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larity, this work develops a new global placement technique built
upon RePlAce, the latest state-of-the-art placement framework. Ex-
perimental results from various designs show that the proposed
technique can reduce half-perimeter wirelength and Steiner tree
wirelength by about 6% and 12%, respectively.

1 INTRODUCTION

Cell placement is undoubtedly a step of paramount importance in
chip physical design. As such, people have spent relentless research
efforts to improve it for general cases as well as commonly seen
exceptional cases. One recently popular case is circuit design with
two-dimensional processing element (PE) arrays, such as systolic
arrays [Quinton 1987]. The popularity is mainly due to their appli-
cations in convolutional neural network computing, e.g., Google
TPU [Jouppi et al. 2017] and Eyeriss [Chen et al. 2019]. Systolic
arrays also have many other applications such as signal process-
ing [Chan and Chen 1988] and communication circuit designs [Asai
and Matsumoto 2000].

In general, there can be two approaches to the placement of a
design with a 2D PE array: (1) cell placement of a PE is generated
in advance and used as macros at chip-level integration, where
macro placement can be obtained through either manual designs or
software tools; (2) flat design where cells of PEs and random logic
are simultaneously placed. While the former approach is conceiv-
ably faster, the latter one potentially delivers better solution quality.
During cell placement of a PE in macro generation, information
about random logic placement is generally unavailable. Later, when
placing macros along with random logic, the relative locations of
cells in a PE are fixed. Therefore, in the macro-based approach, it is
challenging for intra-PE cell placement to minimize the wirelength
of nets connecting PE cells and random logic cells. By contrast,
such nets can be easily handled during flat design for wirelength
reduction. Since a PE typically has more than a hundred cells, the
impact of intra-PE cell placement can be significant. In the example
of Figure 1(a), PE cells are placed during macro generation without
knowledge of random logic locations. In Figure 1(b), PE cells are
placed along with random logic in a flat design. If the example is
for a 4 X 4 PE array, the flat design wirelength is about 8% shorter
than the macro-based design.

Although general-purpose placement tools are capable of simul-
taneous placement of PE and random logic cells, they are oblivious
to the regularity of PE arrays. From more than 30 years ago, it was

(a) PE cells are placed in macro gen-(b) PE cells are placed along with
eration, wirelength: 264 random logic, wirelength: 244

Figure 1: Macro-based design versus flat design.

found that regularity can facilitate better placement solutions [Cai
et al. 1990]. There have numerous studies on regularity-driven
placement [Cai et al. 1990; Chou et al. 2012; Nijssen and Jess 1996;
Ward et al. 2013; Yang et al. 2003; Ye and De Micheli 2000]. How-
ever, almost all the previous works are focused on conventional
datapath designs, whose regularity is repeated bit-slice patterns.
The regularity of 2D PE arrays is significantly different from that
of conventional datapath, and the difference is discussed with more
details in Section 4. Although the benefit of utilizing 2D PE array
regularity has been demonstrated for FPGA layout [Kong et al. 2020;
Zhang et al. 2019], there is no previous work on ASIC cell placement
with dedicated treatment to the regularity of 2D PE arrays, to the
best of our knowledge.

In this work, we investigate how to exploit the regularity of
2D PE arrays for reducing wirelength of placement solutions. We
assume that regularity has already been extracted using techniques
similar to previous work [Nijssen and Jess 1996]. Our work is built
upon RePlAce [Cheng et al. 2019], which is the latest state-of-the-
art for global placement. In the proposed technique, PE and random
logic cells are placed simultaneously. The contributions of this work
include the following.

o This work proposes the first ASIC global placement tech-
nique exploiting the regularity of 2D PE arrays, to the best
of our knowledge.

e Experiments are performed on matrix multiplication and
neural network circuits, including cases with over 1 million
cells. Compared to RePlAce, the proposed technique reduces
half-perimeter wirelength and Steiner tree wirelength by
about 6% and 12%, respectively, with a limited runtime in-
crease. Its half-perimeter wirelength is also about 11% smaller
than NTUplace3 [Chen et al. 2008] and POLAR [Lin et al.
2013].

