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The rapidly increasing congestion in the low Earth environment makes the mod-
eling of uncertainty in atmospheric drag force a critical task, affecting space situ-
ational awareness (SSA) activities like the probability of collision estimation. A
key element in atmospheric drag modeling is the assessment of uncertainty in the
atmospheric drag coefficient estimate. While atmospheric drag coefficients for
space objects with known characteristics can be computed numerically, they suf-
fer from large computational costs for practical applications. In this work, we use
cost-effective data-driven stochastic methods for modeling the drag coefficients of
objects in the low Earth orbit (LEO) region. The training data is generated us-
ing the numerical Test Particle Monte Carlo (TPMC) method. TPMC is simulated
with Cercignani—Lampis—Lord (CLL) gas-surface interaction (GSI) model. Mehta
et al. [1] use a Gaussian process regression (GPR) model to predict satellite drag
coefficient, but the authors did not estimate the predictive uncertainty. The first
part of this research extends the work by Mehta et al. [1] by fitting a GPR model
to the training data and performing predictive uncertainty estimation. The results
of the Gaussian fit are then compared against a deep neural network (DNN) model
aided by the Monte Carlo dropout approach. To the best of our knowledge, this is
the first study to use the aforementioned stochastic deep learning algorithm to per-
form predictive uncertainty estimation of the estimated satellite drag coefficient.
Apart from the accuracy of the models, we also undertake the task of calibrat-
ing the models. Simulations are carried out for a spherical satellite followed by
the Champ satellite. Finally, quantification of the effect of drag coefficient uncer-
tainty on orbit prediction is carried out for different solar activity and geomagnetic
activity levels.

INTRODUCTION

In the last few decades, there has been a dramatic proliferation in the population of objects in
the LEO region partly propelled by ambitious programs from private space companies and easier
access to space due to an increase in the number of launch providers (or decrease in launch cost
[2]). From European Space Agency’s Annual Space Environment Report 2020, there are currently
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around 15,000 tracked objects in the LEO region; the U.S. company SpaceX’s Starlink constella-
tion alone will roughly double this population [3]. This unabated growth increases the collision
risk among space objects, which demands better modeling and quantification of the orbital uncer-
tainties. Uncertainty in the modeling of conservative perturbation forces is typically low. The orbit
prediction errors for typical low area-to-mass ratio objects in the LEO region mainly emanate from
the uncertainty in the non-conservative atmospheric drag force [1]. Difficulty in estimating the drag
force arises from inadequate knowledge of the atmospheric density and the satellite drag coefficient.
Effects of the uncertainties in the atmospheric density on orbital evolution have been investigated by
a number of authors, including Bussy-Virat et al. [4], Gondelach and Linares [5], Schiemenz et al.
[6], Sagnieres and Sharf [7], Emmert et al. [8]. This work will focus on modeling the uncertainties
in the satellite drag coefficient and its impact on the prediction of orbit.

Accuracy and computational cost are often the main factors that determine the method one uses
for the computation of satellite drag coefficient. For high-accuracy drag coefficient modeling, espe-
cially for complex geometrical shapes, computationally expensive numerical methods such as Panel
Method, Ray-tracing Panel Method (RTP), Test Particle Monte Carlo (TPMC) method, and Direct
Simulation Monte Carlo (DSMC) method are typically used [9]. Besides numerical techniques,
analytical methods such as Schamberg’s derivation and Schaaf and Chambre derivation are also
commonly used for computing drag coefficients of simple convex geometrical shapes [9]. Another
prevalent practice in literature, although inaccurate for geometries with a high aspect ratio, is to
assume a constant value of 2.2 for the satellite drag coefficient [1, 9]. An alternative to the already
mentioned methods is the machine learning techniques, which are computationally less expensive
than numerical methods and applicable to complex geometrical shapes. Machine learning also al-
lows for the estimation of uncertainty in the satellite drag coefficient computation and is the method
of choice for this research work.

Machine learning techniques are increasingly used in space weather predictive modeling [1, 10,
11, 12] because of their fast evaluations of the surrogate models and the ability to make non-linear
predictions. This paper is particularly interested in stochastic machine learning techniques. Mehta
et al. [1] demonstrate the excellent performance of Gaussian processes in predicting satellite drag
coefficients (root mean squared percentage errors < 0.3%, 0.9%, 0.6%, 1.0% for sphere, GRACE
satellite, Hubble Space Telescope, International Space Station, respectively) but the authors do not
perform uncertainty quantification. As an extension to the work by Mehta et al. [1], a GPR model
will be first designed for predictive uncertainty estimation. The GPR model will then be used as a
benchmark against stochastic deep learning. In the stochastic deep learning category, this work will
use a feed-forward deep neural network with the Monte Carlo dropout approach, which is a popular
regularization technique that involves dropping out units in a neural network. Gal and Ghahramani
[13] prove that the application of Monte Carlo dropout in a neural network can be construed as a
Bayesian approximation for a Gaussian process.

