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ABSTRACT

Falls are the leading cause of disability in older adults with a
third of adults over the age of 65 falling every year.
Quantitative fall risk assessments using inertial measurement
units and local dynamics stability (LDS) have shown that it
is possible to identify at-risk persons. However, there are
inconsistencies in the literature on how to calculate LDS and
how much data is required for a reliable result. This study
investigates the reliability and minimum required strides for
6 algorithm-normalization method combinations when
computing LDS using young healthy and community
dwelling elderly individuals. Participants wore an
accelerometer at the lower lumbar while they walked for
three minutes up and down a long hallway. This study
concluded that the Rosenstein et al. algorithm was
successfully and reliably able to differentiate between both
populations using only 50 strides. It was also found
normalizing the gait time series data by either truncating the
data using a fixed number of strides or using a fixed number
of strides and normalizing the entire time series to a fixed
number of data points performed better when using the
Rosenstein et al. algorithm.

1. INTRODUCTION

Falls are among the most common cause of decreased
mobility and independence in older adults and rank as one of
the most serious public health problems in the U.S., with
costs exceeding $50 billion in 2015 (Ambrose, Paul, &
Hausdorff, 2013; Bergen, Stevens, & Burns, 2016; Burns,
Stevens, & Lee, 2016; Weisenfluh, Morrison, Fan, & Sen,
2012). Analogous to this reduction in independence is the
inherent decline in gait stability that impairs balance and
predisposes older adults to falls and fall-related injuries.

Victoria Smith Hussain et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://doi.org/10.36001/1JPHM.2021.v12i4.2917

Dynamic stability, defined as the ability to maintain
equilibrium despite the presence of small disturbances or
control errors, is a fundamental motor task that must be
rapidly adapted in the face of a dynamically varying
environment (Dingwell & Cusumano, 2000; Dingwell,
Cusumano, Cavanagh, & Sternad, 2001; Wurdeman, 2016).
Evidence suggests that older adults experience a gradual
deterioration in these balance mechanisms and may require
more  task-dependent  rehabilitative and  training
interventions. Quantitative assessment of gait has been
shown to identify age-related decrements, fall risk and
pathology (Bruijn, Meijer, Beek, & Van Dieén, 2013; Daniel
Hamacher, Singh, Van Dieén, Heller, & Taylor, 2011;
Toebes, Hoozemans, Furrer, Dekker, & Van Dieén, 2012). In
particular, gait measures derived from trunk acceleration
signals can characterize trunk movement dynamics that
regulate gait-related oscillations. However, aging may induce
subtle impairments in gait without obvious detectable
unsteadiness; therefore, nonlinear measures which are able to
detect the hidden, subtle characteristics of aging in
detrimental effects on locomotor control are used. In
particular, calculating local dynamic stability (LDS) or the
Lyapunov Exponent (LyE) during continuous walking has
become a popular approach for quantifying gait stability
(Mehdizadeh, 2018).

Modern motion capture laboratories collect precise data
during walking and postural stability tasks; however, they are
prohibitively expensive, immobile, and require well trained
technicians to collect and process experimental results.
Inertial measurement units (IMUs) or accelerometers have
become widely used in assessing and monitoring gait and
other daily living activities as an alternative to traditional
motion capture. These sensors more flexible, mobile, and
inexpensive. They also have the advantage of unlimited
measurement volume and the opportunity of recording gait in
various environments — e.g. clinical offices, community
centers, or outdoor tracks — with ease (Tao, Liu, Zheng, &
Feng, 2012). Accelerometers and LDS have been used
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together as biomarkers for differentiating between healthy
controls and various ailments, e.g. patient with dementia
(IUmker & Lamoth, 2012), multiple sclerosis (Huisinga,
Mangcini, St. George, & Horak, 2013), and concussions (Fino,
2016). However, not all of these studies are comparable.
Some studies use different data collection equipment,
algorithms, and/or normalization methods. And even when
publications research similar paradigms, some studies find
significant differences while others do not. This could be due
to sample and effect size within particular studies, but the
inconsistency across publications could also be due to the
lack of a universal methodology for calculating the LyE
during gait.

