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ABSTRACT 

Falls are the leading cause of disability in older adults with a 
third of adults over the age of 65 falling every year. 
Quantitative fall risk assessments using inertial measurement 
units and local dynamics stability (LDS) have shown that it 
is possible to identify at-risk persons. However, there are 
inconsistencies in the literature on how to calculate LDS and 
how much data is required for a reliable result. This study 
investigates the reliability and minimum required strides for 
6 algorithm-normalization method combinations when 
computing LDS using young healthy and community 
dwelling elderly individuals. Participants wore an 
accelerometer at the lower lumbar while they walked for 
three minutes up and down a long hallway. This study 
concluded that the Rosenstein et al. algorithm was 
successfully and reliably able to differentiate between both 
populations using only 50 strides. It was also found 
normalizing the gait time series data by either truncating the 
data using a fixed number of strides or using a fixed number 
of strides and normalizing the entire time series to a fixed 
number of data points performed better when using the 
Rosenstein et al. algorithm.  

1. INTRODUCTION 

Falls are among the most common cause of decreased 
mobility and independence in older adults and rank as one of 
the most serious public health problems in the U.S., with 
costs exceeding $50 billion in 2015 (Ambrose, Paul, & 
Hausdorff, 2013; Bergen, Stevens, & Burns, 2016; Burns, 
Stevens, & Lee, 2016; Weisenfluh, Morrison, Fan, & Sen, 
2012). Analogous to this reduction in independence is the 
inherent decline in gait stability that impairs balance and 
predisposes older adults to falls and fall-related injuries. 

Dynamic stability, defined as the ability to maintain 
equilibrium despite the presence of small disturbances or 
control errors, is a fundamental motor task that must be 
rapidly adapted in the face of a dynamically varying 
environment (Dingwell & Cusumano, 2000; Dingwell, 
Cusumano, Cavanagh, & Sternad, 2001; Wurdeman, 2016). 
Evidence suggests that older adults experience a gradual 
deterioration in these balance mechanisms and may require 
more task-dependent rehabilitative and training 
interventions. Quantitative assessment of gait has been 
shown to identify age-related decrements, fall risk and 
pathology (Bruijn, Meijer, Beek, & Van Dieën, 2013; Daniel 
Hamacher, Singh, Van Dieën, Heller, & Taylor, 2011; 
Toebes, Hoozemans, Furrer, Dekker, & Van Dieën, 2012). In 
particular, gait measures derived from trunk acceleration 
signals can characterize trunk movement dynamics that 
regulate gait-related oscillations. However, aging may induce 
subtle impairments in gait without obvious detectable 
unsteadiness; therefore, nonlinear measures which are able to 
detect the hidden, subtle characteristics of aging in 
detrimental effects on locomotor control are used. In 
particular, calculating local dynamic stability (LDS) or the 
Lyapunov Exponent (LyE) during continuous walking has 
become a popular approach for quantifying gait stability 
(Mehdizadeh, 2018).  

Modern motion capture laboratories collect precise data 
during walking and postural stability tasks; however, they are 
prohibitively expensive, immobile, and require well trained 
technicians to collect and process experimental results. 
Inertial measurement units (IMUs) or accelerometers have 
become widely used in assessing and monitoring gait and 
other daily living activities as an alternative to traditional 
motion capture. These sensors more flexible, mobile, and 
inexpensive. They also have the advantage of unlimited 
measurement volume and the opportunity of recording gait in 
various environments – e.g. clinical offices, community 
centers, or outdoor tracks – with ease (Tao, Liu, Zheng, & 
Feng, 2012). Accelerometers and LDS have been used 
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together as biomarkers for differentiating between healthy 
controls and various ailments, e.g. patient with dementia 
(IJmker & Lamoth, 2012), multiple sclerosis (Huisinga, 
Mancini, St. George, & Horak, 2013), and concussions (Fino, 
2016). However, not all of these studies are comparable. 
Some studies use different data collection equipment, 
algorithms, and/or normalization methods. And even when 
publications research similar paradigms, some studies find 
significant differences while others do not. This could be due 
to sample and effect size within particular studies, but the 
inconsistency across publications could also be due to the 
lack of a universal methodology for calculating the LyE 
during gait.  

