Stealing Links from Graph Neural Networks

Xinlei He! Jinyuan Jia> Michael Backes! Neil Zhengiang Gong® Yang Zhang!

ICISPA Helmholtz Center for Information Security >Duke University

Abstract

Graph data, such as chemical networks and social networks,
may be deemed confidential/private because the data owner
often spends lots of resources collecting the data or the data
contains sensitive information, e.g., social relationships. Re-
cently, neural networks were extended to graph data, which
are known as graph neural networks (GNNs). Due to their
superior performance, GNNs have many applications, such as
healthcare analytics, recommender systems, and fraud detec-
tion. In this work, we propose the first attacks to steal a graph
from the outputs of a GNN model that is trained on the graph.
Specifically, given a black-box access to a GNN model, our at-
tacks can infer whether there exists a link between any pair of
nodes in the graph used to train the model. We call our attacks
link stealing attacks. We propose a threat model to system-
atically characterize an adversary’s background knowledge
along three dimensions which in total leads to a comprehen-
sive taxonomy of 8 different link stealing attacks. We propose
multiple novel methods to realize these 8§ attacks. Extensive
experiments on 8§ real-world datasets show that our attacks
are effective at stealing links, e.g., AUC (area under the ROC
curve) is above 0.95 in multiple cases. Our results indicate
that the outputs of a GNN model reveal rich information about
the structure of the graph used to train the model.

1 Introduction

Graph is a powerful tool to model the complex relationships
between entities. For instance, in healthcare analytics, protein-
protein interactions can be modeled as a graph (called a chem-
ical network); and a social network can be modeled as a graph,
where nodes are users and edges indicate certain social re-
lationships among them. A graph may be treated as a data
owner’s intellectual property because the data owner may
spend a lot of resources collecting the graph, e.g., collecting
a chemical network often involves expensive and resource-
consuming chemical experiments. Moreover, a graph may
also contain sensitive user information, e.g., private social
relationships among users.

Recently, a family of machine learning techniques known
as graph neural networks (GNNs) was proposed to analyze
graphs. We consider GNNs for node classification. Specif-
ically, given a graph, attributes of each node in the graph,
and a small number of node labels, a GNN model is trained
and can predict the label of each remaining unlabeled node.
Due to their superior performance, we have seen growing
applications of GNNs in various domains, such as healthcare
analytics [18,22], recommender systems [19], and fraud de-
tection [65]. However, the security and privacy implications
of training GNNs on graphs are largely unexplored.

Our Contributions. In this work, we take the first step to
study the security and privacy implications of training GNNs
on graphs. In particular, we propose the first attacks to steal a
graph from the outputs of a GNN model trained on the graph.
We call our attacks link stealing attacks. Specifically, given a
black-box access to a target GNN model, our attacks aim to
predict whether there exists a link between any pair of nodes
in the graph used to train the target GNN model. Our attacks
reveal serious concerns on the intellectual property, confiden-
tiality, and/or privacy of graphs when training GNNs on them.
For instance, our attacks violate the intellectual property of
the data owner when it spends lots of resources collecting the
graph; and our attacks violate user privacy when the graph
contains sensitive social relationships among users [2,23].
Adversary’s Background Knowledge: We refer to the graph
and nodes’ attributes used to train the target GNN model
as the target dataset. We characterize an adversary’s back-
ground knowledge along three dimensions, including the tar-
get dataset’s nodes’ attributes, the target dataset’s partial
graph, and an auxiliary dataset (called shadow dataset) which
also contains its own graph and nodes’ attributes. An adver-
sary may or may not have access to each of the three dimen-
sions. Therefore, we obtain a comprehensive taxonomy of a
threat model, in which adversaries can have 8 different types
of background knowledge.

Attack Methodology: We design an attack for each of the 8 dif-
ferent types of background knowledge, i.e., we propose 8 link
stealing attacks in total. The key intuition of our attacks is that

two nodes are more likely to be linked if they share more sim-
ilar attributes and/or predictions from the target GNN model.
For instance, when the adversary only has the target dataset’s
nodes’ attributes, we design an unsupervised attack by calcu-
lating the distance between two nodes’ attributes. When the
target dataset’s partial graph is available, we use supervised
learning to train a binary classifier as our attack model with
features summarized from two nodes’ attributes and predic-
tions obtained from the black-box access to the target GNN
model. When the adversary has a shadow dataset, we propose
a transferring attack which transfers the knowledge from the
shadow dataset to the target dataset to mount our attack.

Evaluation: We evaluate our 8 attacks using 8 real-world
datasets. First, extensive experiments show that our attacks
can effectively steal links. In particular, our attacks achieve
high AUCs (area under the ROC curve). This demonstrates
that the predictions of a target GNN model encode rich in-
formation about the structure of a graph that is used to train
the model, and our attacks can exploit them to steal the graph
structure. Second, we observe that more background knowl-
edge leads to better attack performance in general. For in-
stance, on the Citeseer dataset [35], when an adversary has
all the three dimensions of the background knowledge, our
attack achieves 0.977 AUC. On the same dataset, when the
adversary only has nodes’ attributes, the AUC is 0.878. Third,
we find that the three dimensions of background knowledge
have different impacts on our attacks. Specifically, the target
dataset’s partial graph has the strongest impact followed by
nodes’ attributes, the shadow dataset, on the other hand, has
the weakest impact. Fourth, our transferring attack can achieve
high AUCs. Specifically, our transferring attack achieves bet-
ter performance if the shadow dataset comes from the same
domain as the target dataset, e.g., both of them are chemical
networks. We believe this is due to the fact that graphs from
the same domain have similar structures, which leads to less
information loss during transferring. Fifth, our attacks out-
perform conventional link prediction methods [24,40], which
aim to predict links between nodes based on a partial graph.

In summary, we make the following contributions.

e We propose the first link stealing attacks against graph
neural networks.

e We propose a threat model to comprehensively charac-
terize an adversary’s background knowledge along three
dimensions. Moreover, we propose 8 link stealing attacks
for adversaries with different background knowledge.

e We extensively evaluate our 8 attacks on 8 real-world
datasets. Our results show that our attacks can steal links
from a GNN model effectively.

2 Graph Neural Networks

Many important real-world datasets come in the form of
graphs or networks, e.g., social networks, knowledge graph,
and chemical networks. Therefore, it is urgent to develop
machine learning algorithms to fully utilize graph data. To
this end, a new family of machine learning algorithms, i.e.,
graph neural networks (GNN5), has been proposed and shown
superior performance in various tasks [1, 14,35,62].

Training a GNN Model.

Given a graph, attributes for each node in the graph, and
a small number of labeled nodes, GNN trains a neural net-
work to predict labels of the remaining unlabeled nodes via
analyzing the graph structure and node attributes. Formally,
we define the targer dataset as D = (4, F), where 4 is the
adjacency matrix of the graph and ¥ contains all nodes’ at-
tributes. Specifically, 4,, is an element in 4: If there exists
an edge between node u and node v, then A4, = 1, otherwise
4,, = 0. Moreover, ¥, represents the attributes of u. 7 is a
set containing all nodes in the graph. Note that we consider
undirected graphs in this paper, i.e., Vu,v € V, 4,, = 4.

A GNN method iteratively updates a node’s features via
aggregating its neighbors’ features using a neural network,
whose last layer predicts labels for nodes. Different GNN
methods use slightly different aggregation rules. For instance,
graph convolutional network (GCN), the most representative
and well-established GNN method [35], uses a multi-layer
neural network whose architecture is determined by the graph
structure. Specifically, each layer obeys the following propa-
gation rule to aggregate the neighboring features:

HO) = 6(Q 2 AQ THYWW), M

where 4 = 4+1 is the adjacency matrix of the graph with self-
1 1

connection added, i.e., I is the identity matrix. Q 2.4Q ?
is the symmetric normalized adjacency matrix and Q,, =
Y, Auy. Moreover, W is the trainable weight matrix of the
kth layer and o(-) is the activation function to introduce non-
linearity, such as ReLU. As the input layer, we have H) = F.
When the GCN uses a two-layer neural network, the GCN
model can be described as follows:

1 1

softmax(Q ZQQ_%G(Q ZJEIQ_%TW(()))W“)). 2)

Note that in most of the paper, we focus on two-layer GCN.
Later, we show that our attack can be also performed on other
types of GNNs, including GraphSAGE [27] and GAT [62]
(see Section 5).

Prediction in a GNN Model. Since all nodes’ attributes and
the whole graph have been fed into the GNN model in the
training phase to predict the label of a node, we only need
to provide the node’s ID to the trained model and obtain the
prediction result. We assume the prediction result is a poste-
rior distribution (called posteriors) over the possible labels

Table 1: List of notations.

Notation

Description

Target dataset

Graph of D represented as adjacency matrix
Partial graph of D

Nodes’ attributes of D

Set of nodes of D

Target model

Reference model

u’s posteriors from the target model

u’s posteriors from the reference model
Shadow dataset

Shadow target model

Shadow reference model

Adversary’s knowledge

Distance metric

Pairwise vector operations

Entropy of f(u)

R RS

0 =
R =
SIC
1=

oy~ 9

~=
R

&.’*6&
=

==
=

Q

for the node. Our work shows that such posteriors reveal rich
information about the graph structure: As mentioned before,
a GNN essentially learns a node’s features via aggregating
its neighbors’ features, if two nodes are connected, then their
posteriors should be similar. We leverage this to build our
attack models. We further use f to denote the target GNN
model and f(u) to represent the posteriors of node u. For pre-
sentation purposes, we summarize the notations introduced
here and in the following sections in Table 1.

3 Problem Formulation

In this section, we first propose a threat model to characterize
an adversary’s background knowledge. Then, we formally
define our link stealing attack.

3.1 Threat Model

Adversary’s Goal. An adversary’s goal is to infer whether a
given pair of nodes u and v are connected in the target dataset.
Inferring links between nodes leads to a severe privacy threat
when the links represent sensitive relationship between users
in the context of social networks. Moreover, links may be con-
fidential and viewed as a model owner’s intellectual property
because the model owner may spend lots of resources col-
lecting the links, e.g., it requires expensive medical/chemical
experiments to determine the interaction/link between two
molecules in a chemical network. Therefore, inferring links
may also compromise a model owner’s intellectual property.

