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Abstract
Data poisoning and backdoor attacks manipulate
training data in order to cause models to fail dur-
ing inference. A recent survey of industry prac-
titioners found that data poisoning is the number
one concern among threats ranging from model
stealing to adversarial attacks. However, it re-
mains unclear exactly how dangerous poisoning
methods are and which ones are more effective
considering that these methods, even ones with
identical objectives, have not been tested in con-
sistent or realistic settings. We observe that data
poisoning and backdoor attacks are highly sensi-
tive to variations in the testing setup. Moreover,
we find that existing methods may not generalize
to realistic settings. While these existing works
serve as valuable prototypes for data poisoning,
we apply rigorous tests to determine the extent
to which we should fear them. In order to pro-
mote fair comparison in future work, we develop
standardized benchmarks for data poisoning and
backdoor attacks.

1. Introduction
Data poisoning is a security threat to machine learning sys-
tems in which an attacker controls the behavior of a system
by manipulating its training data. This class of threats is
particularly germane to deep learning systems because they
require large amounts of data to train and are therefore of-
ten trained (or pre-trained) on large datasets scraped from
the web. For example, the Open Images and the Ama-
zon Products datasets contain approximately 9 million and
233 million samples, respectively, that are scraped from a
wide range of potentially insecure, and in many cases un-
known, sources (Kuznetsova et al., 2020; Ni et al., 2019).

1Department of Mathematics, 2Department of Computer Sci-
ence, and 3Department of Robotics, University of Maryland, Col-
lege Park, MD, USA. Correspondence to: Avi Schwarzschild
<avi1@umd.edu>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

At this scale, it is often infeasible to properly vet content.
Furthermore, many practitioners create datasets by harvest-
ing system inputs (e.g., emails received, files uploaded) or
scraping user-created content (e.g., profiles, text messages,
advertisements) without any mechanisms to bar malicious
actors from contributing data. The dependence of industrial
AI systems on datasets that are not manually inspected has
led to fear that corrupted training data could produce faulty
models (Jiang et al., 2017). In fact, a recent survey of 28
industry organizations found that these companies are sig-
nificantly more afraid of data poisoning than other threats
from adversarial machine learning (Kumar et al., 2020b).

Poisoning attacks can be put into two broad categories.
Backdoor data poisoning causes a model to misclassify
test-time samples that contain a trigger – a visual feature
in images or a particular character sequence in the natural
language setting (Chen et al., 2017; Dai et al., 2019; Saha
et al., 2019; Turner et al., 2018). For example, one might
tamper with training images so that a vision system fails to
identify any person wearing a shirt with the trigger symbol
printed on it. In this threat model, the attacker modifies data
at both train time (by placing poisons) and at inference time
(by inserting the trigger). Triggerless poisoning attacks, on
the other hand, do not require modification at inference time
(Biggio et al., 2012; Huang et al., 2020; Muñoz-González
et al., 2017; Shafahi et al., 2018; Zhu et al., 2019; Aghakhani
et al., 2020b; Geiping et al., 2020). A variety of innovative
backdoor and triggerless poisoning attacks – and defenses –
have emerged in recent years, but inconsistent and perfunc-
tory experimentation has rendered performance evaluations
and comparisons misleading.

In this paper, we develop a framework for benchmarking
and evaluating a wide range of poison attacks on image
classifiers. Specifically, we provide a way to compare attack
strategies and shed light on the differences between them.

Our goal is to address the following weaknesses in the cur-
rent literature. First, we observe that the reported success
of poisoning attacks in the literature is often dependent on
specific (and sometimes unrealistic) choices of network ar-
chitecture and training protocol, making it difficult to assess
the viability of attacks in real-world scenarios. Second, we
find that the percentage of training data that an attacker can
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modify, the standard budget measure in the poisoning litera-
ture, is not a useful metric for comparisons. The flaw in this
metric invalidates comparisons because even with a fixed
percentage of the dataset poisoned, the success rate of an
attack can still be strongly dependent on the dataset size,
which is not standardized across experiments to date. Third,
we find that some attacks that claim to be “clean label,” such
that poisoned data still appears natural and properly labeled
upon human inspection, are not.