In the current work, the drag coefficient training data for the machine learning algorithms will
be created using the numerical TPMC method [14] using the CLL [15, 16] GSI models. In the
TPMC method, the test particles, which represent actual molecules, are produced serially rather
than simultaneously. The molecules do not collide with each other and, the method is well-suited
for free-molecular flow. An advantage of the TPMC method is its ability to model flows with
complex boundaries. The CLL model, a kernel-based rendition of the GSI, successfully simulates
the quasi-specular reflection seen in molecular beam experiments [15]. The CLL GSI model allows
for the handling of tangential and normal components of velocity independently, using different



scattering kernels for each direction. The two key parameters defining the CLL scattering kernels are
the normal energy accommodation coefficient (a,) and the tangential momentum accommodation
coefficient (o;).

The remainder of this paper is organized as follows: section 2 provides details about the training
data for the regression models. Section 3 discusses the stochastic machine learning models used
for prediction in this work. Model calibration is discussed in section 4. Section 5 investigates the
impact of drag coefficient uncertainty on orbit. Conclusions are drawn in the last section.

INPUT DATA FOR THE REGRESSION MODELS

Since it is difficult to obtain extensive experimental drag coefficient data for training predictive
models, we use numerical simulations to generate the input training data. Drag coefficient val-
ues are computed for the primary LEO atmospheric constituents - atomic hydrogen (H ), helium
(He), atomic nitrogen (/V), molecular nitrogen (/V2), atomic oxygen (O), and molecular oxygen
(O2) using the numerical TPMC method. During the training phase, the predictive models learn the
relationship between independent variables and the drag coefficient. For the TPMC method with
CLL GSI model, seven independent variables determine the value of the dependent drag coeffi-
cient - (i) relative velocity of the satellite, vy, (ii) satellite surface temperature, T, (iii) atmospheric
translational temperature, T, (iv) normal energy accommodation coefficient, o, (v) tangential mo-
mentum accommodation coefficient, o; (vi) satellite yaw, £ (vii) satellite pitch, . Since only a
limited number of numerical simulations can be carried out due to computational constraints, in-
put configurations for the training are carefully selected via the Latin Hypercube sampling (LHS)
method [17].

In this study, the numerical TPMC simulations are carried out for a sphere and the Champ satel-
lite. For both the objects, 1000 LHS design points are selected for each of the species H, He, N,
N3, O O3. The upper and lower bounds defining the LHS design points are given in Table 1.

Table 1. Upper and Lower Bounds Defining the LHS Design Points

Independent Variables | Lower Bound | Upper Bound
Voo 7250.0 m/s 8000.0 m/s

Tw 100.0 K 2000.0 K

Too 200.0 K 2000.0 K

Qi 0.0 1.0

o 0.0 1.0

B —10° 10°

® —-10° 10°

PROBABILISTIC MODELS FOR PREDICTION

As our primary goal is to provide uncertainty estimates, we use Gaussian process regression and
a feed-forward neural network with the Monte Carlo dropout approach to predict drag coefficients

fOI'H, He, N, NQ, O, 02.

Gaussian Process Regression Model

Gaussian process regression is a Bayes’ theory based approach to supervised machine learning.
Unlike traditional regression approaches that fit a single function through the observed training



data, GPR models the probability distribution over the functional space conditional on the observed
data. In GPR, a Gaussian process (GP) prior is first defined over the functional space x € RP: —
f(x) € RP>. GP is a stochastic process such that for any set of inputs {Xy, X2, ...., Xn }, the random
variables {f(x1),f(x2),....,f(xy)} are jointly Gaussian. GP prior is defined by a mean function
(assumed O in this research work) and a covariance matrix:

p(F|X) = N(F|0,K) + N (e|0, nfT) (1)

where F = [f(x1),f(x2), ..., f(xn)]?, X = [x1,X2,....,Xn]T, and N represents the normal dis-
tribution. The variable e represents the training data noise with noise-level n;. The elements of the
covariance matrix K are defined by the “kernel” functions. This work makes use of the Matern
kernel, which is given as:

sz = K:(Xiaxj) = F(V)12V_1 (\/lziyd(xivxj)> K, <\/l27yd(xiaxj)> (2)

where I'(-) represents the gamma function, d(-, -) represents the Euclidean distance, and K, (-) is a
modified Bessel function [18]. The parameter v controls the smoothness of the learned function. In
this work, we use v = 2.5, a common choice for functions that are at least twice differentiable. [ is
a positive length-scale parameter with the same dimension as that of the input x.