Adversary’s Background Knowledge. First, we assume an
adversary has a black-box access to the target GNN model.
In other words, the adversary can only obtain nodes’ posteri-
ors by querying the target model f. This is the most difficult
setting for the adversary [52,54,56]. An adversary can have
a black-box access to a GNN model when an organization

uses GNN tools from another organization (viewed as an
adversary) or the GNN model prediction results are shared
among different departments within the same organization.
For instance, suppose a social network service provider lever-
ages another company’s tool to train a GNN model for fake-
account detection, the provider often needs to send the predic-
tion results of (some) nodes to the company for debugging or
refining purposes. In such a scenario, the security company
essentially has a black-box access to the GNN model. Note
that the graph structure is already revealed to the adversary if
she has a white-box access to the target GNN model as the
GNN model architecture is often based on the graph structure.

Then, we characterize an adversary’s background knowl-
edge along three dimensions:

e Target Dataset’s Nodes’ Attributes, denoted by 7.
This background knowledge characterizes whether the
adversary knows nodes’ attributes F in D. We also as-
sume that the adversary knows labels of a small subset
of nodes.

o Target Dataset’s Partial Graph, denoted by 4*. This
dimension characterizes whether the adversary knows
a subset of links in the target dataset D. Since the goal
of link stealing attack is to infer whether there exists an
edge/link between a pair of nodes, the partial graph can
be used as ground truth edges to train the adversary’s
attack model.

e A Shadow Dataset, denoted by 7. This is a dataset
which contains its own nodes’ attributes and graph. The
adversary can use this to build a GNN model, referred
to as shadow target model (denoted by f7) in order to
perform a transferring attack. It is worth noting that
the shadow dataset does not need to come from the
same domain of the target dataset. For instance, the
shadow dataset can be a chemical network, while the
target dataset can be a citation network. However, results
in Section 5 show that same-domain shadow dataset
indeed leads to better transferring attack performance.

We denote the adversary’s background knowledge as a triplet:
K= (F,2,D).

Whether the adversary has each of the three items is a binary
choice, i.e., yes or no. Therefore, we have a comprehensive
taxonomy with 8 different types of background knowledge,
which leads to 8 different link stealing attacks. Table 2 sum-
marizes our attack taxonomy.

3.2 Link Stealing Attack

After describing our threat model, we can formally define our
link stealing attack as follows:

Table 2: Attack taxonomy. v* (x) means the adversary has
(does not have) the knowledge.

Attack | ¥ A* D | Awack | F a* D
Attack-0 | x X X Attack-4 | X v v
Attack-1 X X v Attack-5 | vV X v
Attack-2 | v X X Attack-6 | v v X
Attack-3 X v X Attack-7 | vV v v

Definition 1 (Link Stealing Attack). Given a black-box ac-
cess to a GNN model that is trained on a target dataset, a
pair of nodes u and v in the target dataset, and an adversary’s
background knowledge X, link stealing attack aims to infer
whether there is a link between u and v in the target dataset.

4 Attack Taxonomy

In this section, we present the detailed constructions of all the
8 attacks in Table 2. Given different knowledge X, the ad-
versary can conduct their attacks in different ways. However,
there are two problems that exist across different attacks.

The first problem is node pair order. As we consider undi-
rected graph, when the adversary wants to predict whether
there is a link between two given nodes u and v, the output
should be the same regardless of the input node pair order.

The second problem is dimension mismatch. The shadow
dataset and the target dataset normally have different dimen-
sions with respect to attributes and posteriors (as they are
collected for different classification tasks). For transferring
attacks that require the adversary to transfer information from
the shadow dataset to the target dataset, it is crucial to keep
the attack model’s input features’ dimension consistent no
matter which shadow dataset she has.

We will discuss how to solve these two problems during
the description of different attacks. For presentation purposes,
features used in our supervised attacks and transferring attacks
are summarised in Table 3.

4.1 Attack Methodologies

Attack-0: K = (X, x,x). We start with the most difficult
setting for the adversary, that is she has no knowledge of the
target dataset’s nodes’ attributes, partial graph, and a shadow
dataset. All she has is the posteriors of nodes obtained from
the target model f (see Section 2).

As introduced in Section 2, GNN essentially aggregates
information for each node from its neighbors. This means
if there is a link between two nodes, then their posteriors
obtained from the target model should be closer. Follow-
ing this intuition, we propose an unsupervised attack. More
specifically, to predict whether there is a link between u and
v , we calculate the distance between their posteriors, i.e.,
d(f(u), f(v)), as the predictor.

We have in total experimented with 8 common distance
metrics: Cosine distance, Euclidean distance, Correlation dis-
tance, Chebyshev distance, Braycurtis distance, Canberra dis-
tance, Manhattan distance, and Square-euclidean distance.
Their formal definitions are in Table 13 in Appendix. It is
worth noting that all distance metrics we adopt are symmetric,
ie.,d(f(u),f(v)) =d(f(v),f(u)), this naturally solves the
problem of node pair order.

Since the attack is unsupervised, to make a concrete pre-
diction, the adversary needs to manually select a threshold
depending on application scenarios. To evaluate our attack,
we mainly use AUC which considers a set of thresholds as
previous works [2, 21, 26,32, 54, 70]. In addition, we pro-
pose a threshold estimation method based on clustering (see
Section 5 for more details).

Attack-1: K = (x, x,D’). In this attack, we broaden the
adversary’s knowledge with a shadow dataset, i.e., 2. This
means the adversary can train a classifier for a supervised
attack, more specifically, a transferring attack. She first con-
structs a shadow target model f’ with 2. Then, she derives
the training data from f” to train her attack model.

The adversary cannot directly use the posteriors obtained
from the shadow target model as features to train her attack
model, as the shadow dataset and the target dataset very likely
have different numbers of labels, i.e., the corresponding pos-
teriors are in different dimensions. This is the dimension
mismatch problem mentioned before. To tackle this, we need
to design features over posteriors.

As discussed in Attack-0, for any dataset, if two nodes are
linked, then their posteriors obtained from the target model
should be similar. This means if the attack model can capture
the similarity of two nodes’ posteriors from the shadow target
model, it can transfer the information to the target model.

We take two approaches together to design features. The
first approach is measuring distances between two nodes’
posteriors. To this end, for each pair of nodes «’ and v from
the shadow dataset D', we adopt the same set of 8 metrics
used in Attack-0 (formal definitions are listed in Table 13)
to measure their posteriors f’(#') and f/(v')’s distances, and
concatenate these different distances together. This leads to
an 8-dimension vector.

The second approach is to use entropy to describe each
posterior inspired by previous works [32,42]. Formally, for the
posterior of node #’ obtained from the shadow target model
1, its entropy is defined as the following.

e(f Zf, u')log(f; (u')) 3)

where f/(u') denotes the i-th element of f’(u'). Then, for each
pair of nodes ' and V' from the shadow dataset, we obtain
two entropies e(f’(«')) and e(f’(v')). To eliminate the node
pair order problems for these entropies, we further take the
approach of Grover and Leskovec [25], by applying pairwise
vector operation, denoted by ¥(-,-). In total, we have used

Table 3: Features adopted by our supervised attacks (Attack-3 and Attack 6) and transferring attacks (Attack-1, Attack-4, Attack-5,
and Attack-7). Here, (%) means the features are extracted from the shadow dataset in the training phase, and (x) means the
features are extracted from both the shadow dataset and the target dataset (its partial graph) in the training phase. d(-,) represents
distance metrics defined in Table 13, ¥(-, -) represents the pairwise vector operations defined in Table 14. Note that the features
used in these attack models include all the distance metrics and pairwise vector operations.

Attack | d(f(u),f(v)) P(f(),f(v)) Ple(f(w).e(f(v)) | d(g(u).g(v)) P(g(u).g(v)) Ple(g(w)),e(¢(v)) | d(Fu) ¥(Fu)
Attack-1 % v X v X X X X X
Attack-3 v v v X X X X X
Attack-4 x v X v X X X X X
Attack-5 * v X v v X v v X
Attack-6 v v v v v v v v
Attack-7 x v X v v X v v X

all the 4 operations defined in Table 14 (in Appendix) for our
attack. Note that these operations in Table 14 are applied on
two single numbers, i.e., scalars, in this attack. However, they
can also be applied to vectors and we will adopt them again
on posteriors and nodes’ attributes in other attacks.

In total, the features used for training the attack model
is assembled with 8 different distances between two nodes’
posteriors from the shadow target model and 4 features ob-
tained from pairwise vector operations between two nodes’
posteriors’ entropies. Regarding labels for the training set,
the adversary uses all the links in 2’ and samples the same
number of node pairs that are not linked (see Section 5 for
more details). We adopt an MLP as our attack model.

Attack-2: X = (F, %, x). In this attack, we assume that the
adversary has the knowledge of the target dataset’s nodes’
attributes F. Since the adversary has no knowledge of the
partial graph and a shadow dataset, her attack here is also
unsupervised (similar to Attack-0). We again rely on the dis-
tance metrics to perform our attack. For each pair of nodes
u and v from the target dataset, we consider four types of
information to measure distance with all the metrics listed
in Table 13. Similar to Attack-0, we experimentally decide
which is the most suitable distance metric for Attack-2.

e d(f(u),f(v)). The first type is the same as the method
for Attack-0, i.e., distance between posteriors of # and v
from the target model f, i.e., f(u) and f(v).

o d(F., %). The second type is calculating the pairwise
distance over u and v’s attributes ¥, and F,.

o d(f(u),f(v)) —d(g(u),g(v)). For the third type, since
we have the target model’s nodes’ attributes (as well
as a subset of their corresponding labels), we train a
separate MLP model, namely reference model (denoted
by g). Our intuition is that if two nodes are connected,
the distance between their posteriors from the target
model should be smaller than the corresponding dis-
tance from the reference model. Therefore, we calculate

d(f(u),f(v))—d(g(u),g(v)) to make prediction.

o d(g(u),g(v)). For the fourth type, we measure the dis-
tance over u and v’s posteriors from the reference model.

Attack-3: X = (x,4*, x). In this scenario, the adversary
has access to the partial graph 4" of the target dataset. For the
attack model, we rely on links from the known partial graph
as the ground truth label to train an attack model (we again
adopt an MLP). Features used for Attack-3 are summarized in
Table 3. For each pair of nodes « and v from the target dataset,
we calculate the same set of features proposed for Attack-1 on
their posteriors and posteriors’ entropies. Besides, since we
can directly train the attack model on the partial target graph
(i.e., we do not face the dimension mismatch problem), we
further define new features by adopting the pairwise vector
operations listed in Table 14 to f(u) and f(v).