Our proposed benchmarks measure the effectiveness of at-
tacks in standardized scenarios using modern network ar-
chitectures. We benchmark from-scratch training scenarios
and also white-box and black-box transfer learning settings.
Also, we constrain poisoned images to be clean in the sense
of small perturbations. Furthermore, our benchmarks are
publicly available as a proving ground for existing and fu-
ture data poisoning attacks.

The data poisoning literature contains attacks in a variety of
settings including image classification, facial recognition,
and text classification (Shafahi et al., 2018; Chen et al., 2017;
Dai et al., 2019). Attacks on the fairness of models, speech
recognition, and recommendation engines have also been
developed (Solans et al., 2020; Aghakhani et al., 2020a; Li
et al., 2016; Fang et al., 2018; Hu et al., 2019; Fang et al.,
2020). In addition to a variety of applications, the threat
models range from attackers having access only to data all
the way to the attacker controlling the entire training process
(Gu et al., 2017; Yao et al., 2019; Salem et al., 2020a;b).

While we acknowledge the merits of studying poisoning in
a range of modalities, our benchmark focuses on attacks
on image classifiers that only modify data since this is by
far the most common setting in the existing literature, and
even among these attacks, there has not yet been a standard
comparison metric. Specifically, we focus on attacks with
a common goal and the sensitivities to experimental setup
that we explore are not deviations from this goal.

2. A Synopsis of Triggerless and Backdoor
Data Poisoning

Early poisoning attacks targeted support vector machines
and simple neural networks (Biggio et al., 2012; Koh &
Liang, 2017). As poisoning gained popularity, various strate-
gies for triggerless attacks on deep architectures emerged
(Muñoz-González et al., 2017; Shafahi et al., 2018; Zhu
et al., 2019; Huang et al., 2020; Aghakhani et al., 2020b;
Geiping et al., 2020). The early backdoor attacks contained
triggers in the poisoned data and in some cases changed
the label, thus were not clean-label (Chen et al., 2017; Gu
et al., 2017; Liu et al., 2017; Salem et al., 2020b; Yao et al.,
2019). However, methods that produce poison examples
which do not visibly contain a trigger also show positive

results (Chen et al., 2017; Turner et al., 2018; Saha et al.,
2019; Salem et al., 2020a). Poisoning attacks have also pre-
cipitated several defense strategies, but sanitization-based
defenses may be overwhelmed by some attacks (Koh et al.,
2018; Liu et al., 2018; Chacon et al., 2019; Peri et al., 2020).

We focus on attacks that achieve targeted misclassification.
That is, under both the triggerless and backdoor threat mod-
els, the end goal of an attacker is to cause a target sample
to be misclassified as another specified class. Other objec-
tives, such as decreasing overall test accuracy, have been
studied, but less work exists on this topic with respect to
neural networks (Xiao et al., 2015; Liu et al., 2020). In both
triggerless and backdoor data poisoning, the clean images,
called base images, that are modified by an attacker come
from a single class, the base class. This class is often chosen
to be precisely the same class into which the attacker wants
the target image or class to be misclassified.

There are two major differences between triggerless and
backdoor threat models in the literature. First and fore-
most, backdoor attacks alter their targets during inference
by adding a trigger. In the works we consider, these triggers
take the form of small patches added to an image (Turner
et al., 2018; Saha et al., 2019). Second, these works on
backdoor attacks cause a victim to misclassify any image
containing the trigger rather than a particular sample. Trig-
gerless attacks instead cause the victim to misclassify an in-
dividual image called the target image (Shafahi et al., 2018;
Zhu et al., 2019; Aghakhani et al., 2020b; Geiping et al.,
2020). This second distinction between the two threat mod-
els is not essential; for example, triggerless attacks could be
designed to cause the victim to misclassify a collection of
images rather than a single target. To be consistent with the
literature at large, we focus on triggerless attacks that target
individual samples and backdoor attacks that target whole
classes of images.

