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Abstract

We study the problem of safe online convex optimization,
where the action at each time step must satisfy a set of lin-
ear safety constraints. The goal is to select a sequence of ac-
tions to minimize the regret without violating the safety con-
straints at any time step (with high probability). The param-
eters that specify the linear safety constraints are unknown
to the algorithm. The algorithm has access to only the noisy
observations of constraints for the chosen actions. We pro-
pose an algorithm, called the Safe Online Projected Gradi-
ent Descent (SO-PGD) algorithm, to address this problem.
We show that, under the assumption of the availability of a
safe baseline action, the SO-PGD algorithm achieves a regret
O(T?/3). While there are many algorithms for online convex
optimization (OCO) problems with safety constraints avail-
able in the literature, they allow constraint violations during
learning/optimization, and the focus has been on character-
izing the cumulative constraint violations. To the best of our
knowledge, ours is the first work that provides an algorithm
with provable guarantees on the regret, without violating the
linear safety constraints (with high probability) at any time
step.

1 Introduction

Online learning/optimization is a sequential decision mak-
ing paradigm, where the decision maker adaptively se-
lects a sequence of actions based on the past observations
(Cesa-Bianchi and Lugosi 2006). Online convex optimiza-
tion (OCO) is an important class of online optimization
problems, where the cost function faced by the decision
maker at each time step is an arbitrarily-varying convex
function (Hazan 2016; Shalev-Shwartz 2011). In the OCO
problem, a sequence of arbitrarily-varying convex cost func-
tions {ft,t = 1,...,T} are revealed, one per time step, to
the decision maker. The decision maker selects an action
x; from a convex set X, before the cost function f; is re-
vealed. The typical performance objective is to minimize the
regret, which characterizes the difference between cumula-
tive cost incurred by the decision maker and that of an oracle
algorithm that employs the best fixed action in hindsidght at
all time steps. There are a number of OCO algorithms that
achieve different sublinear regret guarantees with different
computational complexity (Hazan 2016).
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In many real-world applications, however, the actions se-
lected by the decision maker must satisfy some necessary
safety constraints over the set X. For example, in power
systems, the control actions that decide the demand man-
agement should not violate the line flow and the voltage
regulation constraints (Dobbe et al. 2020). In communica-
tion networks, the transmission rate is limited by constraints
on the maximum allowable radiated power due to interfer-
ence and human safety considerations (Luong et al. 2019).
In robotics applications, the control actions should maintain
the closed-loop stability of the system (Astrom and Murray
2010). Typically, such constraints are represented as a safe
set X® and the control action x; must lie inside X'® for all t
for the safe operation of the system.

Often, the safe set X'® is determined by the parameters of
the system that are typically unknown to the decision maker
a-priori. For example, in power systems, the constraints on
the control actions depend on the line parameters, which
are typically unknown. In robotics, designing a closed-loop
stable controller requires the dynamic model of the robot,
which may be unknown. Thus, the decision maker has to
learn the unknown parameters to characterize the unknown
safe set. While an exploration algorithm can be used to es-
timate these parameters, such algorithms often take random
actions for efficient estimation that may violate the safety
constraints. Moreover, taking actions with respect to an esti-
mated safe set may still violate the safety constraints due to
the unavoidable estimation errors.

In this paper, we address the problem of safe online con-
vex optimization with an unknown safe set, where the de-
cision maker has access to only noisy observations of the
safety constraints (that define the safe set) for the chosen ac-
tions. Our goal is to design an algorithm that minimizes the
regret while satisfying the safety constraints at all time steps.

While there are many works in the OCO literature that
address the problem with safety constraints (see the related
works section below), they typically allow constraint viola-
tions during learning/optimization. The main goal of such
algorithms is then to obtain a (sublinear) bound on the cu-
mulative constraint violations, in addition to the standard re-
gret. In sharp contrast to such works, we focus on designing
an algorithm that satisfies the safety constraints ar all time
steps while providing a provable guarantee on the regret.

In this paper, we restrict ourselves to the setting where



the unknown safe set is a closed polytope characterized by a
set of linear inequalities with unknown parameters. We be-
lieve that addressing the linear constraint setting is a natu-
ral first step towards developing a fundamental understand-
ing of safe OCO algorithms for general non-linear setting.
To the best of our knowledge, this is the first work that ad-
dresses the safe OCO problem with a provable guarantee on
satisfying the safety constraints at all time steps, even in a
setting with linear constraints.

1.1 Related Work

OCO: The OCO problem was first formally addressed in
(Zinkevich 2003), though some prior works (Cesa-Bianchi,
Long, and Warmuth 1996; Gordon 1999) had considered
similar settings. In (Zinkevich 2003), the author proposed
an online gradient descent algorithm and showed that it
achieves O(v/T) regret. A number of OCO algorithms un-
der different assumptions have been developed since, see the
monographs (Shalev-Shwartz 2011; Hazan 2016).

OCO with Long Term Constraints: Most of the stan-
dard OCO algorithms assume full knowledge of the con-
straint set X'°. However, in many real-world applications,
the constraint set X'° is often specified in terms of the func-
tional inequalities, i.e., X* = {z € X : g;4(x) < 0,7 €
{1,...,m},t € {1,...,T}}, where g, ;s are convex func-
tions. The OCO with long term constraints problem consid-
ers a relaxed version of such constraints, where the goal is
to bound the constraint violations, max; Zthl git(xy), in-
stead of satisfying the constraints at each time step.