Attack-4: K = (x,4*,7’). In this attack, the adversary has
the knowledge of the partial graph “2* of the target dataset
and a shadow dataset 2. To take both knowledge into consid-
eration, for each pair of nodes either from the shadow dataset
or the partial graph of the target dataset, we calculate the same
set of features over posteriors as proposed in Attack-1. This
means the only difference between Attack-4 and Attack-1 is
that the training set for Attack-4 also includes information
from the target dataset’s partial graph (see Table 3).

Different from Attack-3, Attack-4 cannot perform the pair-
wise vector operations to f(u) and f(v). This is due to the
dimension mismatch problem as the adversary needs to take
both 2* and 9’ into account for her attack.

Attack-5: K = (F, x,D’). In this attack, the adversary has
the knowledge of the target model’s nodes’ attributes # and
a shadow dataset 2. As we do not have 4* to train the attack
model, we need to rely on the graph of the shadow dataset.
To this end, we first calculate the same set of features used
for Attack-1. Moreover, as we have the target dataset’s nodes’
attributes, we further build a reference model (as in Attack-
2), and also a shadow reference model in order to transfer
more knowledge from the shadow dataset for the attack. For
this, we build the same set of features as in Attack-1 over
the posteriors obtained from the shadow reference model,
i.e., the distance of posteriors (Table 13) and pairwise vector

operations performed on posteriors’ entropies (Table 14). In
addition, we also calculate the 8 different distances over the
shadow dataset’s nodes’ attributes.

Attack-6: K = (F,A*, x). In this scenario, the adversary
has the access to the target dataset’s nodes’ attributes # and
the partial target graph 4*. As a supervised learning setting,
we build an MLP considering links from the partial graph as
the ground truth label. The adversary first adopts the same set
of features defined over posteriors obtained from the target
model as proposed in Attack-3. Then, the adversary builds
a reference model over the target dataset’s nodes’ attributes,
and calculate the same set of features over posteriors obtained
from the reference model. In the end, we further calculate the
distances of the target dataset’s nodes’ attributes as another
set of features.

Attack-7: K = (F,4*, D). This is the last attack with the
adversary having all three knowledge. The set of features for
this attack is the same as the ones used in Attack-5 (Table 3).
The only difference lies in the training phase, we can use
the partial graph from the target dataset together with the
graph from the shadow dataset as the ground truth. We expect
this leads to better performance than the one for Attack-5.
However, this attack also relies on the information of the
shadow dataset, thus, the features used here are a subset of
the ones for Attack-6, this is similar to the difference between
Attack-4 and Attack-3. Note that if the adversary does not
take the shadow dataset into consideration, this scenario is
equivalent to the one for Attack-6.

4.2 Summary

We propose 8 attack scenarios with the combination of the
knowledge that the adversary could have. They could be di-
vided into three categories.

The first category is unsupervised attacks, i.e., Attack-0 and
Attack-2, where the adversary does not have the knowledge
about the partial graph from the target dataset or a shadow
dataset. In these scenarios, the adversary can use distance
metrics for posteriors or nodes’ attributes to infer the link.

The second category is the supervised attacks, including
Attack-3 and Attack-6, where the adversary has the knowl-
edge of the partial graph from the target dataset but does not
have a shadow dataset. In these scenarios, the adversary can
use different distances and pairwise vector operations over
nodes’ posteriors (and the corresponding entropies) from the
target model and their attributes to build features.

The third category is the transferring attacks (supervised),
including Attack-1, Attack-4, Attack-5, and Attack-7, where
the adversary has the knowledge of a shadow dataset. In these
scenarios, the adversary can use distance metrics over posteri-
ors/nodes’ attributes and pairwise operations over posteriors’
entropies as the bridge to transfer the knowledge from the
shadow dataset to perform link stealing attacks. It is worth
noting that for Attack-4 and Attack-7, if the adversary leaves

the shadow dataset out of consideration, they will not have the
dimension mismatch problem and can take the same attack
methods as Attack-3 and Attack-6, respectively.

5 Evaluation

This section presents the evaluation results of our 8 attacks.
We first introduce our experimental setup. Then, we present
detailed results for different attacks. Finally, we summarize
our experimental findings.

5.1 Experimental Setup

Datasets. We utilize 8 public datasets, including Cite-
seer [35], Cora [35], Pubmed [35], AIDS [51], COX2 [59],
DHFR [59], ENZYMES [15], and PROTEINS_full [5], to
conduct our experiments. These datasets are widely used
as benchmark datasets for evaluating GNNs [17, 18,35,62].
Among them, Citeseer, Cora, and Pubmed are citation datasets
with nodes representing publications and links indicating ci-
tations among these publications. The other five datasets are
chemical datasets, each node is a molecule and each link
represents the interaction between two molecules. All these
datasets have nodes’ attributes and labels.

Datasets Configuration. For each dataset, we train a target
model and a reference model. In particular, we randomly sam-
ple 10% nodes and use their ground truth labels to train the
target model and the reference model.! Recall that several
attacks require the knowledge of the target dataset’s partial
graph. To simulate and fairly evaluate different attacks, we
construct an attack dataset which contains node pairs and
labels representing whether they are linked or not. Specifi-
cally, we first select all node pairs that are linked. Then, we
randomly sample the same number of node pairs that are
not linked. We note that such negative sampling approach
follows the common practice in the literature of link predic-
tion [2, 25, 69]. Furthermore, the main metric we use, i.e.,
AUC (introduced below), is insensitive to the class imbal-
ance issue [2,21,47] contrary to accuracy. Next, we split the
attack dataset randomly by half into attack training dataset
and attack testing dataset.” We use the attack training dataset
to train our attack models when the target dataset’s partial
graph is part of the adversary’s knowledge. We use attack
testing dataset to evaluate all our attacks. For the attacks that
have a shadow dataset, we also construct an attack dataset on
the shadow dataset to train the attack model. Note that we
do not split this attack dataset because we do not use it for
evaluation.

I'We do not train the reference model for attacks when ¥ is unavailable.

2We perform additional experiments and observe that training set size
does not have a strong impact on the attack performance, results are presented
in Figure 7 in Appendix.

Metric. We use AUC (area under the ROC curve) as our
main evaluation metric. AUC is frequently used in binary
classification tasks [2,21,26,32,46,47,69], it is threshold
independent. For convenience, we refer to node pairs that are
linked as positive node pairs and those that are not linked as
negative node pairs. If we rank node pairs according to the
probability that there is a link between them, then AUC is
the probability that a randomly selected positive node pair
ranks higher than a randomly selected negative node pair.
When performing random guessing, i.e., we rank all node
pairs uniformly at random, the AUC value is 0.5. Note that we
also calculate Precision and Recall for all supervised attacks
(see Table 17, Table 18, Table 19, Table 20, Table 21, and
Table 22 in Appendix).

Models. We use a graph convolutional network with 2 hidden
layers for both the target model and the shadow target model,
and assume they share the same architecture (see Section 3).
Note that we also evaluate the scenario where the target model
and the shadow model have different architectures later in this
section and find the performances of our attacks are similar.
The number of neurons in the hidden layer is set to 16. We
adopt the frequently used ReLLU and softmax as activation
functions for the first hidden layer and the second hidden layer,
respectively. Note that we append Dropout (the rate is 0.5)
to the output of the hidden layer to prevent overfitting. We
train 100 epochs with a learning rate of 0.01. Cross-entropy is
adopted as the loss function and we use the Adam optimizer
to update the model parameters. Our GNNs are implemented
based on publicly available code.> Experimental results show
that our GNNs achieve similar performance as reported in
other papers. We omit them to preserve space.

We use an MLP with 2 hidden layers as the reference
model and the shadow reference model. Hyperparameters,
including the number of neurons in the hidden layer, activation
functions, loss function, optimizer, epochs, and learning rate
are the same as those of the target model.

We use an MLP with 3 hidden layers as our attack model.
The number of neurons for all hidden layers is 32. ReLU
is adopted as the activation function for hidden layers and
softmax is used as the output activation function. We append
Dropout (the rate is 0.5) to each hidden layer to prevent over-
fitting. We train 50 epochs with a learning rate of 0.001. The
loss function is cross-entropy and the optimizer is Adam.

We run all experiments with this setting for 5 times and
report the average value and the standard deviation of AUC
scores. Note that for Attack-0 and Attack-2, the AUC scores
keep the same since these two attacks are unsupervised.

5.2 Attack Performance

Attack-0: K = (x, x, x). In this attack, the adversary only
relies on measuring the distance of two nodes’ posteriors ob-

3jtt95: github.com/tkipf/gcn

1.0

0.9

14
=}
<
0.7
).5
P\\OC) (1013 0\)\@&

Cosine
Euclidean
Correlation
Chebyshev
Braycurtis
Canberra
Manhattan

Sqeuclidean
" mem——

5

STHRLLNT) ——
C

o 2

S S
\\\%/ S & o
! N o PR
o o
Q®

Figure 1: AUC for Attack-0 on all the 8 datasets with all the
8 distance metrics. The x-axis represents the dataset and the
y-axis represents the AUC score.

tained from the target model. We compare 8 different distance
metrics and Figure 1 shows the results. First, we observe that
Correlation distance achieves the best performance followed
by Cosine distance across all datasets. In contrast, Canberra
distance performs the worst. For instance, on the Citeseer
dataset, the AUC scores for Correlation distance and Cosine
distance are 0.959 and 0.946, respectively, while the AUC
score for Canberra distance is 0.801. Note that both Correla-
tion distance and Cosine distance measure the inner product
between two vectors, or the “angle” of two vectors while other
distance metrics do not. Second, we find that the performance
of the same metric on different datasets is different. For in-
stance, the AUC of Correlation distance on Citeseer is 0.959
compared to 0.635 on ENZYMES.