The rest of this paper is organized as follows. The background
on systolic array (2D PE array) is introduced in Section 2. Previous
related works are summarized in Section 3. The difference between
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the regularity of 2D PE arrays and conventional datapath is dis-
cussed in Section 4. Section 5 provides a brief review of RePlAce.
Our regularity-aware placement technique is described in Section 6.
Experimental results are shown in Section 7, which is followed by
the conclusion and future research in Section 8.

2 SYSTOLIC ARRAY AND 2D PE ARRAY

A systolic array is an array of PEs (Processing Elements) for mas-
sively parallel computing. A PE is often composed of a MAC (Multiply-
Accumulate) unit and registers. It has two signature properties: reg-
ularity and local data interconnect. A 2D systolic array for matrix
multiplication C = A X B is demonstrated in Figure 2, where ele-
ments of matrices A and B are fed from the left and top, respectively,
and the output matrix elements are accumulated locally at each
PE. Data interconnects, which are multi-bit wide, are restricted
between neighboring PEs. Such local interconnections avoid long
signal propagation delays and thereby facilitate better performance.
Local interconnects are also more routable than global ones. Since
data move from each PE to its neighboring PEs like pulsation, such
an array is called systolic array.
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Figure 2: A 2D systolic array for matrix multiplication.

The concept of systolic array was developed in the 1970s and
became a hot research topic in the 1980s [Quinton 1987]. It has
wide applications, including digital signal processing [Chan and
Chen 1988], communication circuits [Asai and Matsumoto 2000],
linear algebra computing [Vucha and Rajawat 2011], finite field
division [Ibrahim et al. 2018] and hidden Markov model [Peltenburg
et al. 2016], to name a few. Recently, it regained popularity mainly
due to its applications in Convolutional Neural Network (CNN)
computing [Jouppi et al. 2017; Wei et al. 2017; Zhang et al. 2019].
In theory, a systolic array can be 1D or higher than 2D. This work
is focused on 2D as it is the most typical case in CNN computing.
In some CNN hardware designs [Chen et al. 2019], specific data are
broadcasted to PEs instead of going through local interconnects.
Although such designs are not strictly systolic arrays, they still use
2D PE arrays. Thus, our technique is designed for 2D PE arrays,
which are more general than systolic arrays.
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3 PREVIOUS RELATED WORK

Previous works on regularity-aware placement were mostly geared
toward datapath designs, whose regularity refers to repeated bit-
slice patterns. In [Cai et al. 1990], the repeated patterns allow data-
path placement to be formulated and solved as a linear placement
problem. An automatic regularity extraction technique is intro-
duced in [Nijssen and Jess 1996]. An abstract physical model [Ye
and De Micheli 2000] is proposed to capture the regularity to be
utilized by the linear placement of datapath. In [Yang et al. 2003],
soft alignment constraints are applied to a quadratic placement
technique for datapath. Later, the interactions between datapath
and random logic placement is considered in [Chou et al. 2012]. It
first clusters datapath into large macros while cell locations within
the macros are not decided. The macros are placed along with ran-
dom logic through mixed-size placement. Since datapath cells have
not been placed within the macros yet, the wirelength estimation
for nets between datapath cells and random logic can be wildly
inaccurate. Next, datapath is placed using nonlinear programming
with hard alignment constraints while random logic cells are fixed.
Last, random logic placement is refined while datapath placement
is fixed. A simultaneous datapath and random logic placement
method based on SimPL [Kim et al. 2011] is described in [Ward
et al. 2013], where soft alignment constraints are applied to facili-
tate placement regularity. An integrated datapath extraction and
placement method based on [Ward et al. 2013] is proposed in [Ward
et al. 2012].