To date, there has been several pivotal publications about the 
issues in calculating the LyE when using gait data and how 
various factors can impact the value of the LyE (Dingwell & 
Marin, 2006; Mehdizadeh, 2018; Raffalt, Kent, Wurdeman, 
& Stergiou, 2019; Stenum, Bruijn, & Jensen, 2014). In this 
study we will focus on the choice of algorithm and 
normalization methods used and examine their reliability and 
determine the minimum number of required strides for 
reliable computation in both young healthy and elderly 
adults. The most common algorithms for calculating LDS in 
gait are the Rosenstein et al. (R-algorithm) and Wolf et al. 
(W-algorithm) algorithms, refer to Figure 1 for a comparison 
flowchart.  

Both the R- and W-algorithms track the rate of exponential 
divergence of neighboring points on the attractor. Each 
method starts by reconstructing the phase space by using the 
method of delays (Broomhead & King, 1986; Takens, 1981). 
For an N-point time series 𝑥(𝑛) , the phase space can be 
reconstructed using the following equation, where 𝜏  is the 
time delay and 𝑑𝐸 is the embedding dimension. 

𝑦(𝑛) = [𝑥(𝑛), 𝑥(𝑛 + 𝜏), … , 𝑥(𝑛 + 𝑑𝐸 − 1)𝜏] (1) 
This creates a 𝑑𝐸  dimensional phase space as an 𝑀 × 𝑑𝐸 
matrix where 𝑀 = 𝑁 − (𝑑𝐸 − 1)𝜏. After creating the phase 
space these two algorithms diverge. For the R-algorithm, the 
nearest neighbor of every point on the reference trajectory is 
found. In this method, nearest neighbors are located by using 
the Euclidean norm and requiring that each point must be on 
a separate trajectory. The average divergence distance of all 
possible nearest neighbor pairs is tracked through time 
creating a mean divergence curve. The LyE is then calculated 
using a least-squares fit to the linear slope of the divergence 
curve, where ⟨   ⟩  denotes the average over all pairs of 
𝑗 (nearest neighbor pairs, 𝑗 = 1,2, … , 𝑀). 

𝑦(𝑖) =
1

∆𝑡
〈ln 𝑑𝑗(𝑖)〉 (2) 

The W-algorithm, after the phase space is reconstructed, uses 
the first point as a reference trajectory and follows a single 
nearest neighbor until the separation between the reference 
and neighbor is greater than a specific limit. The exponential 
growth in separation is then calculated and a new nearest 

neighbor is found. This procedure is repeated until the 
reference trajectory has gone through all of the data samples 
and LyE was estimated using: 

𝜆1 =
1

𝑡𝑀 − 𝑡0
∑ ln (

𝐿′(𝑡𝑘)

𝐿(𝑡𝑘−1
)

𝑀

𝑘=1

 (3) 

where 𝐿(𝑡𝑘−1)  and 𝐿′(𝑡𝑘)  are the distance between the 
vectors at the beginning and end of a replacement step, and 
M is the total number of replacements (Wolf, Swift, Swinney, 
& Vastano, 1985). Please note that this equation uses natural 
logarithm instead of the binary logarithm function that Wolf 
et al. originally presented. This was done to make the LyE 
more comparable between the two algorithms (Cignetti, 
Decker, & Stergiou, 2012). For more details on either the R- 
or W-algorithm calculation methods please refer to the 
following publications (Rosenstein, Collins, & De Luca, 
1993; Smith, 2019; Wolf et al., 1985).  

 
Figure 1. Flowchart for calculating the Lyapunov exponent 
summarizing both the Rosenstein (R-algorithms) and Wolf 

(W-algorithm) methods. 

We hypothesize that each algorithm will require significantly 
different number of strides for the calculation of LDS. 
Additionally, different time series normalization methods 
have also been shown to affect the LyE and that different 
normalization methods work better for different LyE 
algorithms (Raffalt et al., 2019; Stenum et al., 2014). 
Therefore, we will investigate three of the most common 
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normalization methods with both the R- and W-algorithm. 
We hypothesize that normalization methods will affect the 
reliability of the calculated LDS. These findings augment 
wearable sensors’ potential as an ambulatory fall risk 
identification tool in community-dwelling settings. 
Furthermore, they highlight the importance of gait features 
that rely less on step-detection methods, and more on time 
series analysis techniques in the community-dwelling elderly 
population.   

