
AAS 21-558

SATELLITE DRAG COEFFICIENT MODELING AND ORBIT
UNCERTAINTY QUANTIFICATION USING STOCHASTIC MACHINE

LEARNING TECHNIQUES

Smriti Nandan Paul*, Logan Sheridan†, Piyush Mehta‡, and S. Huzurbazar§

2021 AAS/AIAA Astrodynamics Specialist Conference

The rapidly increasing congestion in the low Earth environment makes the mod-
eling of uncertainty in atmospheric drag force a critical task, affecting space situ-
ational awareness (SSA) activities like the probability of collision estimation. A
key element in atmospheric drag modeling is the assessment of uncertainty in the
atmospheric drag coefficient estimate. While atmospheric drag coefficients for
space objects with known characteristics can be computed numerically, they suf-
fer from large computational costs for practical applications. In this work, we use
cost-effective data-driven stochastic methods for modeling the drag coefficients of
objects in the low Earth orbit (LEO) region. The training data is generated us-
ing the numerical Test Particle Monte Carlo (TPMC) method. TPMC is simulated
with Cercignani–Lampis–Lord (CLL) gas-surface interaction (GSI) model. Mehta
et al. [1] use a Gaussian process regression (GPR) model to predict satellite drag
coefficient, but the authors did not estimate the predictive uncertainty. The first
part of this research extends the work by Mehta et al. [1] by fitting a GPR model
to the training data and performing predictive uncertainty estimation. The results
of the Gaussian fit are then compared against a deep neural network (DNN) model
aided by the Monte Carlo dropout approach. To the best of our knowledge, this is
the first study to use the aforementioned stochastic deep learning algorithm to per-
form predictive uncertainty estimation of the estimated satellite drag coefficient.
Apart from the accuracy of the models, we also undertake the task of calibrat-
ing the models. Simulations are carried out for a spherical satellite followed by
the Champ satellite. Finally, quantification of the effect of drag coefficient uncer-
tainty on orbit prediction is carried out for different solar activity and geomagnetic
activity levels.

INTRODUCTION

In the last few decades, there has been a dramatic proliferation in the population of objects in

the LEO region partly propelled by ambitious programs from private space companies and easier

access to space due to an increase in the number of launch providers (or decrease in launch cost

[2]). From European Space Agency’s Annual Space Environment Report 2020, there are currently

*Post Doctoral Researcher, Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown,

WV 26505, smritinandan.paul@mail.wvu.edu.
†Graduate Research Assistant, Department of Mechanical and Aerospace Engineering, West Virginia University, Morgan-

town, WV 26505, pls0013@mix.wvu.edu.
‡Assistant Professor, Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV

26505, piyush.mehta@mail.wvu.edu.
§Professor, School of Mathematical and Data Sciences, West Virginia University, Morgantown, WV 26505, sneha-

lata.huzurbazar@mail.wvu.edu.

1

around 15,000 tracked objects in the LEO region; the U.S. company SpaceX’s Starlink constella-

tion alone will roughly double this population [3]. This unabated growth increases the collision

risk among space objects, which demands better modeling and quantification of the orbital uncer-

tainties. Uncertainty in the modeling of conservative perturbation forces is typically low. The orbit

prediction errors for typical low area-to-mass ratio objects in the LEO region mainly emanate from

the uncertainty in the non-conservative atmospheric drag force [1]. Difficulty in estimating the drag

force arises from inadequate knowledge of the atmospheric density and the satellite drag coefficient.

Effects of the uncertainties in the atmospheric density on orbital evolution have been investigated by

a number of authors, including Bussy-Virat et al. [4], Gondelach and Linares [5], Schiemenz et al.

[6], Sagnieres and Sharf [7], Emmert et al. [8]. This work will focus on modeling the uncertainties

in the satellite drag coefficient and its impact on the prediction of orbit.