As mentioned in Section 4, unsupervised attacks could not
provide a concrete prediction. To tackle this, we propose to
use clustering, such as K-means. Concretely, we obtain a set
of node pairs’ distances, and perform K-means on these dis-
tances with K being set to 2. The cluster with lower (higher)
average distance value is considered as the set of positive (neg-
ative) node pairs. Our experiments show that this method is ef-
fective. For instance, on the Citeseer dataset, we obtain (0.788
Precision, 0.991 Recall, and 0.878 F1-Score. The complete
results are summarized in Table 15 in Appendix. Another
method we could use is to assume that the adversary has a
certain number of labeled edges, either from the target dataset
or the shadow dataset. The former follows the same setting as
our Attack-3, Attack-4, Attack-6, and Attack-7, and the latter
is equivalent to Attack-1 and Attack-5. The corresponding
results will be shown later.

Figure 2 shows the frequency of Correlation distance com-
puted on posteriors obtained from the target model for both
positive node pairs and negative node pairs in attack testing
datasets. The x-axis is the value of Correlation distance and
the y-axis is the number of pairs. A clear trend is that for all

https://github.com/tkipf/gcn

Table 4: Average AUC with standard deviation for Attack-1 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset
Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed
AIDS - 0.720 £ 0.009 0.690 £ 0.005 0.730 £ 0.010 0.720 £ 0.005 0.689 +0.019 0.650 &+ 0.025 0.667 £+ 0.014
COX2 0.755 £0.032 - 0.831 £0.005 0.739 £0.116 0.832 +£0.009 0.762 + 0.009 0.773 +0.008 0.722 + 0.024
DHFR 0.689 £+ 0.004 0.771 + 0.004 - 0.577 £ 0.044 0.701 £0.010 0.736 £ 0.005 0.740 £ 0.003 0.663 + 0.010
ENZYMES 0.747 £ 0.014 0.695 £ 0.023 0.514 £+ 0.041 - 0.691 £ 0.030 0.680 £ 0.012 0.663 £+ 0.009 0.637 £+ 0.018
PROTEINS_full | 0.775 + 0.020 0.821 +£0.016 0.528 £ 0.038 0.822 + 0.020 - 0.823 £ 0.004 0.809 + 0.015 0.809 + 0.013
Citeseer 0.801 £ 0.040 0.920 £ 0.006 0.842 £+ 0.036 0.846 £ 0.042 0.848 +0.015 - 0.965 + 0.001 0.942 + 0.003
Cora 0.791 £ 0.019 0.884 +0.005 0.811 +0.024 0.804 +0.048 0.869 +0.012 0.942 + 0.001 - 0.917 £ 0.002
Pubmed 0.705 £ 0.039 0.796 £ 0.007 0.704 £ 0.042 0.708 £ 0.067 0.752 +£0.014 0.883 4+ 0.006 0.885 + 0.005 -
AIDS cox2 DHFR ENZYMES
10 10! 10* 10*
10° 10° 10° 10°
ZE 102 l 102 102 102
, |||’I l|III) II\I‘ 1'1 . I|I| | , ' I
1‘)” III' III--I 100 Illllll um - 10" ll || l 100 | |IIIII - IIII IIII
0.2 0.3 000 025 050 075 1.00 .0 0.2 0. 0.00 0.05 0.10
PROTEINS full Citeseer Cora Pubmed

10°
101 10°

10°

1 I l
0.00

0.02 0.04 0.06

10%

Numbers

)

10!
10 H IIHH
0.0

0.5

B Negative Node Pairs

3
10° 10t

2

10!

1()”

0.0

0.5

Positive Node Pairs

Figure 2: The Correlation distance distribution between nodes’ posteriors for positive node pairs and negative node pairs on all
the 8§ datasets. The x-axis represents Correlation distance and the y-axis represents the number of node pairs.

datasets, the Correlation distance for positive node pairs is
much smaller than negative node pairs. We select the top 50%
of node pairs with lowest Correlation distance, group them,
and calculate the AUC for each group. Due to the space limit,
we only show the result on Pubmed (Table 5). We can see that
the AUC drops when the Correlation distance increase, which
indicates that Attack-0 works better on node pairs with lower
Correlation distance. In general, the posteriors for positive
node pairs are “closer” than that for negative node pairs. This
verifies our intuition in Section 4: GNN can be considered
as an aggregation function over the neighborhoods, if two
nodes are linked, they aggregate with each other’s features
and therefore become closer.

Attack-1: K = (x, x,D’). In this attack, the adversary can
leverage a shadow dataset. In particular, for each dataset, we
use one of the remaining datasets as the shadow dataset to
perform the attack. Table 4 summarizes the results. We leave
the blank in the diagonal because we do not use the target
dataset itself as its shadow dataset.

Table 5: AUC in different Correlation distance levels for
Attack-0 on Pubmed.

Correlation Distance | AUC | Correlation Distance | AUC

0.00-0.01 0.608 0.02-0.03 0.407
0.01-0.02 0.535 0.03-0.04 0.399

As we can see from Table 4, the AUC scores from the best-
performing shadow dataset have a consistent improvement on
almost all datasets compared to Attack-0. One exception is
the COX2 dataset in which the AUC score decreases by 0.02.
The results indicate that the adversary can indeed transfer the
knowledge from the shadow dataset to enhance her attack.

An interesting finding is that for a chemical dataset, the best
shadow dataset is normally a chemical dataset as well. Simi-
lar results can be observed for citation datasets. This shows
that it is more effective to transfer knowledge across datasets
from the same domain. To better understand this, we extract

Negative Node Pairs of Cora Positive Node Pairs of Cora

o
L . i
i s . |
o ..l:.F' e
L1 L '1:.‘F‘||' T
&l T i
] i B i =
— Ll S
7o
¥]
s
Negative Node Pairs of Citeseer Positive Node Pairs of Citeseer
i
a7
|"I. . &
i 1
- 1
5 -
Ll <
(@

Negative Node Pairs of Cora Positive Node Pairs of Cora

? “r
& I
- [I"‘I
®, * -
Negative Node Pairs of ENZYMES Positive Node Pairs of ENZYMES
-
P i W
Lt [ty
r .: : F
i o] i] 4"
R [“u_-j.
- .
LT -"r-il:'ﬁ_ﬁ-
(b)

Figure 3: The last hidden layer’s output from the attack model of Attack-1 for 200 randomly sampled positive node pairs and
200 randomly sampled negative node pairs projected into a 2-dimension space using t-SNE. (a) Cora as the shadow dataset and
Citeseer as the target dataset, (b) Cora as the shadow dataset and ENZYMES as the target dataset.

the attack model’s last hidden layer’s output (32-dimension)
for positive node pairs and negative node pairs and project
them into a 2-dimension space using t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [61]. Figure 3a shows the
results for Citeseer when using Cora as the shadow dataset,
both of which are citation datasets. We can see that the posi-
tive (negative) node pairs from both the target dataset and the
shadow dataset can be clustered into similar position, which
indicates the positive (negative) node pairs from both datasets
have similar distributions. This means if the attack model
learns a decision boundary to separate positive nodes pairs
from the negative node pairs on the shadow dataset, this deci-
sion boundary can be easily carried over to the target dataset.

In contrast, Figure 3b shows the results for ENZYMES (a
chemical dataset) when using Cora (a citation dataset) as the
shadow dataset. We see that the positive (negative) node pairs
from the shadow dataset and the target dataset are distributed
differently in the 2-dimension space. For example, the positive
node pairs for Cora are clustered into the outer space of the
circle area whereas the positive node pairs for ENZYMES are
clustered into the inner space of the circle area. Therefore, it
is hard for the adversary to perform an effective transferring
attack. The underlying reason for this to happen is that graphs
from the same domain have analogous graph structures and
similar features. This leads to less information loss for our
transferring attack.

Attack-2: K = (7, x, x). In Attack-2, the adversary has the
knowledge of the target dataset’s nodes’ attributes. As dis-
cussed in Section 4, she trains a reference model g by herself
from . We compare four types of information mentioned
in Section 4, and the results are shown in Figure 4. Note that

1.0

0.9

.8
S}
=)
<
0.7
) l .
05

o

%

ik

|
| d(f u)
- d(g(u), g(z)

B d(f(u), f(v) - d(g(w), 9(v))

& & o e @ &
e & o T

Figure 4: Average AUC for Attack-2 on all the 8 datasets
with all the 4 types of information considered. The x-axis
represents the dataset and the y-axis represents the AUC score.

we only show the results calculated with Correlation distance
out of the 8 distance metrics (Table 13) since Correlation dis-
tance achieves the best performance in almost all settings. We
can see that in all chemical datasets and one citation dataset,
using the distance of target dataset’s nodes’ attributes leads
to the best performance. For the other two citation datasets,
using the distance between posteriors of the target model can
get better performance. Nodes’ attributes’ dimensions are
higher in citation datasets than in chemical datasets. In other
words, the node attributes for citation datasets are sparser.
For instance, we observe that most attributes are O in cita-
tion datasets. Therefore, we conclude that the attack can get

Table 6: Average AUC with standard deviation for Attack-3
on all the 8 datasets.

Dataset ‘ AUC ‘ Dataset ‘ AUC

AIDS 0.961 £0.001 | PROTEINS_full | 0.958 £+ 0.000
COX2 0.939 + 0.002 | Citeseer 0.973 £ 0.000
DHFR 0.934 £ 0.001 | Cora 0.954 + 0.001
ENZYMES | 0.882 4+ 0.001 | Pubmed 0.947 £+ 0.001

better performance using the Correlation distance between
posteriors of the target model when the target dataset’s nodes’
attributes are in high dimension.

Attack-3: X = (x,4*,x). Table 6 shows the results for
this attack. With the knowledge of the target dataset’s partial
graph, the average AUC score for all cases is over 0.9. Com-
pared to Attack-2, the AUC scores on chemical datasets have
an improvement over 10% and the AUC scores on citation
datasets have an improvement over 2%.*

Compared to Attack-1 and Attack-2, Attack-3 achieves the
best performance, this indicates the target dataset’s partial
graph is the most important component for an adversary for
performing a link stealing attack. The reason is that the partial
graph contains the ground truth links in the target dataset,
which can be directly exploited by the attack model.

We further investigate the contribution of each feature set
to the final prediction following the methodology of Dong
et al. [16]. Concretely, when studying one feature set, we set
other features’ value to 0. As shown in Figure 5, the features
extracted by applying pairwise operation over posteriors are
most useful for the final prediction, followed by the features
based on posteriors with different distance metrics. We note
that our attack also achieves over 0.70 AUC on average when
only using pairwise operation over entropy of posteriors as
features. Moreover, our attack achieves the best performance
when taking all the three feature sets together, which implies
the combination of different features indeed improves the
overall performance.