To date, there has been several pivotal publications about the
issues in calculating the LyE when using gait data and how
various factors can impact the value of the LyE (Dingwell &
Marin, 2006; Mehdizadeh, 2018; Raffalt, Kent, Wurdeman,
& Stergiou, 2019; Stenum, Bruijn, & Jensen, 2014). In this
study we will focus on the choice of algorithm and
normalization methods used and examine their reliability and
determine the minimum number of required strides for
reliable computation in both young healthy and elderly
adults. The most common algorithms for calculating LDS in
gait are the Rosenstein et al. (R-algorithm) and Wolf et al.
(W-algorithm) algorithms, refer to Figure 1 for a comparison
flowchart.

Both the R- and W-algorithms track the rate of exponential
divergence of neighboring points on the attractor. Each
method starts by reconstructing the phase space by using the
method of delays (Broomhead & King, 1986; Takens, 1981).
For an N-point time series x(n), the phase space can be
reconstructed using the following equation, where 7 is the
time delay and d is the embedding dimension.

y(n) = [x(n),x(n + 1),..., x(n + dg — 1)7] )
This creates a dy dimensional phase space as an M X dg
matrix where M = N — (dy — 1)t. After creating the phase
space these two algorithms diverge. For the R-algorithm, the
nearest neighbor of every point on the reference trajectory is
found. In this method, nearest neighbors are located by using
the Euclidean norm and requiring that each point must be on
a separate trajectory. The average divergence distance of all
possible nearest neighbor pairs is tracked through time
creating a mean divergence curve. The LyE is then calculated
using a least-squares fit to the linear slope of the divergence
curve, where ( ) denotes the average over all pairs of
Jj (nearest neighbor pairs, j = 1,2, ..., M).

y(@) =

The W-algorithm, after the phase space is reconstructed, uses
the first point as a reference trajectory and follows a single
nearest neighbor until the separation between the reference
and neighbor is greater than a specific limit. The exponential
growth in separation is then calculated and a new nearest

1
g (Ind; () )

neighbor is found. This procedure is repeated until the
reference trajectory has gone through all of the data samples
and LyE was estimated using:

L (tk)
- tozl ST ®)

where L(t,_,) and L'(t;) are the distance between the
vectors at the beginning and end of a replacement step, and
M is the total number of replacements (Wolf, Swift, Swinney,
& Vastano, 1985). Please note that this equation uses natural
logarithm instead of the binary logarithm function that Wolf
et al. originally presented. This was done to make the LyE
more comparable between the two algorithms (Cignetti,
Decker, & Stergiou, 2012). For more details on either the R-
or W-algorithm calculation methods please refer to the
following publications (Rosenstein, Collins, & De Luca,
1993; Smith, 2019; Wolf et al., 1985).

Rosenstein ef a/. Algorithm

b Estimate lag and mean period using the FFT J

Reconstruct attractor dynamics using method of
delays

Find nearest neighbors with temporal separation
constraint

Measure average separation of neighbors l
Use least squares to fit a line to the data J

(LKL

Wolf et al. Algorithm

Define time evolution }
Reconstruct attractor using method of delays W

Select reference trajectory

Find nearest neighbor on a different trajectory W

-

(L LLL LKL L

Calculate the exponential growth in sepatration ‘
after a single time evolution

b

X

-
.

Find new vector based on constraints l

Take average calculated expansion rates W

Figure 1. Flowchart for calculating the Lyapunov exponent
summarizing both the Rosenstein (R-algorithms) and Wolf
(W-algorithm) methods.