The OCO with long term constraint problem was first in-
troduced in (Mahdavi, Jin, and Yang 2012), which assumed
that the constraint functions are the same for all ¢, i.e., g; ; =
gi, Vt. For deterministic constraints, the algoirthm proposed
in (Mahdavi, Jin, and Yang 2012) achieves O(T"*/?) regret
and O(T?/*) constraint violation. Recently, (Yu and Neely
2020) showed that it is possible to achieve O(T'/?) re-
gret and O(1) constraint violation. In (Yu, Neely, and Wei
2017), the authors addressed the stochastic constraints set-
ting, where the constraint functions are of the form g; +(x) =
gi(x,w;), where wys are i.i.d. random variables. They pro-
posed an algorithm that simultaneously achieves O(v/T) re-
gret and (expected) constraint violation. A recent work (Wei,
Yu, and Neely 2020) has improved this result by removing
some assumptions while maintaining the regret guarantees.

In (Neely and Yu 2017), the authors addressed the setting
where the constraint functions g; ;s are arbitrarily-varying
(adversarial), and proposed an algorithm with O(T"/?) re-
gret and constraint violation. This problem was also ad-
dressed in (Sun, Dey, and Kapoor 2017; Chen, Ling, and
Giannakis 2017; Cao and Liu 2018). A distributed version
of this problem has been studied recently in (Yi et al. 2020).

We emphasize that all the above mentioned works allow
constraint violations during learning/optimization. Signifi-
cantly different from these, we propose an algorithm that
does not violate the unknown linear constraints that define
the safe set at any time step during learning/optimization.

Safe Learning/Optimization: The works closest to our
setting are (Amani, Alizadeh, and Thrampoulidis 2019) and
(Khezeli and Bitar 2020), where the authors addressed the
linear bandits problem with unknown linear safety con-
straints that have to be satisfied at all time steps during
learning. For ensuring safe exploration in the initial phase
of learning, they introduce an assumption about the avail-
ability of a known safe baseline action. They showed that
O(T"/?) regret is achievable without safety constraints vio-
lations during learning if a lower bound on the distance be-
tween the optimal action and the boundary of the safe set is
known. If such a lower bound is not available, then O(T%/3)
regret is achievable. Instead of the static linear cost function
considered in these works, we consider the more challeng-
ing arbitrarily-varying convex cost functions. Moreover, we
also consider a set of linear constraints as opposed to a single
linear constraint studied in these works.

Convex optimization with unknown linear safety con-
straints addressed in (Usmanova, Krause, and Kamgarpour
2019) and (Fereydounian et al. 2020) is another class of
works that is close to ours. Similar to (Amani, Alizadeh, and
Thrampoulidis 2019; Khezeli and Bitar 2020) these works
also make use of the assumption of a safe baseline action.
They consider a static convex cost function and focus on
characterizing the sample complexity, which is quite differ-
ent from our setting (arbitrarily-varying cost functions) and
objective (regret minimization).

1.2 Main Contributions

We formulate the safe online convex optimization problem
where the action must satisfy a set of unknown linear safety
constraints at all time steps. The decision maker has only ac-
cess to a noisy measurement of the constraints with respect
to the chosen action at each time step. We propose a new al-
gorithm, called the Safe Online Projected Gradient Descent
(SO-PGD) algorithm, and show that this algorithm achieves
O(T?/3) regret while satisfying the safety constraints at all
time steps, with a high probability. To the best of our knowl-
edge, this is the first such result in the OCO literature, even
in a setting with liner constraints.

Similar to (Amani, Alizadeh, and Thrampoulidis 2019;
Khezeli and Bitar 2020; Usmanova, Krause, and Kamgar-
pour 2019; Fereydounian et al. 2020), our algorithm also
makes use of the assumption of a safe baseline action for
initial exploration and for estimating the unknown parame-
ters. However, a naive estimate of the safe set may lead to
constraint violations because of the inherent estimation er-
ror. The key idea we use is the construction of a conservative
safe set that is provably a subset of the unknown safe set. Our
algorithm performs online gradient descent with respect to
this conservative safe set, which provably ensures that safety
constraints are satisfied at each time step. We then character-
ize the error because of using this conservative safe set. We
show that a clever balancing of the exploration and online
optimization can achieve O(T2/3) regret without constraint
violations at any time steps.



1.3 Notations
For any positive semidefinite matrix A, we denote ||z||4 =

VT Az. For any square matrix A, we denote its minimum
and maximum eigenvalues by Apmin(A) and Apax(A4), re-
spectively. For any two integer M1, My with My < Mo, we
denote [M;, Ms] = {M;, M1+1, ..., Ms}. For any random
vector ¢, Cov(¢) = E[¢( T]. For any convex set X C R™ and
any z € R™, IIx(x) denotes the projection of = to X with
respect to the Euclidean norm.

2 Safe Online Convex Optimization:
Problem Formulation

The general framework of online convex optimization
(Hazan 2016) is as follows: at each time step ¢, the algorithm
selects an action z; € X C R? and incurs a cost fe(xe),
where f; : X — R is a convex function. The cost function
ft is not known at the time of making the decision z;, and
the sequence of cost functions { f;, ¢t € [1, 7T} is assumed to
be arbitrary. In addition to the incurred cost f;(z;), it is gen-
erally assumed that the value of the gradient of f; evaluated
at ¢, V fi(x), is also available to the algorithm. The goal of
a standard online convex optimization algorithm is to select
a sequence of actions {x¢,¢ € [1,T]} in order to minimize
the regret defined as 23:1 fe(xy) — mingex ZZ;I fi(x).
Most of the existing works assume that the set A’ is known
to the algorithm a priori.