To the best of our knowledge, there is no previous work consid-
ering the regularity of 2D PE arrays for general cell placement apart
from FPGAs. One remotely related work is [He et al. 2021], which is
a floorplanning method for mapping CNN circuits onto wafer-scale
processors. In an FPGA-based systolic array design [Zhang et al.
2019], each PE is constrained into a region identified by floorplan-
ning so that the CNN circuit can run with improved frequency. The
regularity of 2D PE arrays is utilized for FPGA placement in [Kong
et al. 2020]. It achieves 2 X —28% speedup with 3% — 9% wirelength
increase. However, its main techniques are simulated annealing
and ILP (Integer Linear Programming), which are difficult to handle
large placement problems in modern ASIC designs.

4 2D PE ARRAY VS. CONVENTIONAL
DATAPATH

Despite the similarity, there is a significant difference between
the regularity of 2D PE arrays and that of conventional datapath
designs. In datapath designs, blocks in a bit slice form a contiguous
row, while blocks of a bit stack, a.k.a. alignment group, can be
aligned into a contiguous column. By contrast, the regularity of a
PE array is coarse-grained and not continuous. More specifically,
the repeated patterns among cells are interleaved across multiple
PEs instead of being contiguous. For example, in Figure 3 (b), dark
orange cells labeled with one repeat the same pattern, but they are
interleaved with grey cells labeled with 3. Due to this difference,
regularity techniques for datapath may not be applicable for a PE
array. For example, in [Ward et al. 2013], a pseudo net is applied to
each alignment group so that its blocks can be placed together. This
is illustrated in Figure 3 (a), where blocks of the same alignment
group have the same color. If this technique is directly applied for
a PE array, a pseudo net is enforced to cells of the same regularity
group (cells of the same color in Figure 3 (b) and (c)). Such pseudo
nets would cause PE overlap, which is not preferred, as shown in
Figure 3 (c).
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(a) Pseudo nets for bit stacks of datapath

(b) An example of 2D PE array

(c) Applying pseudo nets on the 2D PE array

Figure 3: Different regularities between conventional datapath and 2D PE array. Red dashed lines indicate pseudo nets. Cells of

the same color are in the same alignment/regularity group.

5 BACKGROUND ON REPLACE

RePlAce[Cheng et al. 2019] is the latest version of the electrostatics-
based placement approach, called ePlace[Lu et al. 2015]. It includes
enhancements to ePlace[Lu et al. 2015] and the capability of ad-
dressing routability. We mainly use its wirelength and cell density
optimization techniques and defer the routability part into future
work. RePlAce[Cheng et al. 2019] significantly outperforms almost
all of its prior works, and the validation has been performed on
almost all public domain benchmark suites, including those from
ISPD, ICCAD, and DAC contests.

Here we briefly review some key concepts in RePlAce/ePlace to
help understand our approach while details can be found in [Cheng
etal. 2019; Lu et al. 2015]. Let o = (x,y)! denote the vectors of x-y
coordinates of movable cells. The problem formulation is

min W(o) + A- D(0) v

where W (o) is the wirelength function, D(v) is the cell density
function and A is a weighting factor. The wirelength function W ()
attempts to estimate HPWL (Half Perimeter Wire Length) and is
smoothed by a weighted average (WA) net model. The x-component
of HPWL for net e in the WA model is given by

Dice Xiexp(xi/y)  Xiee Xiexp(=xi/y) @
Ziceexp(xi/y)  Zieeexp(-xi/y)
where y is a parameter controlling the modeling accuracy.
Minimizing D(v) is to spread out cells and reduce cell overlaps.
A layout area is tessellated to a uniform grid of rectangle bins, and
D(v) quantifies the degree of cell overflows in this bin grid. A key
innovation of RePlAce/ePlace is to model each cell with electric
charges proportional to its area. Then, the repelling forces among
the charges naturally spread out cells. Assuming that the bins form
a B X B array, RePlAce/ePlace models D(v) with a potential energy

function
eEg = Y . pE&DYED) &)