We hypothesize that each algorithm will require significantly
different number of strides for the calculation of LDS.
Additionally, different time series normalization methods
have also been shown to affect the LyE and that different
normalization methods work better for different LyE
algorithms (Raffalt et al., 2019; Stenum et al., 2014).
Therefore, we will investigate three of the most common
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normalization methods with both the R- and W-algorithm.
We hypothesize that normalization methods will affect the
reliability of the calculated LDS. These findings augment
wearable sensors’ potential as an ambulatory fall risk
identification tool in community-dwelling settings.
Furthermore, they highlight the importance of gait features
that rely less on step-detection methods, and more on time
series analysis techniques in the community-dwelling elderly
population.

2. METHODS

Seventeen young healthy adults participated in this study and
eleven community dwelling older adult’s data from an
ongoing fall risk assessment study was used. All subjects
reported no cardiovascular issues, neurological diseases, nor
lower extremity surgeries in the last 3 months. Additionally,
the elderly participants were required to be able to perform a
2-3-minute walk without the aid of a cane or walker and had
no history of falls.

Table 1 summarized each groups’ subject characteristics. All
subjects gave written informed consent before participating
in this study, which was approved by the Institutional Review
Board of Arizona State University.

Table 1. Subject characteristics

Young Adults Elderly Adults
Gender M/F) 11/7 2/9
Age (years) 23.9+£3.5 79.4+7.9
Height (cm) 171.8+11.4 169.7 +10.4
Weight (kg) 74.1+18.6 77.3+£16.5
BMI 249+44 26.9+5.5

Young healthy participants wore three tri-axial acceleration
sensors (APDM, Mobility Lab, APDM, Inc., Portland, OR)
with a sampling frequency of 128 Hz. The accelerometers
were fitted with elastic bands and Velcro straps and placed at
each ankle and the lower lumbar, around vertebrae LS5.
Elderly participants wore a single accelerometer (DynaPort,
McRoberts, Den Haag, the Netherlands) at the lower lumbar
attached to elastic bands with a sampling frequency of 100
Hz. All participants were asked to walk for 3 minutes on a
makeshift walking track at their preferred walking speed.
This track was secluded so no outside factors could interfere
with or interrupt the data collection. Ten seconds were
removed from the beginning and end of the acceleration
measurements to avoid non-stationary periods. The trials
from young healthy participants were down sampled to 100
Hz to match the elderly community dwelling data collection.

2.1. Data Analysis

The following three preprocessing normalization methods
were applied before calculating the LyE:

1. Raw Gait Cycle data (gc): The time series is truncated to
keep a fixed number of strides regardless of the total
number of data points. This maintains the original
distance between points in the phase space but allows for
individuals with a faster pace to have fewer data point
available over all for the calculation.

2. QGait Cycle Normalized (gcNorm): As in the first method
the time series is segmented to a include a fixed number
of strides. Then each stride is resampled to have a fixed
number of data points, usually 100. Therefore, all strides
in this method will contain the same number of data
points regardless of an individual’s stride time.

3. Data Point Normalized (dpNorm): The time series is first
truncated to include a fixed number of strides. Then the
data is resampled to a specific number of total samples
for the time series. This allows for fluctuations in data
length for individual strides.

For method (3), the total number of data points in the series
was allocated 100 samples for every stride used. A time delay
of 10 samples was used for all directions and all
preprocessing methods. An embedding dimension of 5 was
used when the LyE is calculated using the Rosenstein et al.
algorithm and a dimension of 7 was used for the Wolf et al.
algorithm (Bruijn, van Dieén, Meijer, & Beek, 2009;
Huisinga, Mancini, George, & Horak, 2013; Smith, 2019).
The LyE was calculated for all 6 algorithm-normalization
method combination since neither the Rosenstein et al.
algorithm nor the Wolf et al. algorithm have been proven to
outperform the other and both widely used with gait data.
(Mehdizadeh, 2018; Rosenstein et al., 1993; Wolf et al.,
1985) The LyE was taken from 0 to 0.5 strides using the
Rosenstein algorithm. Additionally, a time evolution of 7 was
found to be appropriate for calculating the LyE with the W-
algorithm. All calculations were performed using custom
MATLAB programs (version 2018b, Mathworks Inc.,
Natwick).