In this work, we consider the safe online convex optimiza-
tion problem with an unknown safe set characterized by a set
of unknown linear safety constraints. More precisely, at each
time step ¢, the algorithm has to take an action z; from the
safe set X'¢, defined as

X ={zxe X Ax <b}, )
where the matrix A € R™*? and the vector b € R™. De-
noting A = [a1,a2,...,am,]",b=[b1,ba,...,bn]", where
a; € R% and b; € R, the safe set X'* is defined in terms of
m linear constraints, and the ith linear constraint is of the
form a; z < b;. We assume that X'® is closed polytope. The
matrix A is unknown to the algorithm a priori. So, the safe
set X'° is also unknown. For simplifying the analysis, we
assume that b is known to the algorithm.

It is impossible to learn the safety constraints if the algo-
rithm receives no information that can be used to estimate
the unknown safe set X'®, or equivalently, the unknown pa-
rameter A. Here, we make a natural assumption that the al-
gorithm receives a noisy observation y, € R™ at each time
step ¢, where y; = Ax; + wy, and wy is a zero mean sub-
Gaussian noise.

The goal of the safe online convex optimization algorithm
is to select a sequence of actions {z;,t € [1,T]} in order to
minimize the regret R(T'), defined as

T T
R(T) =) folw) = min 3 fi(x), @
t=1 t=1

while simultaneously satisfying the safety constraints by en-
suring that

P(ay € X%, forallt € [1,T]) > 1 -4, 3)
fora given § € (0,1).

2.1 Model Assumptions

In order to analyze the safe OCO problem stated above, we
make the following assumptions.

Assumption 1 (Cost Functions). The cost functions { f,t €
[1,T]} are convex and have a bounded gradient, i.e.,
maXge(1,7) MaXgex IV fi(z)|| < G.

The above assumption is standard in the OCO literature.
Also, this assumption implies that f;s are G-Lipschitz.

Assumption 2 (Boundedness). (i) The set X is convex and
compact. Moreover, ||z||2 < L,Vx € X.
(it) max;e, ) |ailly < La.

These are also standard assumptions in the linear bandits
and OCO literature. Also, as is standard in the literature, we
assume that G, L, L 4 are known to the algorithm.

Assumption 3 (Sub-Gaussian Noise). The noise sequence
{we,t € [1,T]} is R-sub-Gaussian with respect to a filtra-
tion {Fy,t € [1,T1}, i.e.,

(i) Elwy|Fi—1] = 0, V¢, t € Ll,T]7

(ii) E[eMt | Fi—1] < exp(A\2R%/2),VA € R,Vt € [1,T).

Since the safe set X'® is unknown, clearly it is not possi-
ble to satisfy safety constraints right from the first time step
without making any additional assumptions. We overcome
this obvious limitation by assuming that the algorithm has
access to a safe baseline action x° such that z° € X*°. We
formalize this assumption as follows.

Assumption 4 (Safe Baseline Action). There exists a safe
baseline action x®* € X° such that Az® = b° < b. The
algorithm knows x*® and b® and hence the safety gap A° =

This assumption is similar to that of the safe baseline ac-
tion assumption used in the context of safe linear bandits
and safe convex optimization (Amani, Alizadeh, and Thram-
poulidis 2019; Khezeli and Bitar 2020; Usmanova, Krause,
and Kamgarpour 2019; Fereydounian et al. 2020). The key
intuition is that, any algorithm used in a real-world decision
making problem has to perform at least as well as a baseline
action, which is often conservatively designed to satisfy the
safety constraints. Typically, this baseline action is already
employed to solve the real-world decision making problem
and there will be large amount of data generated according
to this baseline action, which can be used to estimate the
value b®. We emphasize that while the baseline action is safe
by definition, it may be far way from the optimal action that
minimizes the regret.

3 Safe Online Projected Gradient Descent
(SO-PGD) Algorithm

We propose an algorithm, which we call the safe online pro-
Jjected gradient descent (SO-PGD) algorithm, to solve the
online convex optimization problem with unknown linear
safety constraints. The SO-PGD Algorithm is formally given
in Algorithm 1. It has three main parts: (i) safe exploration,
(ii) conservative safe set estimation, and (iii) online gradient
descent.



Algorithm 1: SO-PGD Algorithm

Input: Y1 TOa 67 xs’ T
Safe exploration:
fort=1,...,T do
Select action z; = (1 — y)z® + v(; (as in (4))
end for
Conservative safe set estimation:
Estimate A according to (5)
Compute conservative safe set X according to (8)
Online gradient descent:

A A o e

bl

10: fort =Ty +1,...,7T do
11: Ti41 — H)eé (.’Et — ant(fEt))
12: end for

3.1 Safe Exploration

The goal of the safe exploration part of the SO-PGD algo-
rithm is to estimate the safe set without violating the safety
constraints. This is achieved by pursuing a pure exploration
strategy for the first T time steps by carefully selected ex-
ploration actions. Since the safety constraints have to be sat-
isfied at all time steps, we make use of the knowledge of
the safe baseline action x® to collect the observations that
are necessary for estimating the safe set. However, since
y® = Ax® may not be a function of all the elements of A,
taking the safe baseline action x® alone will not give a good
estimate of the unknown parameter A. To overcome this is-
sue, we design exploration actions as random perturbation
around x° in such a way that they do not violate the safety
constraints. More formally, for any time step ¢ € [1, Tp], the
safe exploration action z; is selected as

e = (1—v)2* +G, 4

for some vy € [0, 1), where (;s are i.i.d. zero mean random
vectors such that ||(;|| < min{1l, L} and Cov({;) = O’%I for
all t. By controlling the value of v, we can ensure that the
exploration action x; satisfies the safety constraints for all
t € [1,To], as shown below.