We focus on the clean-label backdoor attack and the hidden
trigger backdoor attack, where poisons are crafted with op-
timization procedures and do not contain noticeable patches
(Saha et al., 2019; Turner et al., 2018). For triggerless at-
tacks, we focus on the feature collision and convex polytope

methods, the most highly cited attacks of the last two years
that have appeared at prominent ML conferences (Shafahi
et al., 2018; Zhu et al., 2019). We include the recent trig-
gerless methods Bullseye Polytope (BP) and Witches’ Brew

(WiB) in the section where we present metrics on our bench-
mark problems (Aghakhani et al., 2020b; Geiping et al.,
2020). The following section details the attacks that serve
as the subjects of our experiments.

Technical details: Before formally describing various
poisoning methods, we begin with notation. Let Xc be
the set of all clean training data, and let Xp = {x(j)

p }Jj=1
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denote the set of J poison examples with corresponding
clean base images {x(j)

b }Jj=1. Let xt be the target image.
Labels are denoted by y and Y for a single image and a set
of images, respectively, and are indexed to match the data.
We use f to denote a feature extractor network.

Feature Collision (FC) Poisons in this attack are crafted
by adding small perturbations to base images so that their
feature representations lie extremely close to that of the
target (Shafahi et al., 2018). Formally, each poison is the
solution to the following optimization problem.

x(j)
p = argmin

x
kf(x)� f(xt)k22 + �kx� x(j)

b k22. (1)

When we enforce `1-norm constraints, we drop the last
term in Equation (1) and instead enforce kx(j)

p � x(j)
b k1 

", 8j by projecting onto the `1 ball after each iteration of
the optimization procedure.

Convex Polytope (CP) This attack crafts poisons such
that the target’s feature representation is a convex combina-
tion of the poisons’ feature representations by solving the
following optimization problem (Zhu et al., 2019).

Xp = argmin
{cj},{x(j)}

1
2

kf(xt)�
PJ

j=1 cjf(x
(j))k2

2

kf(xt)k2
2

subject to
PJ

j=1 cj = 1
and cj � 0 8 j,

and kx(j) � x(j)
b k1  " 8j.

(2)

Clean Label Backdoor (CLBD) This backdoor attack
begins by computing an adversarial perturbation to each
base image (Turner et al., 2018). Formally,

x̂(j)
p = x(j)

b + argmax
k�k1"

L(x(j)
b + �, y(j); ✓), (3)

where L denotes cross-entropy loss. Then, a patch is added
to each image in {x̂(j)

p } to generate the final poisons {x(j)
p }.

The patched image is subject to an `1-norm constraint.

Hidden Trigger Backdoor (HTBD) A backdoor ana-
logue of the FC attack, where poisons are crafted to remain
close to the base images but collide in feature space with
a patched image from the target class (Saha et al., 2019).
Let x̃(j)

t denote a patched training image from the target
class (this image is not clean), then we solve the following
optimization problem to find poison images;

x(j)
p = argmin

x
kf(x)� f(x̃(j)

t )k22,

subject to kx� x(j)
b k1  ".

(4)

3. Why Do We Need Benchmarks?
Backdoor and triggerless attacks have been tested in a wide
range of disparate settings. From model architecture to
target/base class pairs, the literature is inconsistent. Exper-
iments are also lacking in the breadth of trials performed,
sometimes using only one model initialization for all exper-
iments, or testing against one single target image. We find
that inconsistencies in experimental settings have a large
impact on performance evaluations and have resulted in
comparisons that are difficult to interpret. For example, the
authors of CP compare their `1-constrained attack to FC,
which is crafted with an `2 penalty. In other words, these
methods have never been compared on a level playing field.