2. METHODS 

Seventeen young healthy adults participated in this study and 
eleven community dwelling older adult’s data from an 
ongoing fall risk assessment study was used. All subjects 
reported no cardiovascular issues, neurological diseases, nor 
lower extremity surgeries in the last 3 months. Additionally, 
the elderly participants were required to be able to perform a 
2-3-minute walk without the aid of a cane or walker and had 
no history of falls.  

Table 1 summarized each groups’ subject characteristics. All 
subjects gave written informed consent before participating 
in this study, which was approved by the Institutional Review 
Board of Arizona State University.  

Table 1. Subject characteristics 

 

Young healthy participants wore three tri-axial acceleration 
sensors (APDM, Mobility Lab, APDM, Inc., Portland, OR) 
with a sampling frequency of 128 Hz. The accelerometers 
were fitted with elastic bands and Velcro straps and placed at 
each ankle and the lower lumbar, around vertebrae L5. 
Elderly participants wore a single accelerometer (DynaPort, 
McRoberts, Den Haag, the Netherlands) at the lower lumbar 
attached to elastic bands with a sampling frequency of 100 
Hz. All participants were asked to walk for 3 minutes on a 
makeshift walking track at their preferred walking speed. 
This track was secluded so no outside factors could interfere 
with or interrupt the data collection. Ten seconds were 
removed from the beginning and end of the acceleration 
measurements to avoid non-stationary periods. The trials 
from young healthy participants were down sampled to 100 
Hz to match the elderly community dwelling data collection. 

2.1. Data Analysis 

The following three preprocessing normalization methods 
were applied before calculating the LyE:  

1. Raw Gait Cycle data (gc): The time series is truncated to 
keep a fixed number of strides regardless of the total 
number of data points. This maintains the original 
distance between points in the phase space but allows for 
individuals with a faster pace to have fewer data point 
available over all for the calculation. 

2. Gait Cycle Normalized (gcNorm): As in the first method 
the time series is segmented to a include a fixed number 
of strides. Then each stride is resampled to have a fixed 
number of data points, usually 100. Therefore, all strides 
in this method will contain the same number of data 
points regardless of an individual’s stride time.  

3. Data Point Normalized (dpNorm): The time series is first 
truncated to include a fixed number of strides. Then the 
data is resampled to a specific number of total samples 
for the time series. This allows for fluctuations in data 
length for individual strides.  

For method (3), the total number of data points in the series 
was allocated 100 samples for every stride used. A time delay 
of 10 samples was used for all directions and all 
preprocessing methods. An embedding dimension of 5 was 
used when the LyE is calculated using the Rosenstein et al. 
algorithm and a dimension of 7 was used for the Wolf et al. 
algorithm (Bruijn, van Dieën, Meijer, & Beek, 2009; 
Huisinga, Mancini, George, & Horak, 2013; Smith, 2019). 
The LyE was calculated for all 6 algorithm-normalization 
method combination since neither the Rosenstein et al. 
algorithm nor  the Wolf et al. algorithm have been proven to 
outperform the other and both widely used with gait data. 
(Mehdizadeh, 2018; Rosenstein et al., 1993; Wolf et al., 
1985)  The LyE was taken from 0 to 0.5 strides using the 
Rosenstein algorithm. Additionally, a time evolution of 7 was 
found to be appropriate for calculating the LyE with the W-
algorithm. All calculations were performed using custom 
MATLAB programs (version 2018b, Mathworks Inc., 
Natwick). 