Lemma 1. Let Assumption 2 and 4 hold. Let y = £~ Then,

the safe exploration action x given in (4) satisfies the safety
constraints Axy < b for all t € [1,Ty] almost surely.

3.2 Estimation of Conservative Safe Set

At the end of the safe exploration phase, using the past
exploration actions x; and the past observations y; =
Azy + wy, t € [1,Tp], the algorithm computes the £o-
regularized least squares estimate A of the matrix A. More
formally, let X1, = [z1,.. .,xTo]—r € RToxd and Yy, =
[y1,...,y7,] " € RT0. Then, the fo-regularized least squares
estimate is given by
A=\ +X], X1,)" X[, Yr,. (5)
We denote A = [a1, 2, ..., G4m]", where a; is the estimate
of a;.
The SO-PGD algorithm next constructs the ellipsoidal
confidence set C;(d) around a;,¢ € [1,m], that contains

the unknown parameter a; with a probability greater than
(1 = §/m). More formally, we define

Ci(0) ={a € R |la —ailly, <Ar(6)}  (©)

where V7, is the Gram matrix of the least squares estimation,
givenby Vi, = A + X[ Xq, = M + 3%, 2,2, and

Br,(8) = R\/dlog (W) +VALy.  (7)

The radius Sr,(d) of the confidence of set C;(4) is se-
lected in order to to ensure that the true parameter a; is inside
it with high probability. We note that this is a standard ap-
proach used in the linear bandits literature (Abbasi-Yadkori,
Pél, and Szepesvdri 2011, Theorem 2). We formally state
this result below.

Lemma 2. Let Assumption 2 and 3 hold. Then, P(a; €
Ci(6),Vie[1,m]) >1—4.

Now, using the confidence sets C;(d), i € [1, m], the algo-
rithm constructs a conservative safe set X'* as

X ={zxeR?:a x <bVa; €Ci(6),vie[l,m]}. (8)

Note that the elements of X' satisfy the safety constraint
with respect to all elements of the confidence set C;(6), Vi €
[1, m]. This condition naturally leads to a conservative inner
approximation of the true safe set X'*. We formally state this
observation below.

Lemma 3. Let Assumption 2 and 3 hold. Then, X C xs
with probability at least 1 — 0.

Using the conservative safe set xs given in (8) as the fea-
sible set in a projected gradient descent algorithm may ap-
pear intractable because the constraint &;—x < b has to be
satisfied for all a; € C;(d). However, using the structure of
Ci(9), it can be shown that (Lattimore and Szepesvari 2020,
Chapter 19 ) X* has a more tractable representation as fol-
lows

X ={zeR?:a z+ B, (9) lzlly, » < bi, Vi € [L,m]}.
9)

We will use the above representation, both for implementing
our algorithm and analyzing its regret guarantees.

3.3 Online Projected Gradient Descent

After the initial safe exploration for the first 7Tj time steps
and computing the conservative safe set X'®, the SO-PGD
algorithm performs online projected gradient descent for ¢ €

[Ty + 1,T] by treating X' as the feasible set. Formally, the
SO-PGD algorithm takes the sequence of actions {z;,t €
[Ty + 1,T]} given by

Ti41 = H;es (CUt - nvft(xt))~ (10)

Since X'¢ is a subset of the true safe set X’ 9, the sequence
of actions taken by the SO-PGD algorithm is safe by defini-
tion.



3.4 Main Result

We now give the main result of our paper.

Theorem 1. Let Assumptions 1-4 hold. Consider the SO-
PGD algorithm with ~ as specified in Lemma 1, n =
2L/GVT and Ty = T?/3. Let {x,t € [1,T]} be the
sequence of actions generated by the SO-PGD algorithm.

3
Then, for any T > (%) , with a probability greater

than (1 — 9), we have
xy € X%, Vit € [1,T], and

LGV/8dBr(6) T72/3

R(T) < 2LGT*?® + 2LGVT +
C(A,b),/720?

(11

where C(A,b) is a positive constant that depends only on
the matrix A and vector b.

Remark 1. Theorem 1 guarantees that the SO-PGD algo-
rithm achieves O(T%/?) regret , excluding the O(log T') fac-
tor resulting from B (d). This is similar to the O(T2/3) re-
gret guarantee obtained in (Amani, Alizadeh, and Thram-
poulidis 2019) for the safe linear bandits problem. We em-
phasize that the O(T"'/?) regret guarantees for safe linear
bandits obtained in (Amani, Alizadeh, and Thrampoulidis
2019; Khezeli and Bitar 2020) require additional assump-
tion. In particular, they use the knowledge of a lower bound
on the distance between the optimal action and the bound-
ary of the safe set. This is not a meaningful assumption in
the OCO setting with arbitrarily-varying cost functions. De-
signing an algorithm that can achieve a better regret without
any additional assumptions is an exciting open question.