To study these attacks thoroughly and rigorously, we em-
ploy sampling techniques that allow us to draw conclusions
about the attacks taking into account variance across model
initializations and class choice. For a single trial, we sample
one of ten checkpoints of a given architecture, then ran-
domly select the target image, base class, and base images.
In Section 4, all figures are averages from 100 trials with
our sampling techniques.

Disparate evaluation settings in the literature. To un-
derstand how differences in evaluation settings impact re-
sults, we re-create the various original performance tests for
each of the methods described above within our common
evaluation framework. We try to be as faithful as possi-
ble to the original works, however we employ our own
sampling techniques described above to increase statisti-
cal significance. Then, we tweak these experiments one
component at a time revealing the fragility of each method
to changes in evaluation setup. While proof-of-concept
papers that propose novel methods have great value in fur-
thering the community’s understanding of the threat posed
by large unchecked datasets, comparing strategies on the
same task and comparing their sensitivity to experimental
design changes are vital too. The variations in experimental
design for the most part do not correspond to differences in
threat models or in adversarial goals, and where they do, like
transfer learning versus training from scratch, performance
across the board may be hard to predict and thus requires
careful examination.

Establishing baselines. For the FC setting, following one
of the main setups in the original paper, we craft 50 poisons
on an AlexNet variant (for details on the specific architec-
ture, see (Krizhevsky et al., 2012; Shafahi et al., 2018))
pre-trained on CIFAR-10 (Krizhevsky et al., 2009), and we
use the `2-norm penalty version of the attack. We then evalu-
ate poisons on the same AlexNet, using the same CIFAR-10
data to train for 20 more epochs to “fine tune” the model
end to end. Note that this is not really transfer learning in
the usual sense, as the fine tuning utilizes the same dataset



Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks

Table 1. Various experimental designs used in data poisoning research.

Data Opt. Transfer Learning Threat Model
Attack Norm. Aug. SGD FFE E2E FST WB GB BB Ensembles "

FC ⇥ ⇥ ⇥ X X ⇥ X ⇥ ⇥ ⇥ -
CP X ⇥ ⇥ X X ⇥ ⇥ X X X 25.5
CLBD ⇥ X X ⇥ ⇥ X ⇥ ⇥ X ⇥ 8
HTBD X ⇥ X X ⇥ ⇥ X ⇥ ⇥ ⇥ 16

as pre-training, except with poisons inserted (Shafahi et al.,
2018).

The CP setting involves crafting five poisons using a ResNet-
18 model (He et al., 2016) pre-trained on CIFAR-10, and
then fine tuning the linear layer of the same ResNet-18
model with a subset of the CIFAR-10 training comprising
50 images per class (including the poisons). This setup is
also not representative of typical transfer learning, as the
fine-tuning data is sub-sampled from the pre-training dataset.
In this baseline we set " = 25.5/255 matching the original
work (Zhu et al., 2019).

One of the original evaluation settings for CLBD uses 500
poisons. We craft these on an adversarially trained ResNet-
18 and modify them with a 3 ⇥ 3 patch in the lower right-
hand corner. The perturbations are bounded with " = 16/255.
We then train a narrow ResNet model from scratch with the
CIFAR-10 training set (including the poisons) (Turner et al.,
2018).

For the HTBD setting, we generate 800 poisons with another
modified AlexNet (for architectural details, see Appendix
A.13) which is pre-trained on CIFAR-10 dataset. Then, an
8 ⇥ 8 trigger patch is added to the lower right corner of
the target image, and the perturbations are bounded with
" = 16/255. We use the entire CIFAR-10 dataset (including
the poisons) to fine tune the last fully connected layer of the
same model used for crafting. Once again, the fine-tuning
data in this setup is not disjoint from the pre-training data
(Saha et al., 2019). See Table 2 and the left-most bars of
Figure 3 for all baseline results.