The posterior predictive distribution is generated by conditioning on the prior and the observa-
tions using Bayes’ theorem. For the observation dataset {X,, F, }, the posterior predictive distribu-
tion corresponding to test inputs X, is an updated Gaussian that can be derived (see [19]) as:

p(F*]X*, Xo, FO) = N(F*W*» 2*) 3)
1 = K (K, +nf1)"'F, (4)
¥, =K., — K[ (K, +2/T) 'K, (5)

WhCI'C, K* — K(XO, X*), KO - K(Xo, X‘O)’ and K** - K(X*, X*).

The hyperparameters /, n; appearing in Egs. (1), (2) are obtained by maximizing the log marginal
likelihood of the training data.

For implementing the GPR, we use the “GaussianProcessRegressor” module from the Python
scikit-learn library [20]. The GPR models are trained on 1000 LHS samples and their correspond-
ing drag coefficients calculated using TPMC. After that, the trained models are put to the test on a
new set of 1000 data. The comparison between GPR predictions and test data for a sphere is shown
in Fig. 1. In each plot, the x-coordinates of the red markers correspond to TPMC drag coefficients,
and the y-coordinates of the red markers correspond to mean drag coefficients predicted by GPR.
The y-coordinates of the green markers correspond to the 3o values predicted by the GPR. The
blue line corresponds to the ideal case of perfect calibration. The root mean squared error (RMSE)
between the predicted and observed values for H, He, N, Ny, O, O3 are 0.005397, 0.003799,
0.003136, 0.003207, 0.003214, 0.002975, respectively. Similarly, Fig. 2 shows comparison of GPR
predictions and test data for Champ satellite. The RMSE between the predicted and observed val-
ues for Champ for H, He, N, Na, O, O5 are 0.033636, 0.019427, 0.013985, 0.013991, 0.014714,



0.013326, respectively. When compared to the sphere, the RMSE values are higher for Champ be-
cause Champ has a more complex geometry and, it would require a higher number of LHS training
samples for Champ to achieve the same accuracy.
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Figure 1. Comparison of GPR and TPMC Drag Coefficients for Sphere Test Dataset

3.00



Cq4 for Champ (CLL GSI model) using Matern kernel; species: H Cq4 for Champ (CLL GSI model) using Matern kernel; species: He

9 }0.45
0 ¢ .
% 0.18
s 0.40 5
0.16
74 0.35
44 0.14
L6 I 0.30 o .
s g s 012 8
= o252 = 2
051 g L g
5 53
0 5 @ Fo10y
& 0.20 S
44
0.08
5] 0.15 2
0.06
5] [0.10
0.04
1
1] 0.05
1 2 3 4 5 6 7 8 9 1 2 3 4 5
Observations Observations
(a) Atomic hydrogen, H (b) Helium, He
Cg4 for Champ (CLL GSI model) using Matern kernel; species: N Cq4 for Champ (CLL GSI model) using Matern kernel; species: N>
4.0
0.12 3.0 0.12
3.5
3.04 F0.10 254 0.10
2 @ ) @
525 0.08 2 <] 0.08 g
£ 3 B2od s
i 5 2 2
R Tos Loos”
0.06
1.5 4
1.5 1
0.04
0.04
1.0 1.0
| 0.02
r r y y T r +- 0.02 + r T + T
1.0 1.5 2.0 25 3.0 35 4.0 1.0 15 2.0 25 3.0
Observations Observations
(c) Atomic Nitrogen, N (d) Nitrogen, N>
OCd for Champ (CLL GSI model) using Matern kernel; species: O Cq4 for Champ (CLL GSI model) using Matern kernel; species: O,
: 0.14
3.0 0.10
3.5
0.12 0.09
2.5
3.0 0.08
0.10
2 g 2 0.07 §
525 o8 S S0 E
5 t T B T
g s 0.06
& 20 “ a “
[ 0.06 1.5 0.05
=t 0.04
0.04
1.0
10 0.03
0.02 002
1.0 15 2.0 25 3.0 3.5 4.0 1.0 1.5 2.0 25 3.0
Observations Observations
(e) Atomic Oxygen, O (f) Oxygen, O3

