
Matrix-multiply GEMM Machine Learning 1 256 I
Scalar, Vector ) )
Matrix Multiplication GESUMMYV | Machine Learning 1 256 I
Gram-Schmidt decomposition | GRAMSCHM | Linear Algebra 3 256 I
HotSpot HOTSPOT | Physics Simulation 1 256 R
HotSpot 3D HOTSPOT3D | Physics Simulation 1 256 R
Kmeans KMEANS | Machine Learning 5 1/3 I
K-Nearest Neighbors KNN Machine Learning 4 256 R
Logistic Regression LR Machine Learning 1 128 R
Matrix Vector- .
Product Transpose MVT Linear Algebra 2 256 I
Needleman-Wunsch NwW Bioinformatics 2 16 I
Particle Filter PFILTER Medical Imaging 1 128 R
Pathfinder PATHFINDER| Grid Traversal 1 256 R
Speckle Reducing- .
Anisotropic Diffusion SRAD Image Processing 2 256 R
Stream Cluster SC Data Mining 1 512 I
Support Vector Machine SVM Machine Learning 2 1024 I
Symmetric rank-2k operations SYR2K Linear Algebra 1 256 I
Symmetric rank-k operations SYRK Linear Algebra 1 256 R

The developed benchmarks are evaluated on a Nvidia GTX 1080 Ti GPU with 11GB
memory capacity. The code volume is reduced by removing explicit memory manage-
ment APIs thanks to UVM. Evaluation results show that, if we directly implement/-
convert benchmarks to the UVM programming model, there is an average of 34.2%
slowdown than the non-UVM benchmarks. However, if we augment with proper man-
ual optimizations on data prefetching and data reuse, the performance can be restored
to almost the same as the non-UVM programming model. This indicates that there is
substantial room for UVM research on developing autonomous memory management
to close the gap between UVM and non-UVM models and possibly exceed the perfor-
mance of non-UVM. Our experiment also verifies the capability of the UVM-enabled
benchmarks to execute successfully under memory oversubscription scenarios, where
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UVM essentially creates the illusion of a large GPU memory by using a small GPU
memory and the CPU memory. While performance degradation is observed compared
with a true large GPU memory, this enabling technology opens up new opportunities in
accelerating large workloads on GPUs.

The main contributions of this paper are the following:

— Identifying the need for a benchmark suite for UVM;

— Developing a comprehensive UVM benchmark suite to facilitate the research on
UVM;

— Profiling memory access patterns of the benchmark suite, and studying the rele-
vance of the patterns to performance under memory oversubscription;

— Conducting thorough analysis of performance difference between the UVM and
non-UVM programming models.

Table 2: UVMBench vs. other benchmarks or benchmark suites.
Benchmarks / #of |Testin Real ML Diverse Memory|Oversubscription
Benchmark Suite|Workloads| Hardware |Workloads| Access Patterns Support

Workloads in [7] 14 X X X v
Workloads in [3] 6 v X X v
Nvidia SDK 2] I v X X X

UVMBench 32 v v v v

We have discussed the importance of GPU UVM research and the motivation for a
benchmark suite in this section. In the remaining of this paper, Section 2 describes the
proposed benchmark suite in more detail. Section 3 explains our evaluation method-
ology. Section 4 presents and analyzes test results. Key observations drawn from the
results and suggestions for future UVM research are highlighted sporadically in that
section. Finally, Section 5 concludes the paper.

2 UVMBench

Benchmarks play an important role in evaluating the effectiveness and generalization
when an architecture optimization is proposed. We develop a comprehensive UVM
benchmark suite to facilitate the research on the GPU UVM. This suite covers a wide
range of application domains marked in Table 1. The benchmarks exhibit diverse mem-
ory access patterns (more in Section 4.1) to help evaluate memory management strate-
gies in GPU UVM. The suite also includes several auxiliary python-based programs
to help create and test memory oversubscription cases. The benchmark suite is referred
to as UVMBench, and has been made available to the GPU research community for both
non-UVM and UVM versions (https://github.com/OSU-STARLAB/UVM_benchmark).
Table 1 lists all the benchmarks and their configurations in UVMbench. Table 2 com-
pares the UVMbench with some related but limited workloads in several important
aspects. The development of the benchmark suite includes the following major efforts.