Inconsistencies in previous work. The baselines defined
above do not serve as a fair comparison across methods,
since the original works to which we try and stay faithful
are inconsistent. Table 1 summarizes experimental settings
in the original works. If a particular component (column
header) was considered anywhere in the original paper’s
experiments, we mark a (X), leaving exes (⇥) when some-
thing was not present in any experiments. Table 1 shows the
presence of data normalization and augmentation as well as
optimizers (SGD or ADAM). It also shows which learning
setup the original works considered: frozen feature extrac-
tor (FFE), end-to-end fine tuning (E2E), or from-scratch

training (FST), as well as which threat levels were tested,
white, grey or black box (WB, GB, BB). We also consider
whether or not an ensembled attack was used. The " values
reported are out of 255 and represent the smallest bound
considered for CIFAR-10 poisons in the papers; note FC
uses an `2 penalty so no bound is enforced despite the attack
being called “clean-label” in the original work. We conclude
from Table 1 that experimental design varies greatly from
paper to paper, making it extremely difficult to make any
comparisons between methods.

4. Just How Toxic Are Poisoning Methods
Really?

In this section, we look at weaknesses and inconsistencies
in existing experimental setups, and how these lead to po-
tentially misleading comparisons between methods. We
use our testing framework to put triggerless and backdoor
attacks to the test under a variety of circumstances, and get a
tighter grip on the reliability of existing poisoning methods.

Table 2. Baseline performance.

Attack Success Rate (%)

FC 92.00± 2.71
CP 88.00± 3.25
CLBD 86.00± 3.47
HTBD 69.00± 4.62

Training with SGD and data augmentation. In their
corresponding original works, both FC and CP attacks have
only been tested on victim models pre-trained with the
ADAM optimizer. However, SGD with momentum has
become the dominant optimizer for training CNNs (Wilson
et al., 2017). Interestingly, we find that models trained with
SGD are significantly harder to poison, rendering these at-
tacks less effective in practical settings. Moreover, none
of the baselines include simple data augmentation such as
horizontal flips and random crops. We find that data augmen-
tation, standard in the deep learning literature, also greatly
reduces the effectiveness of all of the attacks. For example,
FC and CP success rates plummet in this setting to 51.00%
and 19.09%, respectively. Complete results including hy-
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Figure 1. Bases (top) and poisons (bottom).

perparameters, success rates, and confidence intervals are
reported in Appendix A.3.

Victim architecture matters. Two attacks, FC and
HTBD, are originally tested on AlexNet variants, and CLBD
is tested with a narrow ResNet variant. These models are
not widely used, and they are unlikely to be employed by
a realistic victim. We observe that many attacks are signifi-
cantly less effective against ResNet-18 victims. See Figure
3, where for example, the success rate of HTBD on these
victims is as low as 18%. See Appendix A.4 for a table of
numerical results. These ablation studies are conducted in
the baseline settings but with a ResNet-18 victim architec-
ture. These ResNet experiments serve as an example of how
performance can be highly dependent on the selection of
architecture.

“Clean” attacks are sometimes dirty. Each of the orig-
inal works we consider purports to produce “clean-label”
poison examples that look like natural images. However
these methods often produce easily visible image artifacts
and distortions due to the large values of ✏ used. See Figure
1 for examples generated by two of the methods, where FC
perturbs a clean “cat” into an unrecognizable poison (left),
and CP generates an extremely noisy poison from a base in
the “airplane” class (right). These images are not surprising
since the FC method is tested with an `2 penalty in the orig-
inal work, and CP is `1 constrained with a large radius of
25.5/255.

In many contexts, avoiding detection by automated systems
may be more important than maintaining perceptual sim-
ilarity. In our work, we focus on perceptual similarity as
defined by the `1 constraint as this reflects the explicit goal
of most of the attacks we examine, and it is, in general, a
much more common area of study. Adaptive attacks that
avoid defense or detection is relatively unexplored and an

Figure 2. Scaling the dataset size while fixing the poison budget.

interesting area for future research (Koh et al., 2018).