2.2. Statistical Analysis

To determine the minimum number of strides, we use the
same procedure as Riva et al. (2014b) using interquartile
range/median ratio (imr). Briefly the LyE was calculated
using decreasing windows of strides, from 120 to 10 strides
with a resolution of 1 stride. The imr is calculated starting
from the largest window (which gives the smallest ratio) and
proceeds to the smallest window. The minimum number of
strides was calculated per index and per subject at an imr
threshold of 10%. Then the largest number of strides required
across all subjects was chosen. Percent imr is an indication
of the variation around the median. When variations of the
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measure around the median value are small, imr percentage
will be low. This is indicative of a steady state being reached.

Additionally, statistical differences between population
groups were compared to test the effectiveness of algorithm
and normalization method combinations. The groups were
compared based on the found sufficient number of strides
when using imr. A one-way ANCOVA was used for each
directional signal —anteroposterior (AP), vertical (VT), and
mediolateral (ML) — with respect to both algorithms, while
population and normalization methods were used as model
effects. A post-hoc Tukey was then used to determine
differences between each of the model effects. All statistical
analyses were performed using JMP version 13 (SAS
Institute Inc., Cary, NC) and a p-value of 0.05 or lower was
considered significant.

3. RESULTS

Algorithm and preprocessing method choice affected the
number of strides required to reach a steady state using the
10% threshold. The minimum required strides for calculating
the LyE are summarized in Table 2 by subject group.

For Rosenstein et al. algorithm, generally 50 strides were
sufficient for the young healthy adults to calculate the LyE
with any method. The minimum number of strides for gc and
dpNorm methods did not vary greatly when different
acceleration directions were used. While the number of
required strides for gcNorm method heavily depended on the
acceleration direction. The elderly adults usually required
less than 50 strides to calculate the LyE. Acceleration
direction had more of an effect on the number of strides than
any of the preprocessing methods. The required number of
strides increased from the AP to the VT and then to ML
direction, respectively.

The Wolfet al. algorithm required twice the number of strides
compared to the Rosenstein algorithm. For the young healthy,
gcNorm and dpNorm methods required approximately 110
strides for all directions, while gc required 98 strides for VT
and AP directions and 117 for the ML direction. The required
number of strides for the elderly were less consistent than the
young healthy and heavily depended on the normalization
method.

The reliability results are shown in Table 4. The maximum
inter-subject imr was less than 20% for both young healthy
and elderly adults when using the Rosenstein et al algorithm.
The Wolf et al algorithm ranged from 29% to 51% for young
healthy subjects and 20% to 43% for elderly adults. The
median inter-subject value of the LyE is also provided as a
reference for both young and community dwelling elderly
adults.

Table 2. Number of required strides for calculating the LyE
using different normalization methods (gc - gait cycles;
gcNorm - gait cycles normalized; dpNorm - data point
normalized) using both algorithms (R-Rosenstein; W-Wolf).
Values used a 10% imr threshold for both young health
(YH) and elderly adults (EA).

Min. Number of Strides

Group  Alg. Dir. gc gcNorm  dpNorm
VT 47 72 41
R AP 44 40 45
Young ML 41 26 46
Healthy VT 96 109 99
W AP 98 112 108
ML 117 113 113
VT 41 43 36
R AP 31 36 24
Elderly ML 60 46 55
Adult VT 92 105 89
W AP 101 75 81
ML 98 114 120

Lastly, the two populations were compared when 50 and 75
strides were used with the R-algorithm and when 110 strides
were used with the W-algorithm, shown in Table 3.
Significant differences between the two population groups
were found using the AP signal when both data lengths were
used with the gc and dpNorm normalization methods
(p =0.001). The normalization methods also found
significant differences in the VT signal when 75 strides were
used in the calculation. No significant differences between
young healthy and community dwelling elderly adults were
found when using the Wolf algorithm and any of the
normalization methods.