4 Regret Analysis

We analyze the regret of the SO-PGD algorithm by decom-
posing it into three terms as follows:

To T
R(T) = fulz) = fula™)+ Y filz) = i3
t=1

t=To+1
Term I Term IT
T
+ Y AE) - £, (2)
t=To+1
Term IIT
where 2* = argmin,c y. Zthl ft(x) is the optimal ac-

tion in hindsight with respect to the true safe set X'* and
#* = Il 4. (z*) is the projection of z* to the conservative
safe set X', The first term accounts for the regret due to the
safe exploration phase. The second term characterizes the
regret of a standard online projected gradient descent algo-
rithm with respect to the conservative safe set X'*. The third
term accounts for the error due to using the conservative safe
set X'* in the online projected gradient descent instead of the
true safe set X'°. We separately analyze the regret of each
term and show that the regret is O(T%/3).

4.1 Regret of Term I
We bound Term I as follows:

To To
> felw) = fola*) < Gllay — a*|| < 2LGTy, (13)
t=1

t=1

where the first inequality is from Assumption 1 and the sec-
ond inequality is by Assumption 2. Now, by selecting Ty as
T2/3 as specified in Theorem 1, the regret due to Term I will
be O(T?/3).

4.2 Regret of Term 11

We bound this term using the online projected gradient de-
scent analysis (Hazan 2016) with respect to the estimated
safe X'*. The regret due to Term II is given by the following
proposition.

Proposition 1. Let Assumptions 1 and 2 hold. Let the learn-
ing rate be n = 2L/G\/T. Then,

T
S ) - fild) <2LGTVA (14)
t=To+1

So, the regret due to Term IT will be O(T/2), which is
order-wise smaller than the regret due to Term I.

4.3 Regret of Term III

The key step here is to bound ||Z* — z*|| as a (decreasing)
function of T,. We can then use the fact that Ty = T2/3 to
get the net regret due to this term.

We start by making use of the ‘shrunk polytope’ idea used
in (Fereydounian et al. 2020). Consider the ‘shrunk poly-
tope’ &> defined as

X ={reR?:ajz+ 7 <b,Vie[l,m]}, (15

where T, is a positive scalar. It is straight forward to note
that if 7, is smaller than some constant, X}, will be non-
empty and will be a ‘shrunk version’ of X'*. More precisely,
X;; will be a closed polytope with its faces parallel to the
faces of X'?, and will be a strict subset of X'°. The key objec-
tive for defining this ‘shrunk polytope’ is to characterize the
distance ||TLx= (2*) — 2*|| in terms of 7,, which will then be
used to bound the distance [|IL ;. (z*) — z*|| = [|&* — 2*].
Note that, our algorithm, however, will not be able to (and
does not need to) compute &;> because a;s are unknown. We
are using X only for the purpose of regret analysis.

We will use the following result from (Fereydounian et al.
2020) to characterize the distance |[TLys (z*) — 2.

Lemma 4 (Lemma 1 in (Fereydounian et al. 2020)). Con-
sider a positive constant Ty, such that X is non-empty.
Then, for any x € X%,

Mg () — =] < (16)

where C(A,b) is a positive constant that depends only on
the matrix A and the vector b.



We will now show that the shrunk polytope &;° is non-

empty and is a subset of the conservative safe set X for
Tin = 2871, (8)L/\/Amin (V1 ). This also will immediately
imply that || TLp. (2*) — 2*|| < ||TLxs (z*) — 2*||. We state
this result formally below.
Lemma 5. Let Assumptions 2 and t3 hold. Let 1, =
2681, (9)L/ v/ Ain (Vi) and Ty > 005 Then, X, is
non-empty and X;; C X5, with a probability greater than
(1 — 26). Moreover, ||IL . (a*) — z*| < HHX;(x*) —z*||
with a probability greater than (1 — 20).

Using the above lemma, we can now characterize the re-
gret due to Term III as stated in the proposition below.

Proposition 2. Let Assumptions 1 - 3 hold. Then, for Ty >

%, with a probability greater than (1 — 26),
¢

LGV8dBr(8) T
C(A,b)\ /202 VTo

T
ST A - file?) <

t=To+1

7

Note that, when we use Ty = 72/3 in the above result, we
get the regret due to Term IIT as O(T%/3).

The proof of our main theorem can now be obtained by
adding the regret due to Terms I, I, and III.

5 Simulation Results

In this section, we analyze the performance of our SO-PGD
algorithm through experiments in two different settings.

Experiment Setting: We consider a closed polytope of
the form X* = {x € R?: —2pax < 2 < Tmax, i = 1,2}
as the safe set. It is straight forward to see that the corre-
sponding parameters are A = [1,0;—1,0;0,1;0,—1] and
b = Tmax X [1;1;1; 1]. We consider two sequences of func-
tions, f1; and f5 ¢, given by

d
1
fra(z) =ce- (; zi) +1, farlz) = Sllz -~ cf3,

where ¢; is a real number drawn ii.d. from the set
[Clower Cupper)- We select Ciower and cupper appropriately from
{0.5,1, 1.5, 2} for different experiment settings. For fs ;, Z
is randomly sampled from a standard Gaussian distribution,
then normalized and scaled by 2.5. The constraint noise se-
quence w,s are i.i.d. Gaussian with zero mean and covari-
ance matrix 10~21. Note that f1,¢s are linear function f5 ;s
are a 1-strongly convex function.