0<X<B0<y<B

Wex (v) =

where % /{ means column/row indices of bins, p is the charge den-

sity of a bin and (%, §) represents local electric potential. The

gradient V@, models the e-force (electric force) that repels cells

away from each other. It is shown in [Lu et al. 2015] that (%, §j) can

be computed from p(%, §) through discrete cosine transformation.
Then, the nonlinear programming problem becomes

min W(o) + 1 0() (4

where W (o) is the WA model for the total HPWL. This problem is
solved by Nesterov’s method with some enhancements, including
area-driven preconditioning and Lipschitz constant-based step size
estimation. Compared to ePlace, RePlAce also applies a local density
function into the objective for further improvement.

6 PLACEMENT WITH 2D PE ARRAY
REGULARITY

6.1 Preliminaries

6.1.1  Problem Formulation. The input to placement is a netlist
G(V,E), where V denotes the set of movable cells and fixed 10
cells, and E represents the set of nets. The netlist contains a 2D
PE array, which has been identified by an automatic method such
as [Nijssen and Jess 1996]. It also includes random logic such as
buffers, controllers, etc. A legitimate assumption is that IO cells
of the same type of data are placed contiguously on the same side
of the layout area. The problem formulation is to minimize total
wirelength subject to the constraint that there is no overlap among
cells. Like in many previous works, HPWL is employed here for
wirelength estimation. Please note that regularity is not a constraint
in the problem formulation. Instead, it is a help for achieving small
wirelength.

6.1.2  Overview of the Proposed Approach. Exploiting the 2D ar-
ray regularity in RePlAce is not straightforward. Actually, directly
enforcing regularity constraints throughout RePlAce makes solu-
tion convergence very difficult. We propose an approach whose
overview is provided in Figure 4. In the Figure, white boxes indicate
techniques from previous works, while colored boxes mean new
changes by our approach. Step 0 is to determine the orientation of
the given PE array. This part is essential for considering regularity
in later steps and elaborated in Section 6.2. Step 1 is the initial qua-
dratic placement like RePlAce [Cheng et al. 2019] and ePlace [Lu
et al. 2015]. The difference here is that hard regularity constraints
are enforced for PE array cells, and the details are provided in Sec-
tion 6.3. Step 2 consists of kernel RePlAce iterations with array
regularization and is described in Section 6.4. In Step 3, the original
RePlAce iterations are continued. We adopt the detailed placer of
NTUplace3 [Chen et al. 2008] for Step 4 in the proposed approach.

6.1.3  Soft Regularity. Since regularity is not considered in Step 3,
the regularity in final solutions is soft instead of strict. Applying
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Figure 4: Overview of the proposed approach.

regularity in Steps 1 and 2 can help better solutions. However,
continuing to exercise regularity in later iterations causes struggles
with the original RePlAce objective and makes convergence very
difficult. A similar observation [Ward et al. 2013] was made for
datapath regularity as well. In FPGA placement, hard regularity
constraints increase wirelength [Kong et al. 2020]. Moreover, our
approach is for general 2D PE arrays, which are not necessarily
systolic arrays. As such, there might be random logic cells that are
preferred to be placed within the array, between PE columns and
rows. This is another reason why hard regularity is difficult.

6.2 Step 0: PE Array Orientation

For a 2D PE array, its placement can be arranged to eight different
orientations, all of which are regular. For example, the placement of
Figure 5(a) can be rotated to (b) or flipped to (c) while its regularity
is maintained. In the regularity-constrained quadratic placement of
Step 1 and the array regularization in Step 2, the array orientation
needs to be determined in advance. This can be realized by examin-
ing data movement and IO locations. For the example in Figure 2,
the PEs that first receive elements of matrix A should be placed as
the first column on the left, while the PEs that first receive elements
of matrix B need to be placed as the first row on the top.