Table 3. Significant differences between young health and
elderly community dwelling adults. Having a p-value < 0.05
was considered significant. In this table, NS represents “no
significance” and having a p > 0.5.

Norm.
Methods VT AP ML
gc 0.0942 0.0001 NS
5012_:2% es  &cNorm NS NS NS
dpNorm  0.1025 0.0001 NS
gc 0.0344 0.0001 0.4890
B S S
dpNorm  0.0273 0.0001 0.4867
gc NS NS NS
llz)Vs-:l:ig(ies geNorm NS NS NS
dpNorm NS NS NS
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Table 4. Reliability of LyE calculated for young healthy (YH) and community dwelling elderly adults (EA). Reliability is
based on the maximum inter-subject imr. The median values of inter-subjects’ medians have been included for reference
values.

Maximum inter-subject imr

Median inter-subject value of LyE

Group  Algorithm Dir. gc gcNorm dpNorm  gc gcNorm dpNorm
VT 17% 19% 16% 1.04 1.00 1.09
Rosenstein AP 16% 15% 15% 0.89 1.06 0.93
Young ML 19% 16% 18% 1.06 0.88 1.10
Healthy VT 36% 41% 35% 1.48 1.56 1.59
Wolf AP 29% 51% 32% 2.04 2.08 2.20
ML 35% 33% 39% 1.83 2.29 2.14
VT 19% 19% 19% 1.29 1.12 1.31
Rosenstein AP 12% 19% 13% 1.13 1.05 1.18
Elderly ML 20% 16% 19% 1.19 1.12 1.21
Adults VT 32% 32% 32% 1.70 1.49 1.78
Wolf AP 27% 28% 20% 2.64 2.44 2.60
ML 23% 43% 21% 1.94 1.77 2.21

4. DISCUSSION

Gait stability is directly quantified through local dynamic
stability, specifically, the LyE value. However, the
implementation parameters are ill-defined and lack
standardization procedures. Therefore, the aim of the present
study was to investigate the reliability of the LyE and
determine the minimum number of strides for its calculation
using 6 algorithm-normalization method combinations. The
Rosenstein ef al. and the Wolf ef al. algorithms were used
along with three preprocessing methods: gc. gcNorm, and
dpNorm. The R-algorithm required a significantly smaller
number of steps with good reliability compared to the W-
algorithm which only achieved average to poor reliability.
And only the R-algorithm was able to differentiate the young
healthy and elderly community-dwelling adults.

The minimum number of strides required for the R-algorithm
were found to be much smaller than previously reported (F.
Riva et al, 2014a); this may be due to differences in
methodology. The present study calculated the LyE using a
single step, while Riva et al. (2014a) calculated it from a
stride. Even though our method requires less strides, it was
deemed more reliable based on the maximum inter-subject
imr values -- imr values rank reliability scores accordingly:
excellent (imr < 10%), good (imr =10-20%), average (imr
=20-30%), poor (imr =30-40%), and very poor (imr > 40%).
The R-algorithm had good reliability in this study for both
young healthy and community-dwelling older adults, while
Riva et al. (2014b) reported only average reliability for its
young healthy subjects. This is the first paper, to the authors’
knowledge, that has investigated the required minimum
number of strides and reliability using imr with the W-
algorithm. The W-algorithm required between 100 and 110

strides for all normalization methods and population groups
which is almost double the number of strides required for the
R-algorithm. Additionally, the W-algorithm had average to
poor reliability across both populations with gc normalization
method performing better for young healthy adults and
dpNorm performing better for elderly adults.