Attack-4: K = (x,4*,D'). Table 7 shows the results for
Attack-4. First, compared to Attack-1 (X = (x, X, D)), the
overall performance of Attack-4 improves with the help of
target dataset’s partial graph “2*. This is reasonable since the
target dataset’s partial graph contains some ground truth links
from the target dataset. Second, we note that the performances
of Attack-4 are worse than Attack-3 (X = (x, 4%, x)). Intu-
itively, the performance should be better since Attack-4 has
more background knowledge. The reason for the performance
degradation is that we do not take the pairwise vector opera-
tion (Table 14) over posteriors as the input for Attack-4 since
we want to learn information from both the target dataset
and the shadow dataset, and need to eliminate the dimension
mismatch issue (as discussed in Section 4). Moreover, the

“Attack-2 achieves relatively high AUC scores on citation datasets.

1.00

0.95

0.90

0.85

AUC

0.80

W(e(f(u)), e(f(v))
U(f(w), f(v)

Figure 5: Average AUC for Attack-3 on all the 8 datasets with
different set of features. The x-axis represents the dataset and
the y-axis represents the AUC score.

results also indicate that compared to the shadow dataset, the
target dataset’s partial graph is more informative.

Attack-5: K = (F,x,D’). In Attack-5, the adversary has
the knowledge of target dataset’s nodes’ attributes as well
as a shadow dataset, evaluation results are shown in Table 8.
We observe that Attack-5 performs better than both Attack-
1 (only with 2’) and Attack-2 (only with F). This shows
the combination of F and D’ can lead to a better link steal-
ing performance. Furthermore, we observe similar trends as
for Attack-1, that is the attack performs better if the shadow
dataset comes from the same domain as the target dataset.

Attack-6: K = (F,4*,%x). The result of Attack-6 on all
datasets is shown in Table 10. We can see that for almost
all datasets (except ENZYMES), the AUC scores are over
0.95, which means this attack achieves an excellent perfor-
mance. In particular, the AUC score is nearly 1 on PRO-
TEINS_full. Moreover, Attack-6 consistently outperforms
Attack-2 (K = (F, %, x)). This further validates the effec-
tiveness of 4* in helping the adversary to infer links. Another
finding is that for chemical datasets, the information of target
dataset’s partial graph brings a larger improvement than the
citation datasets. One possible explanation is that the nodes’
attributes in chemical datasets contain less information (they
are in lower dimension), thus the target dataset’s partial graph
contributes more to the final prediction performance.

Attack-7: K = (F,4*,D’). The results of Attack-7 are sum-
marized in Table 9. Compared to Attack-5 (X = (F, x,D")),
the overall performances improve with the help of 4*. We
would expect the adversary’s accuracy is better than that of
Attack-6 (X = (F, A", x)) since she has more background
knowledge. However, we observe that the performance drops
from Attack-6 to Attack-7. We suspect this is due to the fact
that we want to learn information from both the target dataset
and the shadow dataset, to avoid the dimension mismatch

Table 7: Average AUC with standard deviation for Attack-4 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset

Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed
AIDS - 0.750 £+ 0.009 0.763 + 0.010 0.733 +0.007 0.557 £ 0.009 0.729 £ 0.015 0.702 £+ 0.010 0.673 + 0.009
COX2 0.802 + 0.031 - 0.866 + 0.004 0.782 +£0.012 0.561 +£0.030 0.860 + 0.002 0.853 +0.004 0.767 + 0.023
DHFR 0.758 + 0.022 0.812 + 0.005 - 0.662 + 0.030 0.578 £0.067 0.799 £ 0.002 0.798 £ 0.009 0.736 + 0.005
ENZYMES 0.741 £+ 0.010 0.684 + 0.024 0.670 £ 0.008 - 0.733 £0.019 0.624 £0.002 0.627 £ 0.014 0.691 £+ 0.012
PROTEINS_full | 0.715 +0.009 0.802 4+ 0.025 0.725 +0.041 0.863 4+ 0.010 - 0.784 £+ 0.031 0.815+0.012 0.867 + 0.003
Citeseer 0.832 £ 0.078 0.940 £+ 0.005 0.914 +0.007 0.879 £+ 0.062 0.833 + 0.088 - 0.967 + 0.001 0.955 + 0.003
Cora 0.572 +£0.188 0.899 + 0.003 0.887 +0.014 0.878 +0.045 0.738 +£0.168 0.945 + 0.001 - 0.924 + 0.005
Pubmed 0.777 £+ 0.056 0.893 +0.001 0.90 + 0.006 0.866 +0.002 0.806 + 0.042 0.907 + 0.004 0.902 + 0.001 -

Table 8: Average AUC with standard deviation for Attack-5 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset

Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed
AIDS - 0.841 +0.003 0.846 +0.009 0.795+0.016 0.875 + 0.002 0.839 £ 0.006 0.793 £ 0.015 0.787 £ 0.008
COX2 0.832 £ 0.036 - 0.977 + 0.002 0.874 £0.020 0.946 +0.003 0.911 £ 0.004 0.908 + 0.004 0.887 £ 0.004
DHFR 0.840 +0.018 0.988 £ 0.001 - 0.757 £ 0.032 0.970 £0.004 0.909 &+ 0.010 0.911 £0.009 0.860 & 0.004
ENZYMES 0.639 £ 0.005 0.581 £0.010 0.587 & 0.005 - 0.608 & 0.001 0.685 £ 0.005 0.674 & 0.007 0.663 +£ 0.002
PROTEINS_full | 0.948 4 0.007 0.981 & 0.004 0.968 & 0.014 0.818 & 0.017 - 0.970 £ 0.002 0.876 £ 0.010 0.885 4 0.003
Citeseer 0.773 £ 0.048 0.666 £ 0.018 0.652 4 0.020 0.860 £ 0.049 0.794 & 0.009 - 0.969 £ 0.002 0.967 £ 0.001
Cora 0.743 £ 0.017 0.587 £0.012 0.568 & 0.009 0.778 £0.052 0.686 & 0.018 0.956 + 0.001 - 0.936 & 0.002
Pubmed 0.777 £ 0.030 0.661 £0.018 0.645 4 0.008 0.786 £0.041 0.741 +0.008 0.938 £ 0.007 0.941 + 0.007 -

Table 9: Average AUC with standard deviation for Attack-7 on all the 8 datasets. Best results are highlighted in bold.

Shadow Dataset

Target Dataset AIDS COX2 DHFR ENZYMES PROTEINS_full Citeseer Cora Pubmed
AIDS - 0.925 +0.001 0.913 £ 0.005 0.784 +0.010 0.848 +£0.010 0.538 +0.022 0.520 = 0.011 0.849 + 0.004
COX2 0.954 + 0.007 - 0.982 + 0.001 0.874 £0.010 0.898 £0.030 0.947 +0.003 0.940 + 0.007 0.875 + 0.034
DHFR 0.982 + 0.002 0.992 + 0.00 - 0.871 £0.017 0.966 +0.008 0.933 +0.008 0.947 +0.012 0.937 £ 0.003
ENZYMES 0.698 + 0.007 0.691 + 0.008 0.671 £ 0.003 - 0.610 £ 0.001 0.657 £ 0.009 0.662 £+ 0.006 0.677 £ 0.001
PROTEINS_full | 0.984 4+ 0.002 0.962 4+ 0.010 0.986 4+ 0.002 0.993 + 0.001 - 0.840 £+ 0.013 0.823 + 0.006 0.987 + 0.005
Citeseer 0.816 + 0.048 0.791 +0.033 0.702 4+ 0.025 0.880 4+ 0.057 0.902 + 0.026 - 0.977 £+ 0.000 0.964 + 0.000
Cora 0.746 + 0.068 0.680 + 0.038 0.574 + 0.038 0.888 +0.014 0.695 +0.10 0.960 + 0.001 - 0.935 £+ 0.001
Pubmed 0.807 + 0.016 0.712 +0.025 0.710 4+ 0.006 0.881 4+ 0.009 0.739 +0.012 0.956 + 0.001 0.949 + 0.001 -

Table 10: Average AUC with standard deviation for Attack-6
on all the 8 datasets.

Dataset | AUC | Dataset | AUC

AIDS 0.979 £+ 0.001 | PROTEINS_full | 0.999 + 0.000
COX2 0.987 + 0.001 Citeseer 0.981 + 0.000
DHFR 0.992 + 0.001 | Cora 0.964 + 0.000
ENZYMES | 0.891 4+ 0.001 Pubmed 0.970 4+ 0.000

problem, Attack-7 uses fewer features than Attack-6 (similar
to the reason that Attack-4 performs worse than Attack-3).

Comparison with Link Prediction. We further compare

all our attacks with a traditional link prediction method [40].

More specifically, we build an MLP with features summarized
from the target model’s partial graph, including Common
neighbor, Jaccard index, and Preferential attachment [40]. As
we can see from Figure 6, most of our attacks outperforms the

link prediction method. For instance, on the COX2 dataset, all
our 8 attacks outperform the link prediction model, the best
attack (Attack-6) achieves more than 20% performance gain.
This demonstrates that GNNs lead to more severe privacy
risks than traditional link prediction.

Effect of Different GNN Structures. In our experiments,
we adopt the same architecture for both the target model and
the shadow target model by default for transferring attack
scenarios. We further evaluate the impact of the shadow tar-
get model using different architectures. Note that for space
reasons, we only report the results of Attack-1. Results for
other attacks are similar. We set the number of hidden lay-
ers to 3 for the shadow target model (the target model has
2 hidden layers). The results are summarized in Table 16
in Appendix. We find the average AUC scores of our attack
are maintained at the same level or even higher for certain
datasets compared with the scenario where the shadow target
model and the shadow model have the same architecture. For

1.00

0.95 I
0.90 . i
0.85 b
o - . B Attack-0
= 0.80 B Attack-1
B Attack-2
0.75 BN Attack-3
] BN Attack-4
0.70 N Attack-5
Attack-6
0.65 N Attack-7
Link Prediction
0.60 o
WP ot 0\«\@ R «® ?@&‘X

S
N\?’ S %€
" QO
L) ot
Q%

Figure 6: Average AUC with standard deviation for all the
attacks on all the 8 datasets. For each attack, we list its best
result. The x-axis represents the dataset and the y-axis repre-
sents the AUC score.