(1) Re-implement existing benchmarks. We start with combining three existing
popular GPU benchmark suites, i.e., Rodinia [3,4], Parboil [17] and Polybench [14], re-
moving redundant workloads and workload types, and converting into the UVM-based
programming model. To implement UVM for these benchmarks, we replace all the host
pointers (CPU side) and device pointers (GPU side) with a unified pointer allocated by
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the UVM API cudaMallocManaged. Also, because the GPU driver is now responsible
for data migration, all the explicit memory data migration APIs in each original pro-
gram need to be removed. This may involve rewriting part of the code around the API
calls in some benchmarks to achieve the equivalent functionalities. Moreover, the non-
UVM data allocation structure should be adapted to the UVM version. For instance,
we have to flatten non-UVM 2D arrays, previously allocated on the host side, into 1D
arrays, as no 2D array allocation API is provided in the UVM programming model.

(2) Develop machine learning workloads. As recent machine learning tasks heav-
ily rely on GPUs for acceleration, we also add more machine learning related workloads
in our benchmark suite, as briefly described below:

— Bayesian Network (BN) is a probabilistic-based graphical model, often used for
predicting the likelihood of several possible causes given the occurrence of an
event. Our implementation is based on the SJITU version [19] and, during the
conversion to UVM, retains the two phases that are accelerated by the GPU:
preprocessing where local scores of every possible parent set for each node are
calculated, and score calculation where threads obtain the local scores and return
the best one.

— Convolutional Neural Network (CNN) is most commonly applied to image recog-
nition. It has also been extended to video analysis, natural language processing
and many other fields. Our implementation follows the general practice where,
for forward propagation, the kernels of convolutional operations, activation oper-
ations and fully connected operations are accelerated on the GPU; and for back
propagation, the kernels on error calculations and weight and bias update opera-
tions are accelerated on the GPU.

— Logistic Regression (LR) is used to predict the probability of the existence of a
certain class or event. The cost calculation is accelerated on the GPU. The input
of this benchmark is the document-level sentiment polarity annotations which is
first introduced in [12].

— Support Vector Machine (SVM) is to find support vectors that, collectively, form a
hyper plane to separate different classes. In our implementation, the kernel matrix
calculation is accelerated on the GPU. The code is based on the Julia project [15]
and converted to UVM.

Listing 1.1 shows the partial code of the sigma update function in the SVM bench-
mark, which demonstrates the re-implementation process and newly added benchmarks.
Several unrelated variables are omitted for simplicity. In the traditional programming
model, due to explicit memory management, the program without UVM would need
to allocate memory space on the device by using a number of CudaMalloc and Cud-
aMemcpy APIs before and after a kernel launch to explicitly migrate the required data
between the host and the device. In contrast, the UVM programming model shown in
Listing 1.1 unifies the memory space of the host and the device. By calling cudaMalloc-
Managed APIs (lines 6-7), the code allocates bytes of managed memory. The allocated
variables can be accessed by the host and the device directly, and are managed by the
Unified Memory system of the GPU. When this Sigma_update function is called in the
main function (line 1), the variables, defined by cudaMallocManaged, are passed into
the function, and the device kennels can directly access these variables. Therefore, the
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UVM programming model greatly reduces the code complexity by removing device
variable definitions and memory management APIs.

1 Sigma_update(int =*iters , float =*alpha, float #sigma, float =K, int =y, int 1,
int C)
{

int xdev_block_done = 0;

float =dev_delta = O;

void *args[10] = {&iters, &alpha, &sigma, &K, &y, &dev_block_done, &
grid_dimension, &dev_delta, &1, &C};

cudaMallocManaged(&dev_block_done, grid_dimension=*sizeof(int)) ;

cudaMallocManaged(&dev_delta, 1xsizeof( float ));

/=Kemel Launchs/

cudaFree(dev_block_done);

cudaFree( dev_delta );

o kD

—_— OO 0~y

—

Listing 1.1: Sigma_Update function in SVM with UVM.

(3) Optimize data prefetch. In our experiment, we observe that directly convert-
ing to the UVM programing model from the non-UVM model can lead to performance
degradation, as UVM has to track memory accesses and migrate data to destinations.
Therefore, we add an optimization, namely asynchronous prefetching, before each ker-
nel launch by calling the provided API cudaMemPrefetchAsync. The purpose of this
optimization is to exemplify that hardware prefetchers may bring considerable perfor-
mance improvement in UVM, as shown later in evaluation results. Users of our bench-
mark suite can easily enable or disable this optimization by changing the macro defini-
tion in the Makefile.

(4) Optimize data reuse. Data reuse can also mitigate performance overhead of
UVM. This is because if the useful data resides in the device memory for longer time,
fewer page faults may occur. To investigate the impact of data reuse where multiple
(same) kernels access the same data during the runtime, we add the option to run mul-
tiple iterations of a kernel execution to create this type of data reuse opportunities (i.e.,
the same kernel reuses the same data in different iterations). Users can change the num-
ber of iterations (> 1) by modifying the macro in each benchmark program file.