2.2. Statistical Analysis 

To determine the minimum number of strides, we use the 
same procedure as Riva et al. (2014b) using interquartile 
range/median ratio (imr). Briefly the LyE was calculated 
using decreasing windows of strides, from 120 to 10 strides 
with a resolution of 1 stride. The imr is calculated starting 
from the largest window (which gives the smallest ratio) and 
proceeds to the smallest window. The minimum number of 
strides was calculated per index and per subject at an imr 
threshold of 10%. Then the largest number of strides required 
across all subjects was chosen.  Percent imr is an indication 
of the variation around the median. When variations of the 

  Young Adults Elderly Adults 

Gender (M/F) 11/7 2/9 
Age (years) 23.9 ± 3.5 79.4 ± 7.9 
Height (cm) 171.8 ± 11.4 169.7 ± 10.4 
Weight (kg) 74.1 ± 18.6 77.3 ± 16.5 
BMI 24.9 ± 4.4 26.9 ± 5.5 
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measure around the median value are small, imr percentage 
will be low. This is indicative of a steady state being reached.  

Additionally, statistical differences between population 
groups were compared to test the effectiveness of algorithm 
and normalization method combinations. The groups were 
compared based on the found sufficient number of strides 
when using imr. A one-way ANCOVA was used for each 
directional signal –anteroposterior (AP), vertical (VT), and 
mediolateral (ML) – with respect to both algorithms, while 
population and normalization methods were used as model 
effects. A post-hoc Tukey was then used to determine 
differences between each of the model effects. All statistical 
analyses were performed using JMP version 13 (SAS 
Institute Inc., Cary, NC) and a p-value of 0.05 or lower was 
considered significant.  

3. RESULTS 

Algorithm and preprocessing method choice affected the 
number of strides required to reach a steady state using the 
10% threshold. The minimum required strides for calculating 
the LyE are summarized in Table 2 by subject group. 

For Rosenstein et al. algorithm, generally 50 strides were 
sufficient for the young healthy adults to calculate the LyE 
with any method. The minimum number of strides for gc and 
dpNorm methods did not vary greatly when different 
acceleration directions were used. While the number of 
required strides for gcNorm method heavily depended on the 
acceleration direction. The elderly adults usually required 
less than 50 strides to calculate the LyE. Acceleration 
direction had more of an effect on the number of strides than 
any of the preprocessing methods.  The required number of 
strides increased from the AP to the VT and then to ML 
direction, respectively. 

The Wolf et al. algorithm required twice the number of strides 
compared to the Rosenstein algorithm. For the young healthy, 
gcNorm and dpNorm methods required approximately 110 
strides for all directions, while gc required 98 strides for VT 
and AP directions and 117 for the ML direction. The required 
number of strides for the elderly were less consistent than the 
young healthy and heavily depended on the normalization 
method.  

The reliability results are shown in Table 4. The maximum 
inter-subject imr was less than 20% for both young healthy 
and elderly adults when using the Rosenstein et al algorithm. 
The Wolf et al algorithm ranged from 29% to 51% for young 
healthy subjects and 20% to 43% for elderly adults. The 
median inter-subject value of the LyE is also provided as a 
reference for both young and community dwelling elderly 
adults. 

 
 

 Table 2. Number of required strides for calculating the LyE 
using different normalization methods (gc - gait cycles; 
gcNorm - gait cycles normalized; dpNorm - data point 

normalized) using both algorithms (R-Rosenstein; W-Wolf). 
Values used a 10% imr threshold for both young health 

(YH) and elderly adults (EA).  

 

Lastly, the two populations were compared when 50 and 75 
strides were used with the R-algorithm and when 110 strides 
were used with the W-algorithm, shown in Table 3. 
Significant differences between the two population groups 
were found using the AP signal when both data lengths were 
used with the gc and dpNorm normalization methods 
( 𝑝  = 0.001). The normalization methods also found 
significant differences in the VT signal when 75 strides were 
used in the calculation. No significant differences between 
young healthy and community dwelling elderly adults were 
found when using the Wolf algorithm and any of the 
normalization methods. 

Table 3. Significant differences between young health and 
elderly community dwelling adults. Having a p-value < 0.05 
was considered significant. In this table, NS represents “no 

significance” and having a p > 0.5. 

  
Norm. 