Accuracy and computational cost are often the main factors that determine the method one uses

for the computation of satellite drag coefficient. For high-accuracy drag coefficient modeling, espe-

cially for complex geometrical shapes, computationally expensive numerical methods such as Panel

Method, Ray-tracing Panel Method (RTP), Test Particle Monte Carlo (TPMC) method, and Direct

Simulation Monte Carlo (DSMC) method are typically used [9]. Besides numerical techniques,

analytical methods such as Schamberg’s derivation and Schaaf and Chambre derivation are also

commonly used for computing drag coefficients of simple convex geometrical shapes [9]. Another

prevalent practice in literature, although inaccurate for geometries with a high aspect ratio, is to

assume a constant value of 2.2 for the satellite drag coefficient [1, 9]. An alternative to the already

mentioned methods is the machine learning techniques, which are computationally less expensive

than numerical methods and applicable to complex geometrical shapes. Machine learning also al-

lows for the estimation of uncertainty in the satellite drag coefficient computation and is the method

of choice for this research work.

Machine learning techniques are increasingly used in space weather predictive modeling [1, 10,

11, 12] because of their fast evaluations of the surrogate models and the ability to make non-linear

predictions. This paper is particularly interested in stochastic machine learning techniques. Mehta

et al. [1] demonstrate the excellent performance of Gaussian processes in predicting satellite drag

coefficients (root mean squared percentage errors < 0.3%, 0.9%, 0.6%, 1.0% for sphere, GRACE

satellite, Hubble Space Telescope, International Space Station, respectively) but the authors do not

perform uncertainty quantification. As an extension to the work by Mehta et al. [1], a GPR model

will be first designed for predictive uncertainty estimation. The GPR model will then be used as a

benchmark against stochastic deep learning. In the stochastic deep learning category, this work will

use a feed-forward deep neural network with the Monte Carlo dropout approach, which is a popular

regularization technique that involves dropping out units in a neural network. Gal and Ghahramani

[13] prove that the application of Monte Carlo dropout in a neural network can be construed as a

Bayesian approximation for a Gaussian process.

In the current work, the drag coefficient training data for the machine learning algorithms will

be created using the numerical TPMC method [14] using the CLL [15, 16] GSI models. In the

TPMC method, the test particles, which represent actual molecules, are produced serially rather

than simultaneously. The molecules do not collide with each other and, the method is well-suited

for free-molecular flow. An advantage of the TPMC method is its ability to model flows with

complex boundaries. The CLL model, a kernel-based rendition of the GSI, successfully simulates

the quasi-specular reflection seen in molecular beam experiments [15]. The CLL GSI model allows

for the handling of tangential and normal components of velocity independently, using different

2

scattering kernels for each direction. The two key parameters defining the CLL scattering kernels are

the normal energy accommodation coefficient (αn) and the tangential momentum accommodation

coefficient (σt).

The remainder of this paper is organized as follows: section 2 provides details about the training

data for the regression models. Section 3 discusses the stochastic machine learning models used

for prediction in this work. Model calibration is discussed in section 4. Section 5 investigates the

impact of drag coefficient uncertainty on orbit. Conclusions are drawn in the last section.

INPUT DATA FOR THE REGRESSION MODELS

Since it is difficult to obtain extensive experimental drag coefficient data for training predictive

models, we use numerical simulations to generate the input training data. Drag coefficient val-

ues are computed for the primary LEO atmospheric constituents - atomic hydrogen (H), helium

(He), atomic nitrogen (N), molecular nitrogen (N2), atomic oxygen (O), and molecular oxygen

(O2) using the numerical TPMC method. During the training phase, the predictive models learn the

relationship between independent variables and the drag coefficient. For the TPMC method with

CLL GSI model, seven independent variables determine the value of the dependent drag coeffi-

cient - (i) relative velocity of the satellite, v∞ (ii) satellite surface temperature, Tw (iii) atmospheric

translational temperature, T∞ (iv) normal energy accommodation coefficient, αn (v) tangential mo-

mentum accommodation coefficient, σt (vi) satellite yaw, β (vii) satellite pitch, Φ. Since only a

limited number of numerical simulations can be carried out due to computational constraints, in-

put configurations for the training are carefully selected via the Latin Hypercube sampling (LHS)

method [17].

In this study, the numerical TPMC simulations are carried out for a sphere and the Champ satel-

lite. For both the objects, 1000 LHS design points are selected for each of the species H , He, N ,

N2, O O2. The upper and lower bounds defining the LHS design points are given in Table 1.

Table 1. Upper and Lower Bounds Defining the LHS Design Points

Independent Variables Lower Bound Upper Bound

v∞ 7250.0 m/s 8000.0 m/s
Tw 100.0 K 2000.0 K
T∞ 200.0 K 2000.0 K
αn 0.0 1.0
σt 0.0 1.0

β −100 100

Φ −100 100

PROBABILISTIC MODELS FOR PREDICTION

As our primary goal is to provide uncertainty estimates, we use Gaussian process regression and

a feed-forward neural network with the Monte Carlo dropout approach to predict drag coefficients

for H , He, N , N2, O, O2.