Benchmarks in the proposed UVMBench are all implemented in CUDA and can
be run on Nvidia GPUs. This suite includes both the non-UVM version (original) and
the UVM version implementation for performance comparison. There are no algorith-
mic changes when developing the UVM version of the benchmarks. This ensures fair
comparison between the traditional programming model and the UVM programming
model. Consequently, the observed performance changes are mostly attributed to the
difference between programming models rather the algorithms.

Some previous works [5,7] and the Nvidia SDK present a limited number of UVM-
enabled workloads to demonstrate the effectiveness of the UVM or their proposed ideas.
Table 2 compares the existing benchmarks with our proposed UVMbench in five im-
portant aspects. Compared with the existing benchmarks, UVMbench presents more
workloads from different domains. In particular, UVMbench includes machine learn-
ing workloads to explore the possibility of applying UVM techniques in data-intensive
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machine learning applications. Moreover, UVMbench provides diverse memory access
patterns and supports memory oversubscription.

3 Evaluation Methodology

Our evaluation methodology is designed to enable a set of experiments that test the
proposed benchmark suite. To investigate the impact of memory access behaviors on
UVM, we need to profile memory access patterns of each benchmark. Direct perfor-
mance comparison is also needed between the UVM and non-UVM implementations.
As the driver is responsible for data migration under UVM, the impact on PCle band-
width should also be examined. Additional experiment is needed to evaluate the UVM
performance under memory oversubscription scenarios.

To conduct the above experiments, we employ an Nvidia GTX 1080 Ti GPU with
the Pascal architecture. We use the Nvidia Binary Instrumentation Tool (NVBit) [18]
to extract the global memory access patterns of the UVMBench suite. NVBit provides
a fast, dynamic and portable binary instrumentation framework that allows users to in-
spect/instrument instructions. we use two Nvidia official profiling tools to profile the
performance related data of benchmarks: nvprof, a command line tool to collect and
view profiling data, and Nvidia Visual Profiler, a GUI to visualize the application per-
formance.

4 Results and Analysis

4.1 Memory Access Pattern Profiling

To study the relationship between memory behaviors and UVM efficiency, we first pro-
file memory access patterns of each benchmark. In this experiment, NVBit is used to
generate memory reference traces by injecting the instrumentation function before per-
forming each global load/store. The memory traces are plotted in Figure 1. The horizon-
tal axis corresponds to the logical access time, and the vertical axis shows the accessed
memory addresses.

As can be seen from the figure, benchmarks in the UVMBench suite exhibit diverse
memory access patterns. They can be generally classified into regular and irregular
memory access patterns, as indicated after each benchmark name as (R) or (I) in Figure
1 (and as indicated in the “Type” column in Table 1). This classification follows the
same classification method as [10]: if benchmarks access only a small number of mem-
ory pages at any point of time, they are classified as regular benchmarks; in contrast,
benchmarks with large unique memory pages access at a given time are identified as
irregular benchmarks. For regular benchmarks (e.g., 2DCONV, 2MM and so on), they
exhibit a streaming access pattern. These benchmarks access only a small number of
memory addresses and seldom exhibit data reuse within the kernel. In contrast, irregu-
lar benchmarks show very different memory access patterns: accessing many memory
addresses at a given time (e.g., ATAX, BICG, GAUSSIAN), repeatedly accessing the
same memory address over time (e.g., COVAR, GRAMSCHM), or accessing random
addresses (e.g., SC, SVM). Note that benchmark NW is classified as irregular, as it
exhibits a sparse, localized and repeated memory accesses, although this is not quite
visible in the figure due to the scale. In the experiment of memory oversubscription
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Fig. 1: Memory access patterns of benchmarks in UVMBench.
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Fig. 2: Direct UVM conversion in UVMBench leads to large performance degradation
vs. non-UVM.

presented later in Section 4.4, we find that benchmark performance is highly related to
memory access patterns.