Table 11: Average AUC with standard deviation for Attack-6
when using GraphSAGE or GAT as the target model on all
the 8 datasets.

Dataset | AUC (GraphSAGE) | AUC (GAT)

AIDS 0.977 + 0.002 0.968 + 0.001
COx2 0.982 + 0.001 0.984 + 0.001
DHFR 0.990 = 0.001 0.995 =+ 0.000
ENZYMES 0.747 £ 0.001 0.766 + 0.004
PROTEINS_full 0.999 + 0.000 0.999 + 0.000
Citeseer 0.938 + 0.000 0.972 + 0.000
Cora 0.883 + 0.001 0.958 + 0.000
Pubmed 0.923 + 0.000 0.965 + 0.000

instance, on the Citeseer dataset, we obtain 0.924 AUC, while
the original attack achieves 0.965. In other words, our attacks
are still effective when the shadow target model and the target
model have different architectures.

Attacks on Other GNNs. We further investigate whether
our attacks are applicable to other GNN models besides GCN.
Concretely, we focus on GraphSAGE [27] and GAT [62]. We
implement GraphSAGE’ and GAT® based on publicly avail-
able code and only report the results of Attack-6. Table 11
shows that our attack has similar AUC scores on GraphSAGE
and GAT compared to GCN. For instance, on the COX2
dataset, our attack against GraphSAGE and GAT achieves
AUC of 0.982 and 0.984, respectively (the corresponding
AUC for GCN is 0.987). This further demonstrates that our
attacks are generally applicable.

Possible Defense. We try to restrict the GNN model to out-
put k largest posteriors as a defense mechanism to mitigate
our attacks. The intuition is that the smaller £ is, the less infor-
mation the model reveals. Here, we fix kK = 2 and report the

om/williamleif/GraphSAGE

//github.com/PetarV-/GAT

Table 12: Average AUC with standard deviation for Attack-3
when only reporting top-2 posteriors on all the 8 datasets.

Dataset ‘ AUC ‘ Dataset ‘ AUC

AIDS 0.855 £ 0.004 | PROTEINS_full | 0.954 + 0.001
COX2 0.839 + 0.005 | Citeseer 0.958 + 0.000
DHFR 0.851 £ 0.003 | Cora 0.945 £ 0.001
ENZYMES | 0.876 4+ 0.002 | Pubmed 0.946 + 0.001

results for Attack-3. Note that we have similar observations
for other attacks. Experimental results in Table 12 show that
this defense indeed reduces the performance of our attack.
However, the performance drop is not very big, i.e., our attack
still achieves relatively high AUC scores. For instance, on the
Citeseer dataset, this defense reduces Attack-3’s performance
by less than 2%. On the AIDS dataset, the attack’s perfor-
mance drop is higher but AUC being 0.855 still indicates our
attack is effective. We also note that the defense will impact
the utility of the model. In other words, it is a trade-off be-
tween utility and privacy. In conclusion, the top-k defense is
not effective enough to defend against our attacks.

We can also leverage differential privacy (DP) and adver-
sarial examples to mitigate our attacks. In detail, we can
adopt edge-DP developed for social networks [28, 68] to de-
fend against our attacks. Borrowing the idea from previous
work [31,32], we can also add carefully crafted noise to the
prediction of GNN to fool the adversary. We plan to explore
both of them in the future.

Summary of Results. In summary, we have made the fol-
lowing observations from our experimental results.

e Our attacks can effectively steal the links from GNNs.
For instance, our Attack-6 can achieve average AUC
scores over 0.95 on 7 out of 8 datasets, which demon-
strate that the GNNs are vulnerable to our attacks.

e Generally speaking, the performances of the attack
are better if there is more background knowledge as
shown in Figure 6. However, we find the impact of dif-
ferent knowledge is different. In particular, the target
dataset’s partial graph is the most informative. For in-
stance, Attack-3 (X = (x,4*, x)) significantly outper-
forms Attack-1 (X = (x, x,D")) and Attack-2 (X =
(F %, x).

e Our transferring attack can achieve good performance.
Furthermore, we find that our transferring attack achieves
better performance when the shadow dataset and the
target dataset are from the same domain as validated by
experimental results for Attack-1 and Attack-5.

Related Work

Various research has shown that machine learning models are
vulnerable to security and privacy attacks [9, 12,30,36-38,49,

https://github.com/williamleif/GraphSAGE
https://github.com/PetarV-/GAT

50,53,55,60]. In this section, we mainly survey four of these
attacks that are most relevant to ours.

Membership Inference. In membership inference attacks [0,
10,29,39,42,43,54,56,58,67], the adversary aims to infer
whether a data sample is in the target model’s training dataset
or not. Shokri et al. [56] propose the first membership infer-
ence attacks against machine learning models and demon-
strate its relationship with model overfitting. Salem et al. [54]
further show membership inference attacks are broadly appli-
cable at low cost via relaxing assumptions on the adversary.
To mitigate attacks, many empirical defenses [32,42,54,56]
have been proposed. For instance, Nasr et al. [42] propose
to mitigate attacks via formulating the defense as a min-max
optimization problem which tries to decrease the accuracy
loss and increase the membership privacy. Salem et al. [54]
explore dropout and model stacking to mitigate membership
inference attacks. More recently, Jia et al. [32] leverage adver-
sarial examples to fool the adversary and show their defense
has a formal utility guarantee. Other attacks in this space study
membership inference in natural language processing mod-
els [57], generative models [8, 29], federated learning [41],
and biomedical data [26].

Model Inversion. In model inversion attacks [20, 21, 30,
41, 48], the adversary aims to learn sensitive attributes of
training data from target models. For example, Fredrikson
et al. [21] propose the model inversion attack in which the
adversary can infer the patient’s genetic markers given the
model and some demographic information about the patients.
Fredrikson et al. [20] further explore the model inversion
attacks on decision trees and neural networks via exploiting
the confidence score values revealed along with predictions.
Melis et al. [41] revealed that in the collaborative learning
scenarios, when the target model updated with new training
data, the adversary could infer sensitive attributes about the
new training data.

Model Extraction. In model extraction attacks [7,30,60,63],
the adversary aims to steal the parameters of a certain tar-
get model or mimic its behaviors. Tramér et al. [60] show
that an adversary can exactly recover the target model’s pa-
rameters via solving the equations for certain models, e.g.,
linear models. Wang and Gong [63] propose attacks to steal
the hyperparameters and show their attacks are broadly ap-
plicable to a variety of machine learning algorithms, e.g.,
ridge regression and SVM. Orekondy et al. [44] propose a
functionality stealing attack aiming at mimicking the behav-
iors of the target model. Concretely, they query the target
model and use the query-prediction pairs to train a “knock-
oft” model. Jagielski et al. [30] improve the query efficiency
of learning-based model extraction attacks and develop the
practical functionally-equivalent model whose predictions are
identical to the target model on all inputs without training
model’s weights. Some defenses [34,45] have been proposed
to defend against model extraction attacks. For instance, Juuti

et al. [34] propose to detect malicious queries via analyzing
the distribution of consecutive API queries and raises an alarm
when the distribution different from benign queries. Orekondy
et al [45] propose a utility-constrained defense against neural
network model stealing attacks via adding perturbations to
the output of the target model.

Adversarial Attacks on Graph Neural Networks. Some
recent studies [3,13,64,66,71,73,74] show that GNNSs are vul-
nerable to adversarial attacks. In particular, the adversary can
fool GNNs via manipulating the graph structure and/or node
features. For instance, Ziigner et al. [73] introduce adversarial
attacks to attributed graphs and focus on both training and
testing phase. In particular, their attacks target both node’s fea-
tures and graph structure and show that the node classification
accuracy drops with a few perturbations. Bojchevski et al. [3]
analyze the vulnerability of node embeddings to graph struc-
ture perturbation via solving a bi-level optimization problem
based on eigenvalue perturbation theory. Ziigner and Giinne-
mann [74] investigate training time attacks on GNNs for node
classification via treating the graph as a hyperparameter to
optimize. Wang and Gong [64] propose an attack to evade
the collective classification based classifier via perturbing
the graph structure, which can also transfer to GNNs. Dai
et al. [13] propose to fool the GNNs via manipulating the
combinatorial structure of data and try to learn generalizable
attack policy via reinforcement learning. Zhang et al. [71] pro-
pose a subgraph based backdoor attack to GNN based graph
classification. In particular, a GNN classifier outputs a target
label specified by an adversary when a predefined subgraph is
injected to the testing graph. These studies are different from
our work since we aim to steal links from GNNss.

To mitigate attacks, many defenses [4,66,72,75] have been
proposed. For instance, Zhu et al. [72] propose to enhance
the robustness of GCNs via using Gaussian distributions in
graph convolutional layers to mitigate the effects of adversar-
ial attacks and leveraged attention mechanism to impede the
propagation of attacks. Ziigner and Glinnemann [75] propose
a learning principle that improves the robustness of the GNNs
and show provable robustness guarantees against nodes’ at-
tributes perturbation. Bojchevski et al. [3] propose to certify
the robustness against graph structure perturbation for a gen-
eral class of models, e.g., GNNs, via exploiting connections
to PageRank and Markov decision processes. These defenses
are designed to improve the robustness of GNNSs rather than
preventing the privacy leakage of it. Note that there are also
some attacks and defenses on graph that focus on non-GNN
models [11,33]. For instance, Chen et al. [11] propose at-
tacks that mislead the behavior of graph-cluster algorithm and
show some practical defenses. Jia et al. [33] propose certified
defense which is based on randomized smoothing to defend
against adversarial structural attacks to community detection.

7 Conclusion and Future Work

In this paper, we propose the first link stealing attacks against
GNNs. Specifically, we show that, given a black-box access
to a target GNN model, an adversary can accurately infer
whether there exists a link between any pair of nodes in a
graph that is used to train the GNN model. We propose a
threat model to systematically characterize an adversary’s
background knowledge along three dimensions. By jointly
considering the three dimensions, we define 8 link stealing
attacks and propose novel methods to realize them. Extensive
evaluation over 8 real-world datasets shows that our attacks
can accurately steal links. Interesting future work includes
generalizing our attacks to GNNs for graph classification and
defending against our attacks.