For a fixed T, we first generate the sequence c;,t €
[1,T]. Then, we find the optimal action in hindsight, z} =
arg minge ys Zthl fit(x), i = 1,2, using a standard non-
linear optimization function like fmincon from MATLAB.

We choose A = 0.5 and § = 10~3. Exploration noise
is (¢s are generated according to a standard Gaussian dis-
tribution and then normalized. The safe baseline action is
selected randomly from the set X'°. We run the experiments
with T = 10 and Ty = T%/3 = 10*. We emphasize that
for these values, the condition 1Ty > % specified in

Theorem 1 is satisfied.
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Figure 1: (a) Shows the safe set X'®* (marked in red), safe
baseline action z°, and actions taken during the safe explo-
ration phase (marked in blue). All the actions lie inside X'°.
(b) Shows zoom-in view of the actions shown in (a).

Safe exploration: Figure 1 shows the safe baseline action
and the actions taken during the safe exploration phase. As
guaranteed by Lemma 1, all actions are strictly inside the
safe set.

Conservative safe set estimation: Fig. 2(a) shows the

true safe set (X*), the conservative safe set estimate ()3 %),
and the ‘shrunk polytope’ (&;7). We also show the polytope
obtained using the naive least squares estimate, {x : Ax <
b}, where A is obtained according to (5). Please see that
XS C X® C A*, as guaranteed by our results in Lemma 3
and Lemma 5. It can also be seen that the polytope obtained
using the naive least squares estimate need not be a sub-
set of the safe set X'*. We highlight this aspect in Fig. 2(b).
So, an OCO algorithm that uses this naive estimate cannot
guarantee safety constraint satisfaction at all time steps. Fig.
2(c) also shows that the safe baseline action x* is inside the
‘shrunk polytope’ A7, as guaranteed by our theory (see the
proof of Lemma 5).

Online gradient descent: Fig. 4 shows the sequence of
actions generated by the SO-PGD algorithm in one exper-
iment. We do not plot all the actions, but only a regularly
sampled version of the sequence of actions to avoid crowd-
ing the plot. Notice that these actions lie inside the safe set
XS

Regret performance: The regret performance of the SO-
PGD algorithm is shown in Fig. 3. Instead of plotting regret
directly, we plot R(t)/t and R(t)/t*/3, where R(t) is the
cumulative regret incurred until time ¢. From the figures, it
is easy to observe that R(t)/t goes to zero, ensuring that
the regret is indeed sublinear. Also, R(t)/t*/® converges to
a constant value, indicating that the regret of the SO-PGD
algoirthm is indeed O(T2/3), as guaranteed by Theorem 1.

6 Conclusion

In this work, we addressed the problem of safe online con-
vex optimization, where the action at each time step must
satisfy a set of linear safety constraints. The parameters that
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Figure 3: (a) R(t)/t vs t for fi. (b) R(t)/t?/® vs t for f1. (c) R(t)/t vs t for f. (d) R(t)/t?/3 vs t for f. All the plots are
averaged over 6 random realizations. The light blue region shows the error (max - min) in mean value. The subplots in the top
right corner are zoomed-in view into the final 60000 time steps. R(t)/t decays to zero for both f; and fo. R(t)/t?/® converges

to a constant value ~ 20 for f;, and ~ 4 for f5.
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Figure 4: The (sampled) sequence of actions taken by the
SO-PGD algorithm in the online projected gradient descent
phase. All the actions lie inside the true safe set X'°.

specify the linear safety constraints are unknown to the al-
gorithm. We proposed an algorithm called SO-PGD algo-

rithm to solve this problem. Our algorithm comprises of two
phases, a safe exploration phase to estimate the unknown
safe set and an online gradient descent phase for online op-
timization. We showed that by carefully balancing the dura-
tion of the exploration phase and online optimization phase,
the SO-PGD algorithm can achieve O(T?/3) regret while
satisfying the safety constraints at all times step, with high
probability. To the best of our knowledge, this is the first
such result in the OCO literature, even in a setting with liner
constraints.

In the future, we plan to extend our results to develop
projection-free safe OCO algorithms. We will also investi-
gate if it is possible to achieve O(T"*/?) regret with no con-
straint violation, without making additional strong assump-
tion.
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A Appendix
A.1 Preliminaries
We use following well known result from linear bandits literature.

Theorem 2 (Theorem 2,(Abbasi-Yadkori, Pdl, and Szepesviri 2011)). Let {F;}52, be a filtration. Let {n; }{2, be a real valued
stochastic process such that n; is Fy-measurable and n; is conditionally R-sub-Guassian for some R > 0. Let {X;}52, be
an Rvalued stochastic process such that Xy is Fy_1-measurable. Let V; be defined as \I + Zi:l XtXt—r for A > 0. Let,
Y, = a'x+n. Let 4; = Vt_1 25:1 Y; X; be the {o-regularized least squares estimate of a. Assume that ||al| < L4 and
| X¢|| < L,Vt. Then, for any § > 0, with a probability at least 1 — 0, the true parameter a lies in the set

14tL2/\
C’t:{aeRd:deaHvt SR\/dlog (+5/) +fALA}, (18)

forallt > 1.
We will use the following results on matrix Chernoff inequality (Tropp 2015, Theorem 5.1.1.).