4.2 UVM vs. non-UVM Performance

a. Performance of Direct UVM Conversion

As mentioned earlier, while UVM greatly eases programming efforts by removing
explicit memory management, this is achieved at the cost of certain performance over-
head, particularly with naive/direct conversion to UVM. Figure 2 compares the perfor-
mance of all the benchmarks in the non-UVM and UVM programming models. The
IPCs are obtained from Nvidia nvprof. Across the benchmarks, the performance of the
UVM version has an average of 34.2% slowdown compared with the non-UVM one.
These results are expected as the page fault handling causes large performance overhead
for kernel execution. Under the UVM programming model, data is allowed to reside in
other location (e.g., on the CPU side) while a kernel is executing. When the required
data does not reside in the GPU DRAM (page fault occurrence), the kernel has to be
stalled while waiting for the data to be fetched from the CPU side. In the non-UVM
version, programmers have made sure that data is always available on the GPU side.
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Among these benchmarks, we can observe that 2DCONV, BACKPROP, HOTSPOT,
GESUMMYV and PATHFINDER have the most significant performance drop in the
UVM implementation. The reason is that, for these 5 benchmarks, the data migration
time accounts for majority of the entire execution (over 80%), and their kernels have
little to no data reuse and are only invoked once. A considerable amount of stall time
occurs during the one-time execution of the kernels to wait for data, and the fetched
data is not used again. These factors lead to the observed large performance degrada-
tion. However, as shown shortly, the performance degradation can be greatly mitigated
with some additional programming efforts.

b. Restoring UVM Performance via Data Reuse

Data reuse can mitigate UVM performance degradation by reducing the occurrence
of page faults. As mentioned earlier, we study the impact of data reuse by modifying
the number of times a kernel is invoked. Figure 3 plots the change in performance as we
increase the kernel invocation times (there is no kernel execution dependency between
consecutively invoked kernels). It can be seen that the performance of these benchmarks
under UVM is rapidly improving with more invocation and eventually approaches to the
performance of non-UVM. Except for the first executed kernel, the following kernels
in the GPU program may reuse the data that has been fetched during the execution of
the first kernel, and fewer page faults would occur. The results confirm that more data
reuse leads to smaller data migration overhead.
Observation/Suggestion: Although data reuse is artificially introduced in the software
program in this experiment, it prompts us that if applications exhibit significant data
reuse opportunities, either inherent or created through architecture optimizations, UVM
can be an attractive model that provides flexibility while having little performance over-
head.

¢. Restoring UVM Performance via Data Prefetch

Nvidia provides a runtime API cudaMemPrefetchAsync that enables asynchronous
data prefetching. Through this API, data can be prefetched to the device memory before
the data is accessed by a kernel on the GPU. This reduces the occurrence of page faults.
To study the impact of prefetching on UVM kernel execution performance, we augment
all the benchmarks in UVMBench with such prefetching capability. Figure 4 shows the
results from the above 5 benchmarks that experience the largest performance drop in
UVM.

It can be observed that the performance of these benchmarks improves considerably
after this optimization and is close to the performance of the non-UVM version. The
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geometric mean of the slowdown has decreased from 95.8% to merely 0.7%. The im-
provement comes from the fact that kernel execution is now rarely stalled as data has
already been fetched in the device memory before being accessed. While not shown, the
performance of other 27 UVM-version of the benchmarks also restores to very close to
the non-UVM version after using asynchronous prefetching.

Observation/Suggestion: Besides data resue, another alternative to restore performance
degradation of UVm is data prefetching by employing the runtime API cudaAsyncPrefetch.
In theory, page faults can be completely eliminated if there is an oracle prefetecher that

is able to load any required data into the GPU memory before the data is accessed. That
can serve as an upper-bound of future UVM prefetech schemes.

It is important to note that, we achieve data reuse and data prefetch in the above
experiments by manually modifying the software programs. In other words, these opti-
mizations are realized on the software side and requires additional programming efforts.
This is not the intention of UVM that aims to reduce programming efforts. In practice,
what is needed is innovation in architecture research that can achieve similar level of
data reuse and prefetch but is transparent to programmers. Facilitating research along
this line is what our UVMBench suite is created for.

4.3 Effect of Data Migration on PCle Bandwidth

The performance of data migration between CPU and GPU also closely relates to the
effective PCle bandwidth. Under the UVM programming model, variable sized on-
demand data is transferred from the CPU memory to the device memory. To understand
performance trade-offs, it is worth studying the effect of UVM data migration on the
PCIe link. Figure 5 compares the achieved PCle bandwidth with non-UVM and UVM
programming models during data migration. On average, the achieved PCle bandwidth
of UVM is 15.2% lower than that of non-UVM. In general, the larger the transferred
data size is, the higher the effective PCle bandwidth can achieve. This is mainly because
of the constant PCle protocol overhead and limited hardware resources (e.g., data buffer
size, number of DMA channels, number of outstanding requests, etc.), so the overhead
can be amortized better with larger transferred data. Since the non-UVM model copies
the entire allocated data chunk to the GPU memory before execution, this results in rel-
atively high effective bandwidth. In contrast, the migrated data size in UVM is usually
much smaller than the non-UVM one as only on-demand data is migrated through the
PCle bus (usually smaller than 1MB). Note that benchmarks BN and CNN in UVM and
non-UVM both exhibit low effective PCle bandwidth, because the sizes of allocated
variables in these two benchmarks are all small (less than 4KB), and even the entire
chunk of allocated variable transmission cannot fully utilize the PCle bandwidth.