The results of the present study also show that the R-
algorithm was able to differentiate between both populations
while the W-algorithm was unable. Significant differences
between elderly and young healthy adults were found in the
AP direction (p = 0.0001, shown in Table 4) when using the
R-algorithm, which is consistent with the literature (Liu,
Zhang, & Lockhart, 2012; Lockhart & Liu, 2008). But
interestingly, no significant differences were found in the ML
direction, which is more commonly reported as significant
(Dennis Hamacher, Hamacher, Singh, Taylor, & Schega,
2015; Terrier & Reynard, 2015). This could be due to
different data lengths and normalization methods used in
those publications or even differences between over-ground
and treadmill walking studies. It is also important to note that
not all studies find significant differences between these
populations like Bizovska et al. (2018). They found no
differences in their young and elderly populations in both
over-ground and treadmill walking trials.

Recent research has reported that raw gait (gc) data is ideal
for the W-algorithm, i.e. just signal truncation, while both
gcNorm and dpNorm normalization methods should be used
for the R-algorithm (Raffalt et al., 2019). When the R-
algorithm is used, dpNorm and the gc method had the lowest
number of required strides and had good measurement
reliability, as interpreted from percent imr. Both young
healthy and elderly community dwelling participants
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required less than 60 strides to calculate the LyE. We
recommend either the dpNorm or gc method of normalization
over the gcNorm method for young healthy subject studies.
The Wolf algorithm was more reliable for young healthy
adults when raw gait (gc) was used than gcNorm or dpNorm
methods. The gc method also required less strides for this
group. For the community dwelling elderly adults, gc method
was slightly less reliable compared to dpNorm method.
Additionally, dpNorm required the least amount of data
except for in the ML range. However, there isn’t a large
enough difference between gc and dpNorm to definitively
state one normalization method is more advantageous than
the other when using the W-algorithm.

The present study has a few key limitations. First, we only
calculated the LyE starting from 120 gait cycles. This has
been deemed a sufficient data length with limited gains in
precision if more strides could have been included (Bruijn et
al., 2009; Raffalt, Vallabhajosula, Renz, Mukherjee, &
Stergiou, 2018; Reynard & Terrier, 2014; F. Rivaetal., 2014;
Terrier & Reynard, 2014). However, not all of these studies
used accelerometers for data collection and there are a limited
number of studies on the required number of strides for the
W-algorithm. Secondly, there was a much larger proportion
of females in the community dwelling elderly participants.
This is largely due to participation in ongoing fall risk
assessments that meet the criteria of this paper. In theory, the
minimum number of strides is not gender based but this was
out of scope to be tested in this paper. It should also be noted
that the findings of this study were derived from a fairly small
sample size, although similar studies have used as many or
fewer subjects (Dennis Hamacher et al., 2015; Federico Riva,
Grimpampi, Mazza, & Stagni, 2014b) than the present study.
And finally, two different sensor systems have been used in
this study however all of the data was taken from the lumbar
position and all data was down-sampled to 100Hz to ensure
data length would be equal across both groups. Therefore, the
use of two IMU systems should not have an effect on the
results presented in this paper.

5. CONCLUSION

The present study investigated the reliability and minimum
required number of strides to using to calculate LDS in young
healthy and elderly community dwelling adults. As there is
no universally accepted standard methodology for this
calculation, 6 algorithm-normalization method combinations
were used in order to help work towards creating a
standardized process for accelerometers. We found that the
Rosenstein et al. algorithm requires less strides for reliably
calculating the LyE compared to the Wolf et al. algorithm.
And the R-algorithm was able to differentiate between young
healthy and elderly community-dwelling adults in the AP and
VT direction using only 75 strides, while the W-algorithm
was unable to differentiate these groups when using 110
strides. Our results show that either truncating the gait signal
to a fixed number of strides or normalizing the signal to a

fixed number of strides with a fixed number of total data
points will compute a more reliable LyE when using the R-
algorithm.

NOMENCLATURE

AP anteroposterior

dpNorm data point normalization method

gc raw gait data with fixed number of strides
gcNorm gait cycle normalization method

LyE Lyapunov Exponent

ML mediolateral

R-algorithm Rosenstein et al. algorithm

T vertical

W-algorithm Wolf et al. algorithm
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