Figure 2. Comparison of GPR and TPMC Drag Coefficients for Champ Test Dataset

Deep Neural Network Regression With Monte Carlo Dropout

Feed-forward deep neural network, an artificial neural network with more than one layer of hid-
den units between its input and output layers [21], has found use across a wide range of predictive
applications in recent years. DNN consists of a large number of parameters (“weights” and “biases”)
that control the function mapping from one layer to the next. One problem in machine learning algo-



rithms with many parameters and relatively small training datasets is the overfitting of the training
data. This problem is commonly overcome by using L' and L? regularization techniques [22],
which add an additional term to the cost function that penalizes large weights. Another simple and
yet powerful regularization technique introduced by Srivastava et al. [23] in 2014 is the dropout. In
dropout, each node is associated with an independent Bernoulli distribution (probability p for value
1). During each pass of a set of inputs through the network during training, samples are drawn from
each Bernoulli distribution. If a “0” is sampled, the associated node is dropped along with all its
incoming and outgoing connections. The output of each node is then scaled by a factor of (1/p) to
maintain the expected value.

Usually, dropout is kept on only during the training phase and disabled during the testing phase,
resulting in a deterministic output. However, when dropout is enabled during the testing phase, mul-
tiple passes of the same input can produce different predictions depending upon the set of neurons
dropped, as illustrated in Fig. 3. A large number of passes for any input will produce a range of out-
puts, from which one can compute the mean and variance. This method of inferring the uncertainty
distribution is known as Monte Carlo dropout.

T I

(a) Run 1: us dropped (b) Run 2: u3 dropped (c) Run 3: u; dropped

Figure 3. Same Input Producing Different Outputs With Dropout Enabled During Testing Phase

To implement Monte Carlo dropout in this research, we employ Keras’ “Dropout” layer feature,
where Keras is a Python-based deep learning API that runs on top of open-source machine learning
platform Tensorflow [24].

Tuning of Deep Neural Network Hyper-Parameters A DNN can learn the values of its parame-
ters (weights and biases) directly from the training process. Certain high-level parameters, on the
other hand, cannot be learned from the training process. These high-level parameters are known as
hyper-parameters [25]. In this work, we consider tuning of the following hyper-parameters: num-
ber of hidden layers, number of neurons in each hidden layer, activation functions, dropout rates,
network optimizer, batch size. Because of knowledge limitations, a heuristic or manual approach to
picking these hyper-parameters is not always feasible, and it is difficult to ensure that the chosen de-
sign is optimal or sub-optimal. For the current work, we conduct hyper-parameter tuning using the
KerasTuner library [26]. KerasTuner has three different optimizers for finding the optimal hyper-
parameters: random search, Bayesian optimization, and hyperband. We use Bayesian optimization
because of its ability to quickly reach a solution that is close to optimal.

MODEL CALIBRATION

Calibration is the requirement in stochastic modeling that the predicted probabilities give an ap-
proximation of the probability of true events [27]. A well-calibrated model (assuming Gaussian
distribution), for example, should have around 68 % true observations within one standard devia-



tion, 95% true observations within two standard deviations, and 99.7 % true observations within
three standard deviations. Uncalibrated models tend to be over-confident or under-confident in their
predictions, and one should not trust their inferences. A convenient way to check how well a model
is calibrated is by looking at its “consistency curve”.

Let the expected confidence interval levels be: C' = [5%, 10%, 15%, .....,95%]. The corre-
sponding coefficients defining the uncertainty bounds are: ([j] = +2erf~1(C[j]/100). Let,
(xOj ; Yoy )j=1,....m be the observation dataset and let the corresponding predictions be (15, 05) j=1,... m.
where 11; represents the mean and o; represents the standard deviation. Then, the percentage of ob-
served dataset within the lower and upper uncertainty bounds associated with C[j] is obtained as
[28]:

x 100 6)

m

Plj] = i Z((us — Cliloy) < Yo, < (g +<Cliloy))
j=1

where 7 is the indicator function.

The consistency curve mentioned earlier is the plot of P versus C'. The proximity of the consis-
tency curve to the y = x line (i.e., a straight line with a slope of 45" and passing through the origin)
is used to measure calibration in this study. The consistency curve will perfectly overlap the y =
line in a perfectly calibrated system. The consistency plots for sphere and Champ drag coefficient
predictions using GPR for the test dataset are shown in Fig. 4. The blue dotted line corresponds to
the ideal case of perfect calibration, and the green curve corresponds to the GPR predictions. The
predictions for the sphere are better calibrated than the predictions for the Champ satellite.
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Figure 4. Consistency Plots for Sphere and Champ for Drag Coefficient Prediction
Using Gaussian Process Regression for the Test Dataset

The output of a deep learning model with Monte Carlo dropout is not guaranteed to be calibrated
[28]. If the consistency curve indicates an uncalibrated model, there are two popular methods for



improving the calibration: (a) post-processing of the calculated uncertainty (b) utilizing a training
loss function with improved calibration properties. Although we explore both options, the primary
focus is on the latter method.