Figure 5 also shows that, among UVM benchmarks, the effective PCle bandwidth
may vary a lot. The variation is mainly caused by the hardware prefetcher inside the
GPU. For example, Nvidia has implemented a tree-based hardware prefetcher in their
GPUs, which heuristically adjusts the prefetching granularity based on access local-
ity. The difference in memory access patterns across benchmarks put the hardware
prefetcher in different degrees of efficacy. More detailed discussion on UVM hardware
prefetchers can be found in other papers such as [7, 10,21].



Hpon-UVM EUVM

-
-

z

R

210

R RS A RRRRRRRRRAN AT ]}

g I LI I |
ETUVM HETUVM with 110% oversubscription ETUVM with 125% oversubscription

g 30 SIOK  SI00KS100K S100K 100X >1000C>100K-1 005> 100K 100X SIOK >I0K >HNK =100X S100K 100X

o

= 25

220

=

215

L

=10

=

83

o

-

2

F 4

£ EF SIS EE S AP IO PSS S LB EFE VLSS S8
Fig. 6: Change in benchmark execution time when GPU memory oversubscripted (nor-
malized to no memory oversubscription).

Observation/Suggestion: The above results on the effective PCle bandwidth indicate
that hardware prefetchers that are currently employed in GPUs cannot fully utilize PCle
bandwidth. Thus, future research is much needed to continue developing and optimizing
GPU hardware prefetchers that are UVM-aware.

4.4 Oversubscription

A major advantage of UVM is to enable kernel execution when memory is oversub-
scribed. Performance under memory oversubscription can be significantly reduced since
part of the data now needs to be brought from the CPU memory. Despite this, UVM is
still very attractive, as such memory oversubscription is not possible under non-UVM.
To quantify the performance degradation when the GPU memory is oversubscribed,
we run all the benchmarks in the suite under various memory capacities. As different
benchmarks have different required memory footprint, to create memory oversubscrip-
tion, we modify the available memory space through the cudaMalloc runtime APL The
required memory footprint is set to be 110% and 125% of the available memory space
in the GPU physical memory. Figure 6 shows the results. As expected, all the bench-
marks suffer considerable performance degradation under memory oversubscription.
The more memory is oversubscribed, the more performance degrades.

From Figure 6, we also observe that many of the benchmarks can complete execu-
tion with 2-3x slowdown under memory oversubscription, whereas other benchmarks
suffer from a significant performance penalty or even crash, marked as >100X in the
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figure (e.g., LR uses the cublas library which cannot support memory oversubscrip-
tion and leads to crash). For the former, we find that the main performance overhead is
caused by kernel stalls when waiting for the eviction of pages to create space for newly
fetched data. These benchmarks usually have a streaming access pattern (Section 4.1).
With this pattern and the LRU eviction policy in Nvidia GPUs, the evicted data does
not affect kernel execution as the evicted data is not reused any more. Therefore, the
performance overhead mainly comes from the waiting time of page eviction. For the
latter, the large performance penalty mainly comes from severe page thrashings, which
repeatedly migrate the page back and forth between the GPU and the CPU. This usually
occurs when a benchmark has a short data reuse distance so the evicted data is need-
ed/reused within a short time. Note that, although the degradation seems large, UVM is
still much better non-UVM which does not allow kernels to run at all if the memory is
oversubscribed.

Observation/Suggestion: The significant performance degradation under memory over-
subscription suggests that the current eviction policies are doing a poor job at selecting
the best candidate pages to evict, thus causing severe page thrashings and limiting the
amount of memory that can be oversubscribed. This may be possibly because existing
eviction policies are not designed specifically with supporting UVM in mind. We urge
researchers to develop more effective eviction policies that can select evicted data more
accurately or even proactively to make space for expected data accesses.

5 Conclusion

The Unified Virtual Memory (UVM) programming model has been introduced recently
in GPUs to ease programming efforts and allow kernel execution under memory over-
subscription. This paper identifies the need for representative benchmarks for GPU
UVM, and proposes a comprehensive benchmark suite to help researchers understand
and study various aspects of GPU UVM. Several observations and suggestions have
been drawn from evaluation results to guide the much needed future research on UVM.
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