Acknowledgments

We thank the anonymous reviewers and our shepherd Minhui
Xue for constructive feedback. This work is partially funded
by the Helmholtz Association within the project “Trustworthy
Federated Data Analytics” (TFDA) (funding number ZT-1-
0O0O1 4) and National Science Foundation grant No. 1937787.

References

[1] James Atwood and Don Towsley. Diffusion-
Convolutional Neural Networks. In NIPS, pages 1993—
2001, 2016.

[2] Michael Backes, Mathias Humbert, Jun Pang, and Yang
Zhang. walk2friends: Inferring Social Links from Mo-
bility Profiles. In CCS, pages 1943-1957, 2017.

[3] Aleksandar Bojchevski and Stephan Giinnemann. Ad-
versarial Attacks on Node Embeddings via Graph Poi-
soning. In ICML, pages 695-704, 2019.

[4] Aleksandar Bojchevski and Stephan Giinnemann. Certi-
fiable Robustness to Graph Perturbations. In NeurlPS,
pages 8317-8328, 2019.

[5] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Scho-
nauer, S. V. N. Vishwanathan, Alexander J. Smola, and
Hans-Peter Kriegel. Protein Function Prediction via
Graph Kernels. Bioinformatics, 2005.

[6] Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej
Kos, and Dawn Song. The Secret Sharer: Evaluating and
Testing Unintended Memorization in Neural Networks.
In USENIX Security, pages 267-284, 2019.

[7] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gi-
acomelli, Somesh Jha, and Songbai Yan. Exploring
Connections Between Active Learning and Model Ex-
traction. In USENIX Security, 2020.

[8] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz.
GAN-Leaks: A Taxonomy of Membership Inference
Attacks against GANs. In CCS, 2020.

[9] Min Chen, Zhikun Zhang, Tianhao Wang, Michael
Backes, Mathias Humbert, and Yang Zhang. When
Machine Unlearning Jeopardizes Privacy. = CoRR
abs/2005.02205, 2020.

[10] Qingrong Chen, Chong Xiang, Minhui Xue, Bo Li,
Nikita Borisov, Dali Kaarfar, and Haojin Zhu. Dif-
ferentially Private Data Generative Models. CoRR
abs/1812.02274, 2018.

[11] Yizheng Chen, Yacin Nadji, Athanasios Kountouras,
Fabian Monrose, Roberto Perdisci, Manos Antonakakis,
and Nikolaos Vasiloglou. Practical Attacks Against
Graph-based Clustering. In CCS, pages 1125-1142,
2017.

[12] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman
Jana. On Training Robust PDF Malware Classifiers. In
USENIX Security, 2020.

[13] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang,
Jun Zhu, and Le Song. Adversarial Attack on Graph
Structured Data. In ICML, pages 1123-1132, 2018.

[14] Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering. In NIPS, pages
3837-3845, 2016.

[15] Paul D. Dobson and Andrew J. Doig. Distinguishing
Enzyme Structures from Non-Enzymes without Align-
ments. Journal of Molecular Biology, 2003.

[16] Yuxiao Dong, Reid A. Johnson, and Nitesh V. Chawla.
Will This Paper Increase Your #-index?: Scientific Im-
pact Prediction. In WSDM, pages 149-158, 2015.

[17] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas
Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking Graph Neural Networks. CoRR
abs/2003.00982, 2020.

[18] Federico Errica, Marco Podda, Davide Bacciu, and
Alessio Micheli. A Fair Comparison of Graph Neural
Networks for Graph Classification. In /CLR, 2020.

[19] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric
Zhao, Jiliang Tang, and Dawei Yin. Graph Neural Net-
works for Social Recommendation. In WWW, pages
417-426, 2019.

[20] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks that Exploit Confidence In-
formation and Basic Countermeasures. In CCS, pages
1322-1333, 2015.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Matt Fredrikson, Eric Lantz, Somesh Jha, Simon Lin,
David Page, and Thomas Ristenpart. Privacy in Pharma-
cogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing. In USENIX Security, pages 17-32,
2014.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In ICML, pages 1263—
1272, 2017.

Neil Zhengiang Gong and Bin Liu. You are Who
You Know and How You Behave: Attribute Inference
Attacks via Users’ Social Friends and Behaviors. In
USENIX Security, pages 979-995, 2016.

Neil Zhengiang Gong, Ameet Talwalkar, Lester W.
Mackey, Ling Huang, Eui Chul Richard Shin, Emil Ste-
fanov, Elaine Shi, and Dawn Song. Joint Link Prediction
and Attribute Inference Using a Social-Attribute Net-
work. ACM Transactions on Intelligent Systems and
Technology, 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable
Feature Learning for Networks. In KDD, pages 855—
864, 2016.

Inken Hagestedt, Yang Zhang, Mathias Humbert, Pas-
cal Berrang, Haixu Tang, XiaoFeng Wang, and Michael
Backes. MBeacon: Privacy-Preserving Beacons for
DNA Methylation Data. In NDSS, 2019.

William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive Representation Learning on Large Graphs. In
NIPS, pages 1025-1035, 2017.

Michael Hay, Chao Li, Gerome Miklau, and David D.
Jensen. Accurate Estimation of the Degree Distribution
of Private Networks. In ICDM, pages 169-178, 2009.

Jamie Hayes, Luca Melis, George Danezis, and Emil-
iano De Cristofaro. LOGAN: Evaluating Privacy Leak-
age of Generative Models Using Generative Adversarial
Networks. Symposium on Privacy Enhancing Technolo-
gies Symposium, 2019.

Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High Accuracy
and High Fidelity Extraction of Neural Networks. In
USENIX Security, 2020.

Jinyuan Jia and Neil Zhengiang Gong. AttriGuard: A
Practical Defense Against Attribute Inference Attacks
via Adversarial Machine Learning. In USENIX Security,
pages 513-529, 2018.

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Jinyuan Jia, Ahmed Salem, Michael Backes, Yang
Zhang, and Neil Zhengiang Gong. MemGuard: Defend-
ing against Black-Box Membership Inference Attacks
via Adversarial Examples. In CCS, pages 259-274,
2019.

Jinyuan Jia, Binghui Wang, Xiaoyu Cao, and Neil Zhen-
giang Gong. Certified Robustness of Community De-
tection against Adversarial Structural Perturbation via
Randomized Smoothing. In WWW, pages 2718-2724,
2020.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N. Asokan. PRADA: Protecting Against DNN Model
Stealing Attacks. In Euro S&P, pages 512-527, 2019.

Thomas N. Kipf and Max Welling. Semi-Supervised
Classification with Graph Convolutional Networks. In
ICLR, 2017.

Klas Leino and Matt Fredrikson. Stolen Memories:
Leveraging Model Memorization for Calibrated White-
Box Membership Inference. In USENIX Security, 2020.

Shaofeng Li, Shiging Ma, Minhui Xue, and Benjamin
Zi Hao Zhao. Deep Learning Backdoors. CoRR
abs/2007.08273, 2020.

Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. How to Prove Your Model Belongs to You: A
Blind-Watermark based Framework to Protect Intellec-
tual Property of DNN. In ACSAC, pages 126-137, 2019.

Zheng Li and Yang Zhang. Label-Leaks: Membership
Inference Attack with Label. CoRR abs/2007.15528,
2020.

David Liben-Nowell and Jon Kleinberg. The Link-
prediction Problem for Social Networks. Journal of
the American Society for Information Science and Tech-
nology, 2007.

Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting Unintended Feature
Leakage in Collaborative Learning. In S&P, pages 497—
512, 2019.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Ma-
chine Learning with Membership Privacy using Adver-
sarial Regularization. In CCS, pages 634-646, 2018.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive Privacy Analysis of Deep Learning: Passive
and Active White-box Inference Attacks against Central-
ized and Federated Learning. In S&P, pages 1021-1035,
2019.

[44] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff Nets: Stealing Functionality of Black-Box
Models. In CVPR, pages 4954-4963, 2019.

[45] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Prediction Poisoning: Towards Defenses Against DNN
Model Stealing Attacks. In ICLR, 2020.

[46] Jun Pang and Yang Zhang. DeepCity: A Feature Learn-
ing Framework for Mining Location Check-Ins. In
ICWSM, pages 652—655, 2017.

[47] Jun Pang and Yang Zhang. Quantifying Location So-
ciality. In HT, pages 145-154, 2017.

[48] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael Wellman. SoK: Towards the Science of Secu-
rity and Privacy in Machine Learning. In Euro S&P,
pages 399414, 2018.

[49] Nicolas Papernot, Patrick D. McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks Against Machine Learning.
In ASIACCS, pages 506-519, 2017.

[50] Erwin Quiring, Alwin Maier, and Konrad Rieck. Mis-
leading Authorship Attribution of Source Code using
Adversarial Learning. In USENIX Security, pages 479—
496, 2019.

[51] Kaspar Riesen and Horst Bunke. Structural, Syntactic,
and Statistical Pattern Recognition. Springer, 2008.

[52] Ahmed Salem, Apratim Bhattacharya, Michael Backes,
Mario Fritz, and Yang Zhang. Updates-Leak: Data Set
Inference and Reconstruction Attacks in Online Learn-
ing. In USENIX Security, pages 1291-1308, 2020.

[53] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. Dynamic Backdoor Attacks Against
Machine Learning Models. CoRR abs/2003.03675,
2020.

[54] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. ML-Leaks:
Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models. In
NDSS, 2019.

[55] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison Frogs! Targeted Clean-Label Poisoning
Attacks on Neural Networks. In NeurIPS, pages 6103—
6113, 2018.

[56] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership Inference Attacks Against
Machine Learning Models. In S&P, pages 318, 2017.

[57] Congzheng Song and Vitaly Shmatikov. Auditing Data
Provenance in Text-Generation Models. In KDD, pages
196-206, 2019.

[58] Congzheng Song and Reza Shokri. Robust Membership
Encoding: Inference Attacks and Copyright Protection
for Deep Learning. In ASIACCS, 2020.

[59] Jeffrey Sutherland, Lee O’Brien, and Donald Weaver.
SplineFitting with a Genetic Algorithm: A Method for
Developing Classification Structure Activity Relation-
ships. Journal of Chemical Information and Computer
Sciences, 2003.