Borrowing from common practice in the evasion attack
and defense literature, we test each method with an `1
constraint of radius 8/255 and find that the effectiveness of
every attack is diminished (Madry et al., 2017; Dong et al.,
2020). The sensitivity to perturbation size suggests that a
standardized constraint on poison examples is necessary for
fair comparison of attacks. See Figure 3, and see Appendix
A.5 for a table of numerical results.

Proper transfer learning may be less vulnerable. Of
the attacks we study here, FC, CP, and HTBD were origi-
nally proposed in settings referred to as “transfer learning.”
Each particular setup varies, but none are true transfer learn-
ing since the pre-training and fine-tuning datasets overlap.
For example, FC uses the entire CIFAR-10 training dataset
for both pre-training and fine tuning. Thus, their threat
model entails allowing an adversary to modify the training
dataset but only for the last few epochs. Furthermore, these
attacks use inconsistently sized fine-tuning datasets.

To simulate transfer learning, we test each attack with
ResNet-18 feature extractors pre-trained on CIFAR-100,
which are then fine tuned on CIFAR-10 data. In Figure 3,
every attack aside from CP shows worse performance when
transfer learning is done on data that is disjoint from the
pre-training dataset. The attacks designed for transfer learn-
ing may not work as advertised in more realistic transfer
learning settings. See Appendix A.6.

Performance is not invariant to dataset size. Existing
work on data poisoning measures an attacker’s budget in
terms of what percentage of the training data they may
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Figure 3.We show the fragility of poisoning methods to experimental design. This figure depicts baselines along with the results of
ablation studies. Different methods respond differently to these testing scenarios, supporting the need for consistent and thorough testing.
Horizontal lines denote performance on baselines described in Section 3, and bars represent the results of changing a specific feature in an
individual method’s baseline. Tables of these results with confidence intervals can be found in the appendices.

modify. This begs the question whether percentage alone
is enough to characterize the budget. Does the actual size
of the training set matter? We find the number of images in
the training set has a large impact on attack performance,
and that performance curves for FC and CP intersect. When
we hold the percentage poisoned constant at 1%, but we
change the number of poisons, and the size of the training
set accordingly, we see no consistent trends in how the
attacks are affected. Figure 2 shows the success of each
attack as a function of dataset size (shaded region is one
standard error). This observation suggests that one cannot
compare attacks tested on different sized datasets by only
fixing the percent of the dataset poisoned. See Appendix
A.7.

Black-box performance is low. Whether considering
transfer learning or training from scratch, testing these meth-
ods against a black-box victim is surely one of the most
realistic tests of the threat they pose. Since, FC, CP and
HTBD do not consider the black-box scenario in the original
works, we take the poisons crafted using baseline methods
and evaluate them on models of different architectures than
those used for crafting. The attacks show much lower per-
formance in the black-box settings than in the baselines, in
particular FC, CP, and HTBD all have success rates lower
than 20%. See Figure 3, and see Appendix A.8 for more
details.

Small sample sizes and non-random targets. On top of
inconsistencies in experimental setups, existing work on
data poisoning often test only on specific target/base class
pairs. For example, FC largely uses “frog” as the base class
and “airplane” as the target class. CP, on the other hand,
only uses “ship” and “frog” as the base and target classes,
respectively. Neither work contains experiments where each
trial consists of a randomly selected target/base class pair.
We find that the success rates are highly class pair dependent
and change dramatically under random class pair sampling.
For this reason, random sampling of image pairs is a good
step towards achieving consistent and reproducible results.
See Appendix A.9 for a comparison of the specific class
pairs from these original works with randomly sampled
class pairs.