The usual practice in stochastic deep learning is to use mean squared error (MSE) as a training
loss function:

n

1
MSE=—3 (yi=¥:)’ ™
=1

where (Xi,¥i)i=1,..» represent the training dataset and y; represents the prediction mean. The
MSE loss function, however, ignores the predicted variance, possibly resulting in poor calibration.
MSE can also be interpreted as a loss function that assumes a homoscedastic uncertainty, i.e., an
uncertainty that is independent of the input [13].

In order to examine the calibration performance of training using the MSE loss function, a feed-
forward DNN (with Monte Carlo dropout) is trained to predict the drag coefficient of a sphere for
each of the constituent species H, He, N, Na, O, Os. KerasTuner, which is used to obtain the
appropriate architecture for each of the six species, is trained over the following hyper-parameter
search space: (i) number of hidden layers € [1,2,3,..,10] (ii) number of neurons in each hidden
layer € [32,64, 96, ..., 128] (iii) activation function applied after every hidden layer € [‘relu’, ‘tanh’,
‘sigmoid’, ‘softsign’, ‘selu’, ‘elu’, ‘linear’] (iv) dropout rate for the dropout regularization applied
to each hidden layer € [.08,.16, .24, ...,0.8] (v) optimizer for training the network € [‘rmsprop’,
‘adagrad’, ‘adam’, ‘nadam’] (vi) batch size € [16,32,48,...,128]. Table 2 lists other essential
parameters utilized in the tuning process.

Table 2. Parameters Used in Hyper-Parameter Optimization Using KerasTuner

Parameter Value
Maximum number of trials 150
Executions per trial 7
Number of initial points 50
Early stop regularization patience 50
Validation split 0.15
Number of epochs 200

The DNNs corresponding to the six species are trained using the best architectures output by the
KerasTuner, and then predictions are made on the test datasets, resulting in the consistency curves
shown in Fig. 5(a). The drag coefficient predictions for H are the best calibrated of the six species.
To improve the lesser calibrated species He, N, Na, O, O3, the predicted standard deviation values
are re-scaled using the following factor [29]:

1 &

e N2y — V|2
5= | =D (0)2llyi = 3l ®)

voi=1

where m,, is the number of validation samples, y; is the TPMC drag coefficient, ¥; is the predicted
drag coefficient, and o; is the predicted standard deviation for the ith validation sample. Fig. 5(b)
shows the consistency plots obtained after re-scaling the predicted uncertainties. In Fig. 5, the green



and red plots correspond to the calibration plots before and after o —scaling, respectively. The red
curves are better calibrated than the green curves, with notable improvements in He, O, and O».
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Figure 5. Consistency Plot for Sphere for Drag Coefficient Prediction Using DNN
(With Monte Carlo Dropout) for the Test Dataset. The Trained Network is Based on
MSE Loss Function.

Although the post-training scaling method yields better calibration results in the above case, it is
not always guaranteed to work. Instead of using the post-training calibration technique, it is prefer-
able to employ a loss function other than MSE in this study. A suitable candidate for the training
loss function that does not ignore either the mean or the variance and assumes a heteroscedastic
uncertainty is based on the negative logarithm of the probability density (NLPD) and is given as:

1 ¢ lyi — 3il?
NLPD = — > |loga? + T + log 27 )

=1 g

where (x;, yi)izl,”_ﬂ represent the training dataset, ¥; represents the prediction mean, and O'Z-Z rep-
resents the prediction variance.

Using the NLPD loss function, a Monte Carlo dropout aided feed-forward DNN is trained to
predict drag coefficients for a sphere for the different species. Like earlier, the hyper-parameters
for the training architectures are obtained using KerasTuner. The implementation of the mean ¥;
and the standard deviation o; appearing in Eq. 9 needs some discussion. The neural network does
not directly output §; or ¢;. As such, 100 duplicates of each training sample are created. ¥y; and
o; are taken as the mean and standard deviation of the stochastic forecasts of these 100 duplicates,
respectively. Fig. 6 shows the drag coefficient of the sphere predicted using DNN with NLPD
as the training loss function. The RMSE between the predicted and TPMC values for H, He,
N, Na, O, Oy are 0.007912, 0.005833, 0.004484, 0.004781, 0.004794, 0.004581, respectively.
Although dropout is theoretically a Bayesian approximation of the Gaussian Process, in practice,
the uncertainties estimated by the two methods can be significantly different, as demonstrated in
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Figs. 6 and 1.
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Figure 6. Comparison of Feed-Forward DNN (With Monte Carlo Dropout) and
TPMC Drag Coefficients for Sphere Test Dataset for Different Species.