Gaussian Process Regression Model

Gaussian process regression is a Bayes’ theory based approach to supervised machine learning.

Unlike traditional regression approaches that fit a single function through the observed training

3

data, GPR models the probability distribution over the functional space conditional on the observed

data. In GPR, a Gaussian process (GP) prior is first defined over the functional space x ∈ R
Di →

f(x) ∈ R
Do . GP is a stochastic process such that for any set of inputs {x1,x2,,xn}, the random

variables {f(x1), f(x2),, f(xn)} are jointly Gaussian. GP prior is defined by a mean function

(assumed 0 in this research work) and a covariance matrix:

p(F|X) = N (F|0,K) +N (ǫ|0, n2

l I) (1)

where F = [f(x1), f(x2),, f(xn)]
T , X = [x1,x2,,xn]

T , and N represents the normal dis-

tribution. The variable ǫ represents the training data noise with noise-level nl. The elements of the

covariance matrix K are defined by the “kernel” functions. This work makes use of the Matern

kernel, which is given as:

Kij = κ(xi,xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi,xj)

)ν

Kν

(√
2ν

l
d(xi,xj)

)

(2)

where Γ(·) represents the gamma function, d(·, ·) represents the Euclidean distance, and Kν(·) is a

modified Bessel function [18]. The parameter ν controls the smoothness of the learned function. In

this work, we use ν = 2.5, a common choice for functions that are at least twice differentiable. l is

a positive length-scale parameter with the same dimension as that of the input x.

The posterior predictive distribution is generated by conditioning on the prior and the observa-

tions using Bayes’ theorem. For the observation dataset {Xo,Fo}, the posterior predictive distribu-

tion corresponding to test inputs X⋆ is an updated Gaussian that can be derived (see [19]) as:

p(F⋆|X⋆,Xo,Fo) = N (F⋆|µ⋆,Σ⋆) (3)

µ⋆ = KT
⋆ (Ko + n2

l I)
−1Fo (4)

Σ⋆ = K⋆⋆ −KT
⋆ (Ko + n2

l I)
−1K⋆ (5)

where, K⋆ = K(Xo,X⋆), Ko = K(Xo,Xo), and K⋆⋆ = K(X⋆,X⋆).

The hyperparameters l, nl appearing in Eqs. (1), (2) are obtained by maximizing the log marginal

likelihood of the training data.

For implementing the GPR, we use the “GaussianProcessRegressor” module from the Python

scikit-learn library [20]. The GPR models are trained on 1000 LHS samples and their correspond-

ing drag coefficients calculated using TPMC. After that, the trained models are put to the test on a

new set of 1000 data. The comparison between GPR predictions and test data for a sphere is shown

in Fig. 1. In each plot, the x-coordinates of the red markers correspond to TPMC drag coefficients,

and the y-coordinates of the red markers correspond to mean drag coefficients predicted by GPR.

The y-coordinates of the green markers correspond to the 3σ values predicted by the GPR. The

blue line corresponds to the ideal case of perfect calibration. The root mean squared error (RMSE)

between the predicted and observed values for H , He, N , N2, O, O2 are 0.005397, 0.003799,

0.003136, 0.003207, 0.003214, 0.002975, respectively. Similarly, Fig. 2 shows comparison of GPR

predictions and test data for Champ satellite. The RMSE between the predicted and observed val-

ues for Champ for H , He, N , N2, O, O2 are 0.033636, 0.019427, 0.013985, 0.013991, 0.014714,

4

0.013326, respectively. When compared to the sphere, the RMSE values are higher for Champ be-

cause Champ has a more complex geometry and, it would require a higher number of LHS training

samples for Champ to achieve the same accuracy.