Methods VT AP ML 

R-alg. 
50 strides 

gc 0.0942 0.0001 NS 

gcNorm NS NS NS 

dpNorm 0.1025 0.0001 NS 

R-alg. 
75 strides 

gc 0.0344 0.0001 0.4890 
gcNorm NS NS NS 

dpNorm 0.0273 0.0001 0.4867 

W-alg. 
110 strides 

gc NS NS NS 

gcNorm NS NS NS 

dpNorm NS NS NS 

      Min. Number of Strides 
Group Alg. Dir. gc gcNorm dpNorm 

Young 
Healthy 

R 
VT 47 72 41 
AP 44 40 45 
ML 41 26 46 

W 
VT 96 109 99 
AP 98 112 108 
ML 117 113 113 

Elderly 
Adult 

R 
VT 41 43 36 
AP 31 36 24 
ML 60 46 55 

W 
VT 92 105 89 
AP 101 75 81 
ML 98 114 120 
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Table 4. Reliability of LyE calculated for young healthy (YH) and community dwelling elderly adults (EA). Reliability is 
based on the maximum inter-subject imr. The median values of inter-subjects’ medians have been included for reference 

values.  

 

4. DISCUSSION 

Gait stability is directly quantified through local dynamic 
stability, specifically, the LyE value. However, the 
implementation parameters are ill-defined and lack 
standardization procedures. Therefore, the aim of the present 
study was to investigate the reliability of the LyE and 
determine the minimum number of strides for its calculation 
using 6 algorithm-normalization method combinations. The 
Rosenstein et al. and the Wolf et al. algorithms were used 
along with three preprocessing methods: gc. gcNorm, and 
dpNorm. The R-algorithm required a significantly smaller 
number of steps with good reliability compared to the W-
algorithm which only achieved average to poor reliability. 
And only the R-algorithm was able to differentiate the young 
healthy and elderly community-dwelling adults.  

The minimum number of strides required for the R-algorithm 
were found to be much smaller than previously reported (F. 
Riva et al., 2014a); this may be due to differences in 
methodology. The present study calculated the LyE using a 
single step, while Riva et al. (2014a) calculated it from a 
stride. Even though our method requires less strides, it was 
deemed more reliable based on the maximum inter-subject 
imr values -- imr values rank reliability scores accordingly: 
excellent (imr < 10%), good (imr =10-20%), average (imr 
=20-30%), poor (imr =30-40%), and very poor (imr > 40%). 
The R-algorithm had good reliability in this study for both 
young healthy and community-dwelling older adults, while 
Riva et al. (2014b) reported only average reliability for its 
young healthy subjects. This is the first paper, to the authors’ 
knowledge, that has investigated the required minimum 
number of strides and reliability using imr with the W-
algorithm. The W-algorithm required between 100 and 110 

strides for all normalization methods and population groups 
which is almost double the number of strides required for the 
R-algorithm. Additionally, the W-algorithm had average to 
poor reliability across both populations with gc normalization 
method performing better for young healthy adults and 
dpNorm performing better for elderly adults. 

The results of the present study also show that the R-
algorithm was able to differentiate between both populations 
while the W-algorithm was unable. Significant differences 
between elderly and young healthy adults were found in the 
AP direction (𝑝 = 0.0001, shown in Table 4) when using the 
R-algorithm, which is consistent with the literature (Liu, 
Zhang, & Lockhart, 2012; Lockhart & Liu, 2008). But 
interestingly, no significant differences were found in the ML 
direction, which is more commonly reported as significant 
(Dennis Hamacher, Hamacher, Singh, Taylor, & Schega, 
2015; Terrier & Reynard, 2015). This could be due to 
different data lengths and normalization methods used in 
those publications or even differences between over-ground 
and treadmill walking studies. It is also important to note that 
not all studies find significant differences between these 
populations like Bizovska et al. (2018). They found no 
differences in their young and elderly populations in both 
over-ground and treadmill walking trials.  