Fig. 7 shows the consistency plots for the sphere drag coefficient prediction using DNN. In Fig.
7, the black curves correspond to the NLPD loss function, the green curves correspond to the MSE
loss function (also shown earlier in Fig. 5), and the blue dotted line represents the hypothetical case
of perfect calibration. Compared to the MSE curves, the NLPD curves are better calibrated for He,
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O, Oy, similarly calibrated for H, N, and poorly calibrated for /N. Overall, NLPD is preferred
over MSE loss function.
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Figure 7. Consistency Plot for Sphere for Drag Coefficient Prediction Using Feed-
forward DNN for the Test Dataset. Performance of the NLPD Training Loss Function
is Compared to the MSE Training Loss Function.

Next, a feed-forward DNN with Monte Carlo dropout approach and NLPD loss function is trained
to predict the drag coefficient of Champ satellite corresponding to different species. Fig. 7 shows the
predicted drag coefficients. The red markers compare the predicted means and the numerical TPMC
values, while the green markers show the 30 uncertainty values. The RMSE between the predicted
and TPMC drag coefficient values for H, He, N, Na, O, O are 0.109611, 0.037761, 0.037959,
0.031282, 0.039637, 0.033111, respectively. Similar to the case of sphere, the DNN uncertainty
predictions for Champ (Fig. 7) are larger than the Gaussian Process uncertainty predictions for
Champ (Fig. 2). The corresponding consistency plots are shown in Fig.8.
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Figure 7. Comparison of Feed-Forward DNN (With Monte Carlo Dropout) and
TPMC Drag Coefficients for Champ Test Dataset for Different Species.
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ORBIT UNCERTAINTY QUANTIFICATION DUE TO UNCERTAINTY IN DRAG COEF-
FICIENT UNDER VARIOUS SOLAR AND GEOMAGNETIC ACTIVITY LEVELS

This work relies on Monte Carlo simulations to study the effect of uncertainty in drag coefficient
on orbital state uncertainties. The details of the simulations for a spherical satellite and the Champ
satellite are described in the underneath points:

1. Starting from the initial position described in Table 3, objects are propagated for a duration
of 4 days. The initial epoch is taken as 21:49:18.64 UT, March 4, 2010.

2. For orbit propagation, we consider only the Earth’s central gravitational term and the domi-
nant perturbation forces. At 300 km altitude, the dominant perturbation forces are the atmo-
spheric drag and the J> perturbation resulting from Earth’s oblateness. The atmospheric drag
is modeled using the NRLMSISE-00 density model [30]. The NRLMSISE-00 density model
is a function of the geomagnetic Ap-index and the 10.7 cm solar radio flux (F10.7). Orbits
are propagated under three different { Ap, F'10.7} combinations, as given in Table 4.

3. Orbit integration is performed using a modified version of Dormand and Prince’s Runge-Kutta
Method [31] (also referred to as ‘RK45’ integrator in Python’s scipy.integrate package). The
modified integrator uses a constant integration step size of 10 seconds rather than striving for
specified absolute and relative tolerances. This modification was made because a variable
step size integrator takes a long time to converge in presence of stochastic drag coefficient,
whose value changes in every internal adjustment of a single call of the step size.

4. Mass of both the spherical object and the Champ satellite is taken as 489.166 kg. The cross-
sectional area for the sphere is taken as 0.770981 m?. The cross-sectional area for the Champ
satellite is dependent on satellite attitude and is obtained by using 2-D linear interpolation
on a look-up table. The attitude dynamics of the Champ satellite is taken as: satellite pitch
= sin (100¢)°, satellite yaw = 5 cos (100¢)?, where t is the time in days since initial epoch.