(a) Atomic hydrogen, H (b) Helium, He

(c) Atomic Nitrogen, N (d) Nitrogen, N2

(e) Atomic Oxygen, O (f) Oxygen, O2

Figure 1. Comparison of GPR and TPMC Drag Coefficients for Sphere Test Dataset

5

(a) Atomic hydrogen, H (b) Helium, He

(c) Atomic Nitrogen, N (d) Nitrogen, N2

(e) Atomic Oxygen, O (f) Oxygen, O2

Figure 2. Comparison of GPR and TPMC Drag Coefficients for Champ Test Dataset

Deep Neural Network Regression With Monte Carlo Dropout

Feed-forward deep neural network, an artificial neural network with more than one layer of hid-

den units between its input and output layers [21], has found use across a wide range of predictive

applications in recent years. DNN consists of a large number of parameters (“weights” and “biases”)

that control the function mapping from one layer to the next. One problem in machine learning algo-

6

improving the calibration: (a) post-processing of the calculated uncertainty (b) utilizing a training

loss function with improved calibration properties. Although we explore both options, the primary

focus is on the latter method.

The usual practice in stochastic deep learning is to use mean squared error (MSE) as a training

loss function:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (7)

where (xi,yi)i=1,...,n represent the training dataset and ŷi represents the prediction mean. The

MSE loss function, however, ignores the predicted variance, possibly resulting in poor calibration.

MSE can also be interpreted as a loss function that assumes a homoscedastic uncertainty, i.e., an

uncertainty that is independent of the input [13].

In order to examine the calibration performance of training using the MSE loss function, a feed-

forward DNN (with Monte Carlo dropout) is trained to predict the drag coefficient of a sphere for

each of the constituent species H , He, N , N2, O, O2. KerasTuner, which is used to obtain the

appropriate architecture for each of the six species, is trained over the following hyper-parameter

search space: (i) number of hidden layers ∈ [1, 2, 3, .., 10] (ii) number of neurons in each hidden

layer ∈ [32, 64, 96, ..., 128] (iii) activation function applied after every hidden layer ∈ [‘relu’, ‘tanh’,

‘sigmoid’, ‘softsign’, ‘selu’, ‘elu’, ‘linear’] (iv) dropout rate for the dropout regularization applied

to each hidden layer ∈ [.08, .16, .24, ..., 0.8] (v) optimizer for training the network ∈ [‘rmsprop’,

‘adagrad’, ‘adam’, ‘nadam’] (vi) batch size ∈ [16, 32, 48, ..., 128]. Table 2 lists other essential

parameters utilized in the tuning process.

Table 2. Parameters Used in Hyper-Parameter Optimization Using KerasTuner

Parameter Value

Maximum number of trials 150
Executions per trial 7

Number of initial points 50
Early stop regularization patience 50

Validation split 0.15
Number of epochs 200

The DNNs corresponding to the six species are trained using the best architectures output by the

KerasTuner, and then predictions are made on the test datasets, resulting in the consistency curves

shown in Fig. 5(a). The drag coefficient predictions for H are the best calibrated of the six species.

To improve the lesser calibrated species He, N , N2, O, O2, the predicted standard deviation values

are re-scaled using the following factor [29]:

s =

√

√

√

√

1

mv

mv
∑

i=1

(σi)−2||yi − ŷi||2 (8)

where mv is the number of validation samples, yi is the TPMC drag coefficient, ŷi is the predicted

drag coefficient, and σi is the predicted standard deviation for the ith validation sample. Fig. 5(b)

shows the consistency plots obtained after re-scaling the predicted uncertainties. In Fig. 5, the green

9

Figs. 6 and 1.

(a) Atomic hydrogen, H (b) Helium, He

(c) Atomic Nitrogen, N (d) Nitrogen, N2

(e) Atomic Oxygen, O (f) Oxygen, O2

Figure 6. Comparison of Feed-Forward DNN (With Monte Carlo Dropout) and
TPMC Drag Coefficients for Sphere Test Dataset for Different Species.

Fig. 7 shows the consistency plots for the sphere drag coefficient prediction using DNN. In Fig.

7, the black curves correspond to the NLPD loss function, the green curves correspond to the MSE

loss function (also shown earlier in Fig. 5), and the blue dotted line represents the hypothetical case

of perfect calibration. Compared to the MSE curves, the NLPD curves are better calibrated for He,

11

ORBIT UNCERTAINTY QUANTIFICATION DUE TO UNCERTAINTY IN DRAG COEF-

FICIENT UNDER VARIOUS SOLAR AND GEOMAGNETIC ACTIVITY LEVELS

This work relies on Monte Carlo simulations to study the effect of uncertainty in drag coefficient

on orbital state uncertainties. The details of the simulations for a spherical satellite and the Champ

satellite are described in the underneath points:

1. Starting from the initial position described in Table 3, objects are propagated for a duration

of 4 days. The initial epoch is taken as 21:49:18.64 UT, March 4, 2010.