In addition to inconsistent class pairs, data poisoning papers
often evaluate performance with very few trials since the
methods are computationally expensive. In their original
works, FC and CP use 30 and 50 trials, respectively, for
each experiment, and these experiments are performed on
the same exact pre-trained models each time. And while
HTBD does test randomized pairs, they only show results for
ten trials on CIFAR-10. These small sample sizes yield wide
error bars in performance evaluation. We choose to run 100
trials per experiment in our own work. While we acknowl-
edge that a larger number would be even more compelling,
100 is a compromise between thorough experimentation and
practicality since each trial requires re-training a classifier.
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Attacks are highly specific to the target image. Trigger-
less attacks have been proposed as a threat against systems
deployed in the physical world. For example, blue Toyota
sedans may go undetected by a poisoned system so that
an attacker may fly under the radar. However, triggerless
attacks are generally crafted against a specific target im-
age, while a physical object may appear differently under
different real-world circumstances. We upper-bound the
robustness of poison attacks by applying simple horizontal
flips to the target images, and we find that these poisoning
methods are weak when the exact target image is unknown.
For example, FC is only successful 7% of the time when
simply flipping the target image. See Figure 3 and Appendix
A.10.

Backdoor success depends on patch size. Backdoor at-
tacks add a patch to target images to trigger misclassifica-
tion. In real-world scenarios, a small patch may be critical
to avoid being caught. The original HTBD attack uses an
8⇥ 8 patch, while the CLBD attack originally uses a 3⇥ 3
patch (Saha et al., 2019; Turner et al., 2018). In order to
understand the impact on attack performance, we test dif-
ferent patch sizes. We find a strong correlation between
the patch size and attack performance, see Appendix A.12.
We conclude that backdoor attacks must be compared using
identical patch sizes.

5. Evaluation Metrics for Dataset
Manipulation

Our Benchmark: We propose new benchmarks for mea-
suring the efficacy of both backdoor and triggerless data
poisoning attacks. The deviations from the original settings
in which methods were proposed are carefully chosen to
keep these benchmark tasks in line with the original threats
while leveling the playing field for fair comparison. We
standardize the datasets and problem settings for our bench-
marks as described below.1

Target and base images are chosen from the testing and train-
ing sets, respectively, according to a seeded/reproducible
random assignment. Poison examples crafted from the bases
must remain within the `1-ball of radius 8/255 centered at
the corresponding base images. Seeding the random as-
signment allows us to test against a significant number of
different random choices of base/target, while always using
the same choices for each method, thus removing a source
of variation from the results. We consider two different
training modes:

I Transfer Learning: A feature extractor pre-trained on
clean data is frozen and used while training a linear

1Code is available at https://github.com/aks2203/
poisoning-benchmark.

classification head on a disjoint set of training data that
contains poisons.

II Training From Scratch: A network is trained from
random initialization on data containing poison exam-
ples in the training set.

To further standardize these tests, we provide pre-trained
models to test against. The parameters of one model are
given to the attacker. We then evaluate the strength of the
attacks in white-box and black-box scenarios. For white-
box tests in the transfer learning benchmarks, we use the
same frozen feature extractor that is given to the attacker for
evaluation. While in the black-box setting, we craft poisons
using the known model but we test on the two models the
attacker has not seen, averaging the results. When training
from scratch, models are trained from a random initializa-
tion on the poisoned dataset. We report averages from 100
independent trials for each test. Backdoor attacks can use
any 5 ⇥ 5 patch. Note that the number of attacker-victim
network pairs is kept small in our benchmark because each
of the 100 trials requires re-training (in some cases from
scratch), and we want to keep the benchmark within reach
for researchers with modest computing resources.

CIFAR-10 benchmarks. Models are pretrained on
CIFAR-100, and the fine-tuning data is a subset of CIFAR-
10. We choose this subset to be the first 250 images per class
(2,500 images), this includes 25 poison examples in total
(2,475 unperturbed images). This amount of data motivates
the use of transfer learning, since training from scratch on
only 2,500 images yields poor generalization. See Appendix
A.13 for examples. We allow 500 poisons when training
from scratch, see Appendix A.15 for a case-study in which
we investigate how many poisons an attacker may be able
to place in a dataset compiled by querying the internet for
images. We allow the attacker access to a ResNet-18, and
we do black-box tests on a VGG11 (Simonyan & Zisserman,
2014), and a MobileNetV2 (Sandler et al., 2018), and we
use one of each model when training from scratch and report
the average.