5. There are, in total, twelve cases that are simulated consisting of two objects (sphere/Champ),
3 geomagnetic-solar conditions (high Ap-high F10.7/medium Ap-high F10.7/low Ap-low
F10.7), and 2 different stochastic models for computing drag coefficient (Gaussian process/
DNN with Monte Carlo dropout). For each of these cases, 500 Monte Carlo runs are simu-
lated. For example, let’s consider the case of the Champ Satellite under low solar and geomag-
netic activities and drag coefficient modeling using Gaussian process regression. An instance
of the Champ satellite is generated at its initial position at the initial epoch. For each of the
species H, He, N, Na, O, O,, a drag coefficient value is sampled from the corresponding
normal distribution predicted by the Gaussian process. The individual drag coefficient values
are combined (discussed in the next point) to compute the total drag coefficient. The object is
propagated for 10 seconds, and the whole task of sampling drag coefficients is repeated. The
propagation continues for a total of 4 days. The whole simulation, starting from generating
an instance of the Champ satellite, is repeated 500 times.

6. The total drag coefficient referred to in the previous point is obtained by using [32, 33]:
C’D = fscciD,,,dS + (1 - fsc)CDs,mf (10)

where Cp_,. is the total drag coefficient based on a satellite completely covered by the ad-
sorbate (atomic oxygen), and Cp_, . is the total drag coefficient based on a clean satellite
surface. The weight f,. is given as [33]:

Ko P,

Jee = T Ko P,

(1)
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where Koz is the Langmuir adsorbate constant for the CLL model (= 2.89 x 10%) and Pp
is the partial pressure of atomic oxygen. The adsorbate and the surface drag coefficients are
obtained from the drag coefficients of constituent species (H, He, N, N, O, O2) using [33]:

6
1
ads/surf 6 ads/surfs
Zk:1(kak:) k=1
where X, is the mole fraction of species k, my, is the mass of species k, and Cp_,_ Jeurgok is

the drag coefficient for species k. The adsorbate drag coefficient corresponding to species
k, ie., Cp,,. k- is obtained by sampling from the distribution predicted by the Gaussian
process or the DNN model with inputs: [vs, 400K, T, 1, 1, B, ¢]. Similarly, the surface
drag coefficient corresponding to species k, i.e., Cp,,, . k, is obtained by sampling from the
distribution predicted by the Gaussian process or the DNN model with inputs: [vs,, 400K,
Tso, Otn,y» 1, B, ¢]. The atmospheric translational temperature, T, is obtained from the
NRLMSISE-00 model. The parameter «,_,, is obtained using:

_ Bk )
Qnyyy = max{2<(1 +,un)2> 1,0} (13)

6
XS o)
Msurf

[in (14)

where my,,; ¢ is the mass of a particle that composes the surface lattice (=28 amu).

7. For each of the twelve cases, orbital state uncertainties are characterized in terms of the ra-
dial, along-track, and cross-track errors [34] of the 500 Monte Carlo runs with respect to a
reference orbit at the end of the 4-day propagation period. The reference orbit is obtained by
propagating the object using mean drag coefficient values.

Table 3. Keplerian Elements Defining the Initial Position of the Satellites

Orbital Element Values
Semi-major Axis, a 6674127.099236 m
Eccentricity, e .000221
Inclination, ¢ 87.21930
True Anomaly, v 274.488696°
Argument of Perigee, w 85.6397°
RAAN, Q 206.9785°

Table 4. Space Weather Scenarios With Different Geomagnetic and Solar Activity Levels

Scenario Values

Scenario 1: High Geomagnetic Activity, High Solar Activity Ap = 200, F10.7 = 250 sfu
Scenario 2: Medium Geomagnetic Activity, High Solar Activity | Ap = 30, F'10.7 = 250 sfu
Scenario 3: Low Geomagnetic Activity, Low Solar Activity Ap =5, F'10.7 = 75 sfu

Fig. 9 shows the distribution of radial, along-track, and cross-track errors between the Monte
Carlo runs and the corresponding reference orbits for the sphere. The green histogram corresponds
to high solar and geomagnetic activities, the red histogram corresponds to high solar and medium
geomagnetic activities, and the blue histogram corresponds to low solar and geomagnetic activi-
ties. The spread in the radial, in-track, and cross-track errors are much larger under high solar and
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geomagnetic activities (red histograms) as compared to low solar and geomagnetic activities (blue
histograms). The skewness of the distributions is minimal, and the error distributions are nearly cen-
tered at zero. The error spread with the DNN-based drag coefficients is around three times greater
than the error spread with the GPR-based drag coefficients. Along-track errors are significantly
larger than radial errors, which are significantly larger than cross-track errors.
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Figure 9. Radial, Along-Track, and Cross-Track Errors for the Sphere Monte Carlo Simulations.
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Figure 10. Radial, Along-Track, and Cross-Track Errors for the Champ Monte Carlo Simulations.