2. For orbit propagation, we consider only the Earth’s central gravitational term and the domi-

nant perturbation forces. At 300 km altitude, the dominant perturbation forces are the atmo-

spheric drag and the J2 perturbation resulting from Earth’s oblateness. The atmospheric drag

is modeled using the NRLMSISE-00 density model [30]. The NRLMSISE-00 density model

is a function of the geomagnetic Ap-index and the 10.7 cm solar radio flux (F10.7). Orbits

are propagated under three different {Ap, F10.7} combinations, as given in Table 4.

3. Orbit integration is performed using a modified version of Dormand and Prince’s Runge-Kutta

Method [31] (also referred to as ‘RK45’ integrator in Python’s scipy.integrate package). The

modified integrator uses a constant integration step size of 10 seconds rather than striving for

specified absolute and relative tolerances. This modification was made because a variable

step size integrator takes a long time to converge in presence of stochastic drag coefficient,

whose value changes in every internal adjustment of a single call of the step size.

4. Mass of both the spherical object and the Champ satellite is taken as 489.166 kg. The cross-

sectional area for the sphere is taken as 0.770981 m2. The cross-sectional area for the Champ

satellite is dependent on satellite attitude and is obtained by using 2-D linear interpolation

on a look-up table. The attitude dynamics of the Champ satellite is taken as: satellite pitch

= sin (100t)0, satellite yaw = 5 cos (100t)0, where t is the time in days since initial epoch.

5. There are, in total, twelve cases that are simulated consisting of two objects (sphere/Champ),

3 geomagnetic-solar conditions (high Ap-high F10.7/medium Ap-high F10.7/low Ap-low

F10.7), and 2 different stochastic models for computing drag coefficient (Gaussian process/

DNN with Monte Carlo dropout). For each of these cases, 500 Monte Carlo runs are simu-

lated. For example, let’s consider the case of the Champ Satellite under low solar and geomag-

netic activities and drag coefficient modeling using Gaussian process regression. An instance

of the Champ satellite is generated at its initial position at the initial epoch. For each of the

species H , He, N , N2, O, O2, a drag coefficient value is sampled from the corresponding

normal distribution predicted by the Gaussian process. The individual drag coefficient values

are combined (discussed in the next point) to compute the total drag coefficient. The object is

propagated for 10 seconds, and the whole task of sampling drag coefficients is repeated. The

propagation continues for a total of 4 days. The whole simulation, starting from generating

an instance of the Champ satellite, is repeated 500 times.

6. The total drag coefficient referred to in the previous point is obtained by using [32, 33]:

CD = fscCDads
+ (1− fsc)CDsurf

(10)

where CDads
is the total drag coefficient based on a satellite completely covered by the ad-

sorbate (atomic oxygen), and CDsurf
is the total drag coefficient based on a clean satellite

surface. The weight fsc is given as [33]:

fsc =
KCLLPo

1 +KCLLPo

(11)

14

where KCLL is the Langmuir adsorbate constant for the CLL model (= 2.89 × 106) and PO

is the partial pressure of atomic oxygen. The adsorbate and the surface drag coefficients are

obtained from the drag coefficients of constituent species (H , He, N , N2, O, O2) using [33]:

CDads/surf
=

(

1
∑

6

k=1
(χkmk)

) 6
∑

k=1

(χkmkCDads/surf ,k) (12)

where χk is the mole fraction of species k, mk is the mass of species k, and CDads/surf ,k is

the drag coefficient for species k. The adsorbate drag coefficient corresponding to species
k, i.e., CDads,k, is obtained by sampling from the distribution predicted by the Gaussian
process or the DNN model with inputs: [v∞, 400K, T∞, 1, 1, β, φ]. Similarly, the surface
drag coefficient corresponding to species k, i.e., CDsurf ,k, is obtained by sampling from the
distribution predicted by the Gaussian process or the DNN model with inputs: [v∞, 400K,
T∞, αnsub

, 1, β, φ]. The atmospheric translational temperature, T∞ is obtained from the
NRLMSISE-00 model. The parameter αnsub

is obtained using:

αnsub
= max

{

2

(

3µn

(1 + µn)2

)

− 1, 0

}

(13)

µn =

∑

6

k=1
(χkmk)

msurf

(14)

where msurf is the mass of a particle that composes the surface lattice (=28 amu).