Recent research has reported that raw gait (gc) data is ideal 
for the W-algorithm, i.e. just signal truncation, while both 
gcNorm and dpNorm normalization methods should be used 
for the R-algorithm (Raffalt et al., 2019). When the R-
algorithm is used, dpNorm and the gc method had the lowest 
number of required strides and had good measurement 
reliability, as interpreted from percent imr. Both young 
healthy and elderly community dwelling participants 

    Maximum inter-subject imr Median inter-subject value of LyE 

 Group Algorithm   Dir. gc gcNorm dpNorm gc gcNorm dpNorm 

Young 
Healthy 

Rosenstein 
VT 17% 19% 16% 1.04 1.00 1.09 
AP 16% 15% 15% 0.89 1.06 0.93 
ML 19% 16% 18% 1.06 0.88 1.10 

Wolf 
VT 36% 41% 35% 1.48 1.56 1.59 
AP 29% 51% 32% 2.04 2.08 2.20 
ML 35% 33% 39% 1.83 2.29 2.14 

Elderly 
Adults 

Rosenstein 
VT 19% 19% 19% 1.29 1.12 1.31 
AP 12% 19% 13% 1.13 1.05 1.18 
ML 20% 16% 19% 1.19 1.12 1.21 

Wolf 
VT 32% 32% 32% 1.70 1.49 1.78 
AP 27% 28% 20% 2.64 2.44 2.60 
ML 23% 43% 21% 1.94 1.77 2.21 
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required less than 60 strides to calculate the LyE. We 
recommend either the dpNorm or gc method of normalization 
over the gcNorm method for young healthy subject studies. 
The Wolf algorithm was more reliable for young healthy 
adults when raw gait (gc) was used than gcNorm or dpNorm 
methods. The gc method also required less strides for this 
group. For the community dwelling elderly adults, gc method 
was slightly less reliable compared to dpNorm method. 
Additionally, dpNorm required the least amount of data 
except for in the ML range. However, there isn’t a large 
enough difference between gc and dpNorm to definitively 
state one normalization method is more advantageous than 
the other when using the W-algorithm.  

The present study has a few key limitations. First, we only 
calculated the LyE starting from 120 gait cycles. This has 
been deemed a sufficient data length with limited gains in 
precision if more strides could have been included (Bruijn et 
al., 2009; Raffalt, Vallabhajosula, Renz, Mukherjee, & 
Stergiou, 2018; Reynard & Terrier, 2014; F. Riva et al., 2014; 
Terrier & Reynard, 2014). However, not all of these studies 
used accelerometers for data collection and there are a limited 
number of studies on the required number of strides for the 
W-algorithm. Secondly, there was a much larger proportion 
of females in the community dwelling elderly participants. 
This is largely due to participation in ongoing fall risk 
assessments that meet the criteria of this paper. In theory, the 
minimum number of strides is not gender based but this was 
out of scope to be tested in this paper. It should also be noted 
that the findings of this study were derived from a fairly small 
sample size, although similar studies have used as many or 
fewer subjects (Dennis Hamacher et al., 2015; Federico Riva, 
Grimpampi, Mazzà, & Stagni, 2014b) than the present study. 
And finally, two different sensor systems have been used in 
this study however all of the data was taken from the lumbar 
position and all data was down-sampled to 100Hz to ensure 
data length would be equal across both groups. Therefore, the 
use of two IMU systems should not have an effect on the 
results presented in this paper.  

5. CONCLUSION 

The present study investigated the reliability and minimum 
required number of strides to using to calculate LDS in young 
healthy and elderly community dwelling adults. As there is 
no universally accepted standard methodology for this 
calculation, 6 algorithm-normalization method combinations 
were used in order to help work towards creating a 
standardized process for accelerometers. We found that the 
Rosenstein et al. algorithm requires less strides for reliably 
calculating the LyE compared to the Wolf et al. algorithm. 
And the R-algorithm was able to differentiate between young 
healthy and elderly community-dwelling adults in the AP and 
VT direction using only 75 strides, while the W-algorithm 
was unable to differentiate these groups when using 110 
strides. Our results show that either truncating the gait signal 
to a fixed number of strides or normalizing the signal to a 

fixed number of strides with a fixed number of total data 
points will compute a more reliable LyE when using the R-
algorithm.   

NOMENCLATURE 

AP  anteroposterior 
dpNorm  data point normalization method 
gc  raw gait data with fixed number of strides 
gcNorm  gait cycle normalization method 
LyE  Lyapunov Exponent 
ML  mediolateral  
R-algorithm Rosenstein et al. algorithm 
VT  vertical 
W-algorithm Wolf et al. algorithm 
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