Fig. 10 shows the distribution of radial, along-track, and cross-track errors between the Monte
Carlo runs and the corresponding reference orbits for the Champ satellite. The green histogram
corresponds to high solar and geomagnetic activities, the red histogram corresponds to high solar
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and medium geomagnetic activities, and the blue histogram corresponds to low solar and geomag-
netic activities. When compared to the case of the sphere, the spread in the distributions is larger
for the Champ satellite. This is because of the larger drag coefficient uncertainty predictions in the
case of Champ. The error spread with the DNN-based drag coefficients is roughly five times greater
than the error spread with the GPR-based drag coefficients. Similar to the case of the sphere, the
along-track errors are larger than the radial errors, which are larger than cross-track errors.

CONCLUSIONS

In this paper, we make probabilistic predictions of the drag coefficients of a spherical satellite and
the Champ satellite in the low Earth orbit region. Estimates of the drag coefficients corresponding
to H, He, N, Na, O, O species are obtained using the following stochastic machine learning mod-
els: (i) Gaussian process regression (ii) deep neural network with Monte Carlo dropout approach.
Numerical test Particle Monte Carlo (TPMC) method with Cercignani—-Lampis—Lord gas-surface
interaction model is used to generate the training data. For the training dataset, the independent
variables are the relative velocity of the satellite, the satellite surface temperature, the atmospheric
translational temperature, the normal energy accommodation coefficient, the tangential momentum
accommodation coefficient, satellite yaw, and satellite pitch. The stochastic models are trained on
1000 samples (1000 samples for Gaussian process; 850 training samples plus 150 validation sam-
ples for deep neural network), which are carefully selected using Latin Hypercube Sampling. The
trained models are then tested on a separate dataset of 1000 samples.

To ensure that our models produce meaningful uncertainty estimates, we investigate methods to
calibrate the models. Both the post-training calibration method and the method of using a loss func-
tion with better calibration properties are investigated. We focus on the latter method. The negative
logarithm of the probability density (NLPD) loss function is preferred over the commonly used
mean squared error loss function because of better calibration properties and because it assumes
heteroscedasticity.

The root mean squared error between the Gaussian process predictions and observed test values
for H, He, N, N3, O, O2 for the sphere are 0.005397, 0.003799, 0.003136, 0.003207, 0.003214,
0.002975, respectively. And, the root mean squared error between the Gaussian process predictions
and observed values for Champ for H, He, N, Na, O, O3 are 0.033636, 0.019427, 0.013985,
0.013991, 0.014714, 0.013326, respectively. The uncertainty estimates for the sphere are better
calibrated than the uncertainty estimates of the Champ satellite.

For deep neural network predictions, the KerasTuner library is used to obtain the near-optimal
hyper-parameters in this work. The networks for drag coefficient predictions are trained using
the Keras-Tuner provided architectures and the NLPD loss function. The Monte Carlo dropout ap-
proach, which is typically used only in the training phase, is kept ‘on’ during the testing in this work
to produce stochastic predictions. The root mean squared error between the deep neural network
predictions and TPMC values for H, He, N, No, O, Oy for the sphere are 0.007912, 0.005833,
0.004484, 0.004781, 0.004794, 0.004581, respectively. The root mean squared error between the
predicted and TPMC drag coefficient values for H, He, N, N3, O, O5 for the Champ are 0.109611,
0.037761, 0.037959, 0.031282, 0.039637, 0.033111, respectively. The deep neural network uncer-
tainty estimates are larger than the uncertainty estimates from the Gaussian process regression.

The effect of drag coefficient uncertainty on the orbital state uncertainties is investigated by per-
forming Monte Carlo simulations under three different space weather scenarios: (i) high solar and
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geomagnetic activities, (ii) high solar and medium geomagnetic activities, (ii) low solar and geo-
magnetic activities. For both sphere and the Champ satellite, for each of the space weather scenarios,
and for each of the stochastic methods of drag coefficient predictions, 500 Monte Carlo objects are
propagated for a duration of 4 days. The radial, along-track, and cross-track errors between the
propagated Monte Carlo orbits and reference orbit (obtained from orbit propagation using mean
drag coefficient estimates) are investigated. It is observed that the spread in the distributions of the
errors is much larger under high solar and geomagnetic activity levels as compared to low solar
and geomagnetic activity levels. The largest errors are found in the along-track direction followed
by the radial direction followed by the cross-track direction. Compared to the Gaussian process
predictions, neural network predictions resulted in more spread in the error distributions.

We observe a parabolic trend in the deep neural network predicted uncertainties for the sphere/
Champ test dataset. No such trend was observed in the case of Gaussian process predictions. In the
future, we intend to investigate the reason for this observation.
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