7. For each of the twelve cases, orbital state uncertainties are characterized in terms of the ra-

dial, along-track, and cross-track errors [34] of the 500 Monte Carlo runs with respect to a

reference orbit at the end of the 4-day propagation period. The reference orbit is obtained by

propagating the object using mean drag coefficient values.

Table 3. Keplerian Elements Defining the Initial Position of the Satellites

Orbital Element Values

Semi-major Axis, a 6674127.099236 m
Eccentricity, e .000221

Inclination, i 87.21930

True Anomaly, ν 274.4886960

Argument of Perigee, ω 85.63970

RAAN, Ω 206.97850

Table 4. Space Weather Scenarios With Different Geomagnetic and Solar Activity Levels

Scenario Values

Scenario 1: High Geomagnetic Activity, High Solar Activity Ap = 200, F10.7 = 250 sfu
Scenario 2: Medium Geomagnetic Activity, High Solar Activity Ap = 30, F10.7 = 250 sfu

Scenario 3: Low Geomagnetic Activity, Low Solar Activity Ap = 5, F10.7 = 75 sfu

Fig. 9 shows the distribution of radial, along-track, and cross-track errors between the Monte

Carlo runs and the corresponding reference orbits for the sphere. The green histogram corresponds

to high solar and geomagnetic activities, the red histogram corresponds to high solar and medium

geomagnetic activities, and the blue histogram corresponds to low solar and geomagnetic activi-

ties. The spread in the radial, in-track, and cross-track errors are much larger under high solar and

15

and medium geomagnetic activities, and the blue histogram corresponds to low solar and geomag-

netic activities. When compared to the case of the sphere, the spread in the distributions is larger

for the Champ satellite. This is because of the larger drag coefficient uncertainty predictions in the

case of Champ. The error spread with the DNN-based drag coefficients is roughly five times greater

than the error spread with the GPR-based drag coefficients. Similar to the case of the sphere, the

along-track errors are larger than the radial errors, which are larger than cross-track errors.

CONCLUSIONS

In this paper, we make probabilistic predictions of the drag coefficients of a spherical satellite and

the Champ satellite in the low Earth orbit region. Estimates of the drag coefficients corresponding

to H , He, N , N2, O, O2 species are obtained using the following stochastic machine learning mod-

els: (i) Gaussian process regression (ii) deep neural network with Monte Carlo dropout approach.

Numerical test Particle Monte Carlo (TPMC) method with Cercignani–Lampis–Lord gas-surface

interaction model is used to generate the training data. For the training dataset, the independent

variables are the relative velocity of the satellite, the satellite surface temperature, the atmospheric

translational temperature, the normal energy accommodation coefficient, the tangential momentum

accommodation coefficient, satellite yaw, and satellite pitch. The stochastic models are trained on

1000 samples (1000 samples for Gaussian process; 850 training samples plus 150 validation sam-

ples for deep neural network), which are carefully selected using Latin Hypercube Sampling. The

trained models are then tested on a separate dataset of 1000 samples.

To ensure that our models produce meaningful uncertainty estimates, we investigate methods to

calibrate the models. Both the post-training calibration method and the method of using a loss func-

tion with better calibration properties are investigated. We focus on the latter method. The negative

logarithm of the probability density (NLPD) loss function is preferred over the commonly used

mean squared error loss function because of better calibration properties and because it assumes

heteroscedasticity.

The root mean squared error between the Gaussian process predictions and observed test values

for H , He, N , N2, O, O2 for the sphere are 0.005397, 0.003799, 0.003136, 0.003207, 0.003214,

0.002975, respectively. And, the root mean squared error between the Gaussian process predictions

and observed values for Champ for H , He, N , N2, O, O2 are 0.033636, 0.019427, 0.013985,

0.013991, 0.014714, 0.013326, respectively. The uncertainty estimates for the sphere are better

calibrated than the uncertainty estimates of the Champ satellite.