TinyImageNet benchmarks. Additionally, we pre-train
VGG16, ResNet-34, and MobileNetV2 models on the first
100 classes of the TinyImageNet dataset (Le & Yang, 2015).
We fine tune these models on the second half of the dataset,
allowing for 250 poison images. As above, the attacker has
access to a particular VGG16 model, and black-box tests are
done on the other two models. In the from-scratch setting,
we train a VGG16 model on the entire TinyImageNet dataset
with 250 images poisoned.2

2The TinyImageNet from-scratch benchmark is done with 25
independent trials to keep the computational demands this problem
within reach for researchers with modest resources.
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Table 3. Benchmark success rates (reported as percentages). The best performance in each column is in bold.

CIFAR-10 TinyImageNet
Transfer From Scratch Transfer From Scratch

Attack WB BB WB BB

FC 22.0 7.0 1.33 49.0 2.0 4.0
CP 33.0 7.0 0.67 14.0 1.0 0.0
BP 85.0 8.5 2.33 100.0 10.5 44.0
WiB - - 26.0 - - 32.0
CLBD 5.0 6.5 1.00 3.0 1.0 0.0
HTBD 10.0 9.5 2.67 3.0 0.5 0.0

Benchmark hyperparameters We pre-train models on
CIFAR-100 with SGD for 400 epochs starting with a learn-
ing rate of 0.1, which decays by a factor of 10 after epochs
200, 300, and 350. Models pre-trained on the first half of
TinyImageNet are trained with SGD for 200 epochs starting
with a learning rate of 0.1, which decays by a factor of 10 af-
ter epochs 100 and 150. In both cases, we apply per-channel
data normalization, random crops, and horizontal flips, and
we use batches of 128 images (augmentation is also applied
to the poisoned images). We then fine tune with poisoned
data for 40 epochs with a learning rate that starts at 0.01
and drops to 0.001 after the 30th epoch (this applies to the
transfer learning settings).

When training from scratch on CIFAR-10, we include the
500 perturbed poisons in the standard training set. We use
SGD and train for 200 epochs with batches of 128 images
and an initial learning rate of 0.1 that decays by a factor
of 10 after epochs 100 and 150. Here too, we use data
normalization and augmentation as described above. When
training from scratch on TinyImageNet, we allow for 250
poisoned images. All other hyperparameters are identical.

Our evaluations of six different attacks are shown in Table 3.
These attacks are not easily ranked, as the strongest attacks
in some settings are not the strongest in others. Witches’
Brew (WiB) is not evaluated in the transfer learning settings,
since it is not considered in the original work (Geiping
et al., 2020).) See Appendix A.16 for tables with confidence
intervals. We find that by using disjoint and standardized
datasets for transfer learning, and common training practices
like data normalization and scheduled learning rate decay,
we overcome the deficits in previous work. Our benchmarks
can provide useful evaluations of data poisoning methods
and meaningful comparisons between them.

6. Conclusion
The threat of data poisoning is at the forefront of fears
around emerging ML systems (Kumar et al., 2020a). While

many of the methods claiming to do so do not pose a practi-
cal threat, some of the recent methods are cause for practi-
tioner concern. With real threats arising, there is a need for
fair comparison. The diversity of attacks, and in particular
the difficulty in ordering them by efficacy, calls for a diverse
set of benchmarks. With those we present here, practitioners
and researchers can compare attacks on a level playing field
and gain an understanding of how existing methods match
up with one another and where they might fail.

Since the future advancement of these methods is inevitable,
our benchmarks will also serve the data poisoning com-
munity as a standardized test problem on which to eval-
uate and future attack methodologies. As even stronger
attacks emerge, trepidation on the part of practitioners will
be matched by the potential harm of poisoning attacks. We
are arming the community with the high quality metrics this
evolving situation calls for.
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