Theorem 3 (Theorem 5.1.1. (Tropp 2015)). Consider a finite sequence {X} of independent, random, symmetric matrices
with a common dimension d. Assume that Ayin(Xy) > 0 and Amax(Xy) < L, Vk. Introduce the random matrix Y =y, Xj.
Define the minimum eigenvalue [iniy, of the expectation E[Y] as fimin = Amin(E[Y]) = Amin(O_ 1, E[X4]). then,

PAmin(Y) < €ptmin) < d ¢~ (1= min /2L Sforany € € (0,1). (19)

A.2  Proof of Lemma 1
Proof. Forany t € [1,Tp], and for any i € [1, m], we have

ol o L al (1= 9)2* +4¢)

(i4) '
= (1 =7)af2® +7al ¢ = (1 =7)b] +7a ¢ < (1 —)b] +yLamin{l, L}

Here, we get (i) by the definition of exploration action (4), and (i7) by using the fact that max; ||a;|| < L and ||(]] <
min{1, L}. Now, for z; to satisfy the safety constraint, it is sufficient to have (1 — )b +~L 4 min{1, L} < b;, or equivalently,
Y(Lamin{l, L} — b%) < (b; — b7). This leads to the sufficient condition YL 4 < min; (b; — b7) = A®. O
A.3 Proof of Lemma 2 and Lemma 3

Proof of Lemma 2. Using Theorem 2, for any ¢ € [1,m], we get

P(ai S Cz(é)) >1- 5/m
Now, we get the desired result by applying union bound. O

Proof of Lemma 3. From Lemma 2, a; € C;(9) for all ¢ € [1, m] with a probability greater than (1 — 6). Then, by definition,

forany x € X*, we have a; x < b; foralli € [1,m], with probability greater than 1 — §. So, X® C X*® with probability at least
1-46. O

A.4 Proof of Proposition 1
This results follows from the standard regret analysis of online projected gradient descent algorithm (Hazan 2016, Theorem
3.1). We reproduce the result here for completeness.
Proof. By convexity of the function f;
fel@e) = fi(@) < Volwe) T (2 — &) (20)

We will now upper bound V f () " (x; — 2*) as follows:

2
< |l = nV folae) — 2|

th+1 — .’IAC'*H2 = H(xt - nvft(xt)) -2

XS
= llze = 2* |2 + PV felwe) |” = 20V felwe) T (20 — &),
where the first inequality is by the Pythagorean theorem. Rearranging and using Assumption 1, we get

B = flwega — 242

n

OV fir(wy) T (zy — %) < lz: + nG?. 1)



Using (21) in (20) and taking summation, and using the fact that n = 2L/G+/T we get

T T T

Sk s — &*|° = [Jag41 — x*HQ G?
Z (fe(@e) — Z Vfi( 9Ct (z2 —2") < Z > Z n
t=To+1 t=To+1 t=To+1 21 2 t=To+1
1 1 G?
<oy — A*HQ—U + G—T 2L2H + %Tn < LGVT + LGVT = 2LGVT. (22)

O

A.5 Proof of Lemma 5 and Proposition 2

One key step in proving Lemma 5 and Proposition 2 is to get a high probability lower bound on Apin (Vr,. We will use the
matrix matrix Chernoff inequality for achieving this. We state this result as a lemma below.

Lemma 6. ForTj > log $» we have
P(Amin(Vy) > A+ 0.59°02T,) > (1 —0). (23)
Proof. Fort € [1,To], v+ = (1 —v)z® + v(:, where (s are zero mean i.i.d. random vectors such that ||(;|| < min{1, L} and

E[¢¢ ] = O’CI Let Xt = x4z, . Then, X; is symmetric and positive semidefinite. S0, Apin(X;) > 0. Als0, Apax(X;) <
|¢]|* < L2. We will also get that E[X,] = (1 — ~)2z%(z*) T + y?ail.
LetY = 327° X, and ftmin = Amin(E[Y]). Then,

0
Mmin = )\min(E[Y]) = )\min(z E[Xt]) = Amin(TO((l - ,Y)st(xs)T + 72021)) > Y UCTO (24)
Now, using the matrix Chernoff inequality stated in Theorem 3, and the above inequality (24), we get

1—¢)? min 1—e)*y202Ty
P(Amin(Y) < ev%03Th) < P(Amin(Y) < €fimin) < d exp (—(E)N> < dexp (—(6)72040 (25)

212 2L
For e = 1/2, with T > log $. we get
PAmin(Y) > 0.59%0¢T,) > (1 = 0). (26)
Since Vi, = AI + ZtTil zix] = M +Y, we have Apin(Vr,) > A+ Amin(Y). This will give,
P(Amin(Vy) > A+ 0.5902T,) > (1 - 0). (27)

O

Consider the events
Ea={a; €Ci(6),¥i € [1,m]}, Ex={Amin(Vn,) > A+ 0570310}, € =EaNEn. (28)

From Lemma 2, P(£4) > (1 — ¢). From Lemma 6, with T, > ng log 4, P(€,) > (1 — §). Then, using union bound,

P(E) > 1 — 24. Our analysis for the proof of Lemma 5 and Proposition 2 will be conditioned on the event £. So, they will be
true with a probability greater than (1 — 24).