For deep neural network predictions, the KerasTuner library is used to obtain the near-optimal

hyper-parameters in this work. The networks for drag coefficient predictions are trained using

the Keras-Tuner provided architectures and the NLPD loss function. The Monte Carlo dropout ap-

proach, which is typically used only in the training phase, is kept ‘on’ during the testing in this work

to produce stochastic predictions. The root mean squared error between the deep neural network

predictions and TPMC values for H , He, N , N2, O, O2 for the sphere are 0.007912, 0.005833,

0.004484, 0.004781, 0.004794, 0.004581, respectively. The root mean squared error between the

predicted and TPMC drag coefficient values for H , He, N , N2, O, O2 for the Champ are 0.109611,

0.037761, 0.037959, 0.031282, 0.039637, 0.033111, respectively. The deep neural network uncer-

tainty estimates are larger than the uncertainty estimates from the Gaussian process regression.

The effect of drag coefficient uncertainty on the orbital state uncertainties is investigated by per-

forming Monte Carlo simulations under three different space weather scenarios: (i) high solar and

18

geomagnetic activities, (ii) high solar and medium geomagnetic activities, (ii) low solar and geo-

magnetic activities. For both sphere and the Champ satellite, for each of the space weather scenarios,

and for each of the stochastic methods of drag coefficient predictions, 500 Monte Carlo objects are

propagated for a duration of 4 days. The radial, along-track, and cross-track errors between the

propagated Monte Carlo orbits and reference orbit (obtained from orbit propagation using mean

drag coefficient estimates) are investigated. It is observed that the spread in the distributions of the

errors is much larger under high solar and geomagnetic activity levels as compared to low solar

and geomagnetic activity levels. The largest errors are found in the along-track direction followed

by the radial direction followed by the cross-track direction. Compared to the Gaussian process

predictions, neural network predictions resulted in more spread in the error distributions.

We observe a parabolic trend in the deep neural network predicted uncertainties for the sphere/

Champ test dataset. No such trend was observed in the case of Gaussian process predictions. In the

future, we intend to investigate the reason for this observation.

REFERENCES

[1] P. M. Mehta, A. Walker, E. Lawrence, R. Linares, D. Higdon, and J. Koller, “Modeling Satellite Drag Coefficients

With Response Surfaces,” Advances in Space Research, Vol. 54, No. 8, 2014, pp. 1590–1607.

[2] H. W. Jones, “The Recent Large Reduction in Space Launch Cost,” 48th International Conference on Environmental

Systems, 2018.

[3] J. C. McDowell, “The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation,” The

Astrophysical Journal Letters, Vol. 892, No. 2, 2020.

[4] C. D. Bussy-Virat, A. J. Ridley, and J. W. Getchius, “Effects of Uncertainties in the Atmospheric Density on the

Probability of Collision Between Space Objects,” Space Weather, Vol. 16, No. 5, 2018, pp. 519–537.

[5] D. J. Gondelach and R. Linares, “Atmospheric Density Uncertainty Quantification for Satellite Conjunction Assess-

ment,” AIAA Scitech 2020 Forum, 2020.

[6] F. Schiemenz, J. Utzmann, and H. Kayal, “Propagation of Grid-scale Density Model Uncertainty to Orbital Uncer-

tainties,” Advances in Space Research, Vol. 65, No. 1, 2020, pp. 407–418.

[7] L. Sagnieres and I. Sharf, “Uncertainty Characterization of Atmospheric Density Models for Orbit Prediction of

Space Debris,” 7th European Conference on Space Debris, 2017.

[8] J. Emmert, H. Warren, A. Segerman, J. Byers, and J. Picone, “Propagation of Atmospheric Density Errors to

Satellite Orbits,” Advances in Space Research, Vol. 59, No. 1, 2017, pp. 147–165.

[9] D. M. Prieto, B. P. Graziano, and P. C. Roberts, “Spacecraft Drag Modelling,” Progress in Aerospace Sciences,

Vol. 64, 2014, pp. 56–65.

[10] L. Weng, J. Lei, J. Zhong, X. Dou, and H. Fang, “A Machine-Learning Approach to Derive Long-Term Trends of

Thermospheric Density,” Geophysical Research Letters, Vol. 47, No. 6, 2020.

[11] R. J. Licata, P. M. Mehta, and W. K. Tobiska, “Impact of Space Weather Driver Forecast Uncertainty on Drag and

Orbit Prediction,” Astrodynamics Specialist Conference, 2020.