[60] Florian Tramer, Fan Zhang, Ari Juels, Michael K. Reiter,
and Thomas Ristenpart. Stealing Machine Learning
Models via Prediction APIs. In USENIX Security, pages
601-618, 2016.

[61] Laurens van der Maaten and Geoffrey Hinton. Visual-
izing Data using t-SNE. Journal of Machine Learning
Research, 2008.

[62] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
Attention Networks. In ICLR, 2018.

[63] Binghui Wang and Neil Zhengiang Gong. Stealing
Hyperparameters in Machine Learning. In S&P, pages
36-52, 2018.

[64] Binghui Wang and Neil Zhengiang Gong. Attacking
Graph-based Classification via Manipulating the Graph
Structure. In CCS, pages 2023-2040, 2019.

[65] Binghui Wang, Jinyuan Jia, and Neil Zhengiang Gong.
Graph-based Security and Privacy Analytics via Col-
lective Classification with Joint Weight Learning and
Propagation. In NDSS, 2019.

[66] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew
Docherty, Kai Lu, and Liming Zhu. Adversarial Ex-
amples for Graph Data: Deep Insights into Attack and
Defense. In IJCAI, pages 4816-4823, 2019.

[67] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy Risk in Machine Learning: An-
alyzing the Connection to Overfitting. In CSF, pages
268-282, 2018.

[68] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc,
Divesh Srivastava, and Xiaokui Xiao. Private Release of
Graph Statistics using Ladder Functions. In SIGMOD,
pages 731-745, 2015.

[69] Yang Zhang. Language in Our Time: An Empirical Anal-
ysis of Hashtags. In WWW, pages 2378-2389, 2019.

[70]

Yang Zhang, Mathias Humbert, Bartlomiej Surma,
Praveen Manoharan, Jilles Vreeken, and Michael
Backes. Towards Plausible Graph Anonymization. In
NDSS, 2020.

Table 15: Prediction results for Attack-0 on all the 8 datasets

with Correlation distance.

Dataset ‘ Precision Recall FI-Score AUC

[71] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhen- AIDS 0.524 0.996 0.687 0.691
giang Gong. Backdoor Attacks to Graph Neural Net- Ccox2 0523 0987 0.684 0.867
works. CoRR abs/2006.11165, 2020. DHFR 0.355 0.977° 0708 0.765
ENZYMES 0.501 1.000 0.667 0.630

. PR . PROTEINS_full 0.540 0.998 0.701 0.815

[72] Dingyuan Zhu, Ziwei Zhang,. Peng Cui, and Wen.wu Citeseer 0788 0991 0878 0.959
Zhu. Robust Graph Convolutional Networks Against Cora 0777 0966 0861 0929
Adversarial Attacks. In KDD, pages 1399-1407, 2019. Pubmed 0.691 0965 0.806 0.874

[73]

Daniel Ziigner, Amir Akbarnejad, and Stephan Giinne-
mann. Adversarial Attacks on Neural Networks for

Table 16: Average AUC with standard deviation for Attack-1
with different GCN structures on all the 8 datasets. Results
with respect to the best performing shadow dataset are re-

Graph Data. In KDD, pages 2847-2856, 2018.

[74] Daniel Ziigner and Stephan Giinnemann. Adversarial

Attacks on Graph Neural Networks via Meta Learning.
In ICLR, 2019.

ported.

Dataset ‘ Shadow Dataset ‘ AUC
[75] Daniel Ziigner and Stephgq Gilinnemann. Certlﬁabl.e Ro- ADS PROTEINS. full|0.729 + 0.013
bustness and Robust Training for Graph Convolutional COX2 Citeseer 0.760 & 0.026
Networks. In KDD, pages 246-256, 2019. DHFR COX2 0.792 + 0.005
ENZYMES AIDS 0.732 £ 0.009
PROTEINS_full | COX2 0.808 + 0.034
A Appendix Citeseer Cora 0.924 + 0.006
Cora Citeseer 0.916 £ 0.002
Pubmed Citeseer 0.840 £ 0.001

Table 13: Distance metrics, f;(u) represents the i-th compo-
nent of f(u). Note that these metrics can be applied to nodes’

Table 17: Average Precision and Recall with standard devia-
tion for Attack-1. Results with respect to the best performing

attributes as well.

Metrics | Definition shadow dataset are reported.
. f)-f(v)
COSlfle - m Dataset ‘ Shadow Dataset ‘ Precision Recall
Euclidean) = sl AIDS ENZYMES 0.725 & 0.044 0.505 & 0.110
Comelation | 1) =F()-(f(v) = () Cox2 PROTEINS._full | 0.828 -+ 0.013 0.686 - 0.100
[CF () = F@) 2l (f(v) = FOD)l2 DHFR COX2 0.691 & 0.015 0.704 =+ 0.022
Chebyshev max; | fi(u) = fi(v)] ENZYMES AIDS 0.639 +0.023 0.615 =+ 0.046
Brayourtis L|fi(w) — (V)\ PROTEINS_full | Citeseer 0.750 £ 0.022 0.800 £ 0.055
Y Ifi(u) + £i(v)] Citeseer Cora 0.871 + 0.005 0.958 + 0.005
Manbhattan il fi(u) = fi(v)| Cora Citeseer 0.854 £ 0.003 0.883 = 0.008
Canberra ¥ \I,{((LZ)\ - U((vv))l‘ Pubmed Cora 0.765 + 0.009 0.897 + 0.012
i i
Sqeuclidean £)=)3

Table 14: Pairwise vector operations, f;(u) represents the i-th
component of f(u). Note that these operations can be applied

tion for Attack-3.

Table 18: Average Precision and Recall with standard devia-

, Dataset ‘ Precision Recall
to nodes’ attributes and entropies summarized from posteriors
as well. AIDS 0.874 £ 0.006 0.966 + 0.005
COX2 0.846 £ 0.004 0.922 £ 0.005
DHFR 0.847 £ 0.007 0.877 £ 0.009
Operator | Definition | Operator | Definition ENZYMES 0.761 £ 0.003 0.871 + 0.004
fiu) + £i(v) ' PROTEINS_full | 0.856 = 0.006 0.943 + 0.004
Average — Weighted-L1 | |fi(u) — f;(v)] Citeseer 0.895 + 0.003 0.946 + 0.005
ad: (1) - f: i B (1) — ()2 Cora 0.858 £ 0.002 0.917 £ 0.008
Hadamard filw) /i) Weighted L2 | 1filw) — fi) Pubmed 0.869 4 0.008 0.892 £ 0.014

1.00

0.95

0.90

0.85

AUC

0.80

0.75

0.70

AIDS

1.000

0.975

0.950

0.925

0.900

Cox2

0.875

0.850

0.825

20

1.00

40 60 80

PROTEINS full

0.800

Citeseer

0.95

0.90
o

0.94

0.92

1.000

0.975

0.950

0.925

0.900

DHFR

20 40 60 80

Cora

1.00

0.98

0.96

0.94

0.92

ENZYMES

20 40

60 80

Pubmed

) 0.875
; \ / 0.90 0.90
T 0.850 S —————
0.80 088 = —a—= . o _ . 088 o o o o —o—e o T
0.825
0.86 ——, == = 086
0.75 0.800
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

—e— Attack-0 Attack-1 —=— Attack-2 —— Attack-3 —+— Attack-4 —— Attack-5 Attack-6 —+— Attack-7

Figure 7: The relationship between the ratio of attack training dataset in the attack dataset and the attacks’ AUC scores on all the
8 datasets. The x-axis represents the ratio and the y-axis represents the AUC score.

Table 19: Average Precision and Recall with standard devia-
tion for Attack-4. Results with respect to the best performing
shadow dataset are reported.

Table 21: Average Precision and Recall with standard devia-
tion for Attack-6.

Dataset \ Precision Recall
Dataset ‘ Shadow Dataset ‘ Precision Recall

AIDS 0.907 £ 0.002 0.986 + 0.002
AIDS DHFR 0.688 + 0.013 0.628 + 0.046 COX2 0.935 £+ 0.004 0.994 + 0.001
COX2 DHFR 0.787 £+ 0.009 0.835 + 0.033 DHFR 0.972 £+ 0.001 0.995 + 0.002
DHFR COxX2 0.726 £ 0.008 0.793 + 0.015 ENZYMES 0.770 £ 0.004 0.886 + 0.009
ENZYMES AIDS 0.637 £+ 0.025 0.683 £ 0.041 PROTEINS_full |0.988 4+ 0.002 0.998 + 0.001
PROTEINS_full | Pubmed 0.686 £+ 0.045 0.955 + 0.020 Citeseer 0.900 £ 0.008 0.933 + 0.006
Citeseer Cora 0.874 £ 0.004 0.956 + 0.004 Cora 0.878 £+ 0.003 0.930 &+ 0.003
Cora Citeseer 0.854 £ 0.002 0.896 + 0.004 Pubmed 0.903 + 0.004 0.920 4+ 0.003
Pubmed Citeseer 0.790 £ 0.009 0.877 £ 0.012

Table 22: Average Precision and Recall with standard devia-
tion for Attack-7. Results with respect to the best performing
shadow dataset are reported.

Table 20: Average Precision and Recall with standard devia-
tion for Attack-5. Results with respect to the best performing
shadow dataset are reported.

Dataset ‘ Shadow Dataset ‘ Precision Recall Dataset ‘ Shadow Dataset ‘ Precision Recall

AIDS PROTEINS._full | 0.854 4 0.003 0.663 + 0.005 AIDS COX2 0.870 £ 0.003 0.781 + 0.013
COX2 DHFR 0.941 + 0.004 0.923 + 0.022 COX2 DHFR 0.941 & 0.004 0.966 + 0.009
ENZYMES Citeseer 0.608 + 0.005 0.675 + 0.013 ENZYMES AIDS 0.617 +0.012 0.693 & 0.036
Citeseer - Cora 0888 + 0006 0885 + 0005 Citeseer Cora 0898 + 0003 0913 + 0008
Cora Citeseer 0.867 £ 0.006 0.892 % 0.009 Cora Citeseer 0.874 £ 0.004 0.911 + 0.005

	Introduction
	Graph Neural Networks
	Problem Formulation
	Threat Model
	Link Stealing Attack

	Attack Taxonomy
	Attack Methodologies
	Summary

	Evaluation
	Experimental Setup
	Attack Performance

	Related Work
	Conclusion and Future Work
	Appendix