We now give the proof of Lemma 5.

867.(6)L*

Proof of Lemma 5. To show that X} is non-empty, we will show that z° is an element of X} for T > 252 (asyz - For % to be
<

an element of A7, we need

a; xo+ T < b, Vi € [1,m] = 7y <min (b — a; 2,) = min (b; — b5) = A®.
2
For 7, = 287, (6)L/+/Amin(Vr, ), this is equivalent to satisfying the condition Apyin (V) > % Now, conditioned

2
on the event &, this inequality is satisfied with a probability greater than (1 — 20) if A + 0.572021}) > %, which is

guaranteed for any 7{ such that

(29)



Please note that the above lower bound on T also satisfies the lower bound condition for the result of Lemma 6 to be true
when A? is small or T is large, which is typically the case. So, when T} satisfies the condition (29), * € X}?, and hence X} is
non-empty.

To show that &7 C X %, consider an arbitrary x € X};. Then, by definition, aiT T+ 267y (O)L

v/ Amin (Vry)

0w+ B, 0) Izl = al o+ (@] — a] ) + Br(0) 1wl + < al v + 1@ — ailly, el + + 5 (6) oy,

< b;. Now,

(1)
< a5+ 261,0) 2y,

260, 0) ol @ . 28n,0)L
Amin(VTg) - )\min(VTg)
where we get (i) conditioned on the event £ and (77) by using the fact that ||z||, < L. This implies that = € X*. Since z € X¢

<az+

< b, (30)

is arbitrary, we get X C X'®. This also immediately implies that HHX (z*) — a:*H < HHX,s (z*) — x*“ O

We now give the proof of Proposition 2
Proof of Proposition 2. Conditioned on the event &,

T .
Y @)~ fila?) < G(T - Ty)||#* — 2*|| = G(T — To) [T g. (2*) — 27|

t=To+1

V@) gy VA 26n ()L
C(A,p)™ C(A,5) \/in (V)

where () is by using Assumption 1, (i¢) from Lemma 5, (¢i¢) is by using Lemma 4, and (iv) is by applying the value of 7,
used in Lemma 5.
Also, conditioned on the event £, we have Apin(Vr,) > A + 0.57202To. Using this in the above inequality, we get

Vd 267, (0)L Vd  2B7,(8)L

<Gr
C(A) | [0.59202T,

(i) (ii3)
< GT||Ux: (2%) —a*|| < GT

> f@) - fula®) <GT

t=To+1 C(A,0b) JA+ 0.57202T0

Reordering the terms, we get the stated result.
O

A.6 Proof of Theorem 1

Proof of Theorem 1. We first prove the safety guarantee. For ¢t € [1,Ty], z; € X'*® by Lemma 1. For ¢t > Tj, the SO-PGD
algorithm performs online projected gradient descent with respect to the set X5 Sox, € XSfort e [To + 1,T]. Now, by
Lemma 3, X C X'* with a probability greater than (1 — ). So, z; € X*,Vt € [1,T], with a probability greater than (1 — §).

We now prove the regret bound. From the regret decomposition in (12), we have R(7T') = Term [+ Term II 4 Term III. Using
the upper bound for Term I from (13), the upper bound for Term II from Proposition 1, and the upper bound for Term III from
Proposition 2, we get

LGV8d  Br(§)T

R(T) < 2LGTy + 2LGVT + ,
C(A,b) 7203 VTo

€2y

with a probability greater than (1 — 20), for Ty > 87(0)L° We will now select Ty = T2/3. To ensure the lower bound

- ,YQo.g(As)Q .

condition on T}, given in Proposition 2, it is sufficient to have Ty, = T72/% > %, which is equivalent to having
¢
3
T> M ] (32)
Yo AS

Now, using Tj) = T2/3 in (31), we get
LGV/38d

C(A,b), /7202

R(T) < 2LGT*? + 2LGVT + Br(6)T3. (33)



A.7 Additional Simulation Results

Now, we consider another cost function that together with a set of linear inequality constraints of the form Az < bis a
representative of problems arising in resource allocation, network scheduling, finance portfolio selection, among others listed
in (Yu and Neely 2020; Ibaraki and Katoh 1988). We choose the cost functions f3; = ctT 2 as used in (Yu and Neely 2020).
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Figure 6: (a) Shows X'° and exploratory actions. (b) Shows estimated safe set, it is the interior of blue curves. The black dots

from z° to 2* denote the optimization trajectory. (c) R(t)/t for fs for triangular safe set. (d) R(t)/t?/3 for fs for triangular
safe set.

Different safe set We perform an additional experiment to show that our algorithm works well independent of the shape
of closed convex safe action set. We choose cost functions of the form f3 described above and a triangular true safe set
X ={r€R?: Av < b}suchthat A=[1,1; —1,0; 0, —1]and b= [1, 0, 0] T. We choose z* = [0.25,0.25] ". We run
SO-PGD for this setup for 7' = 10* time steps. The results from this experiment are recorded in Fig. 6. We observe, like before,
that all the exploratory actions (represented by blue circular region around x°) are safe (see Fig. 6, (a)). The whole optimization
trajectory lies inside X'° (see Fig. 6, (b)). The decay of regret with respect to ¢ is plotted in Fig. 6, (c), and the decay with respect
to t2/3 is plotted in Fig. 6, (d). As expected R(t)/t — 0 and R(t)/t?/3 tends to a constant value.