[12] R. J. Licata and P. M. Mehta, “Physics-informed Machine Learning with Autoencoders and LSTM for Probabilistic

Space Weather Modeling and Forecasting,” 100th American Meteorological Society Annual Meeting, 2020.

[13] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep

Learning,” arXiv:1506.02142, 2015.

[14] D. H. Davis, “Monte Carlo Calculation of Molecular Flow Rates through a Cylindrical Elbow and Pipes of Other

Shapes,” Journal of Applied Physics, Vol. 31, No. 7, 1960, pp. 1169–1176.

19

[15] C. Cercignani and M. Lampis, “Kinetic Models for Gas-surface Interactions,” Transport Theory and Statistical

Physics, Vol. 1, No. 2, 1971, pp. 101–114.

[16] R. G. Lord, “Some Extensions to the Cercignani–Lampis Gas–surface Scattering Kernel,” Physics of Fluids A:

Fluid Dynamics, Vol. 3, No. 4, 1991, pp. 706–710.

[17] M. D. McKay, R. Beckman, and W. Conover, “A Comparison of Three Methods for Selecting Values of Input

Variables in the Analysis of Output from a Computer Code,” Technometrics, Vol. 21, No. 2, 1979, pp. 239–245.

[18] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Section 9.6. 1965.

[19] C. E. Rasmussen and K. I. Williams, Gaussian Processes for Machine Learning. Massachusetts Institute of Tech-

nology: MIT Press, 2006.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn:

Machine Learning in Python,” Journal of Machine Learning Research, Vol. 12, No. 85, 2011, pp. 2825–2830.

[21] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” arXiv:1404.7828, 2014.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent

Neural Networks from Overfitting,” Journal of Machine Learning Research, Vol. 15, No. 56, 2014, pp. 1929–1958.

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015. Software available

from tensorflow.org.

[25] P. Kumar, S. Batra, and B. Raman, “Deep neural network hyper-parameter tuning through twofold genetic ap-

proach,” Soft Computing, Vol. 25, 2021, p. 8747–8771.

[26] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al., “Keras Tuner,” https://github.

com/keras-team/keras-tuner, 2019.

[27] E. Camporeale and A. Carè, “Estimation of Accurate and Calibrated Uncertainties in Deterministic models,”

arXiv:2003.05103, 2020.

[28] G. J. Anderson, J. A. Gaffney, B. K. Spears, P.-T. Bremer, R. Anirudh, and J. J. Thiagarajan, “Meaningful uncer-

tainties from deep neural network surrogates of large-scale numerical simulations,” arXiv:2010.13749, 2020.

[29] M.-H. Laves, S. Ihler, J. F. Fast, L. A. Kahrs, and T. Ortmaier, “Recalibration of Aleatoric and Epistemic Regression

Uncertainty in Medical Imaging,” arXiv:2104.12376, 2021.

[30] J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere:

Statistical comparisons and scientific issues,” Journal of Geophysical Resesarch, Vol. 107, No. A12, 2002, pp. SIA

15–1–SIA 15–16.

[31] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal of Computational and

Applied Mathematics, Vol. 6, No. 1, 1980, p. 19–26.

[32] P. Mehta, A. Walker, C. A. McLaughlin, and J. Koller, “Comparing Physical Drag Coefficients Computed Using

Different Gas-Surface Interaction Models,” JOURNAL OF SPACECRAFT AND ROCKETS, Vol. 51, No. 3, 2014,

pp. 873–883.

[33] A. Walker, P. Mehta, and J. Koller, “Drag Coefficient Model Using the Cercignani–Lampis–Lord Gas–Surface

Interaction Model,” JOURNAL OF SPACECRAFT AND ROCKETS, Vol. 51, No. 5, 2014, pp. 1544–1563.

[34] D. A. Vallado, Fundamentals of Astrodynamics and Applications, Fourth Edition. Hawthorne, CA: Microcosm

Press, 2013.

20

	Introduction
	Input Data for the Regression Models
	Probabilistic Models for Prediction
	Gaussian Process Regression Model
	Deep Neural Network Regression With Monte Carlo Dropout
	Tuning of Deep Neural Network Hyper-Parameters

	Model Calibration
	Orbit Uncertainty Quantification Due to Uncertainty in Drag Coefficient Under Various Solar and Geomagnetic Activity Levels
	Conclusions