° ° ° ° o0 .‘
! .. B . LN ] L]

LE X ] °

L]

(a) (®) ©

Figure 5: (a) The original orientation; (b) rotated by 90° clock-
wise; (c) vertical flipping.

6.3 Step 1: Initial Quadratic Placement

Step 1 in Figure 4 is an initial quadratic placement like [Lu et al.
2015] but with regularity constraints. Let (x, y) be the vectors indi-
cating x-y coordinates of all movables in the given circuit. Quadratic

Donghao Fang, Boyang Zhang, Hailiang Hu, Wuxi Li, Bo Yuan, and Jiang Hu

placement assumes all nets are two-pin nets, while a multi-pin net
can be transformed to a set of 2-pin nets using the Bound2Bound
model [Kim et al. 2011]. Quadratic placement is to minimize the
following quadratic wirelength without considering cell overlaps
or other constraints:

1 1
Wo(x.y) = ExTAxx +hlx+ 5yTA yy+hly (5)

where Ay and Ay are symmetric positive definite matrices indi-
cating connections among movable cells, and hx/hy are constant
vectors implying connections with fixed cells. By making the gradi-
ent of Wo (x,y) to be zero, the solution can be found by solving a
linear system.

We apply hard regularity constraints to PE cells for the quadratic
placement for three reasons. First, such a quadratic placement so-
lution would provide the RePlAce kernel with an initial prototype
with 2D regularity so that the array regularization in Step 2 be-
comes more accessible. Second, quadratic placement is a simple
method without considering cell overlaps and thus does not conflict
with the regularity constraints. Third, the regularity constraints can
significantly reduce the number of variables in solving the linear
system.

! Ax i

__ ______ PEl'IJ'
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Figure 6: Hard regularity constraints for PE cells.

Consider a circuit that contains an m X n PE array, represented
by II = {PELl, PE13,....PE1n. PEs 1, ..., PEm,n}. Each PE;; € II
has p cells {cil,j, c'f,j, cf j}, Identical cells of different PEs form a
regularity group G¥ = {cf.fjli =1,...,m;j=1,...n} For the example
in Figure 6, all green cells belong to G! and all blue cells form G2, For
the cells in the same group Gk, we enforce the following constraints

=l v G- A i=Lomj=1n

(6)
g =y G- Ay =1 mj=1n

where (x{fj, y{fj) denote the coordinates of cell cf.fj, and Ay/Ay are
variable column/row pitches as shown in Figure 6. The constraints
here assume that we know the PE array orientation, which is deter-
mined in Step 0 of Figure 4. Even when m = n, the array orientation
still matters.

For an m x n PE array where each PE has p cells, the original
number of decision variables is 2mnp. After enforcing constraints
(6), each regularity group G* has only 4 variables: xil, yfl, Ay, Ay,
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where Ay and A, are shared among all regularity groups. Since
there are p regularity groups, the number of variables for the entire
array is reduced to 2p + 2. Such variable reduction helps speedup
the quadratic placement.

6.4 Step 2: RePlAce with Array Regularization

The kernel of RePlAce is composed of iterations of Nesterov's
method. For an intermediate solution ¢ at the i-th iteration, the
gradient of objective function is computed and applied to obtain
solution ©;41. To exploit the 2D regularity for a PE array, we regular-
ize solution v; to @; before the gradient computation. The RePlAce
iterations with array regularization form Step 2 in Figure 4, where
sub-steps are shown in the blue box on the right.

The array regularization is to take the solution #; and force its
PE array IT to be placed with 2D regularity and fit in the region
occupied by the array in v;. Let R; be the region occupied by IT in
solution v, where PE placement can be irregular. The regularization
changes the placement of IT cells according to regular 2D array in
R;. Please note that the area of &; can be smaller than the total cell
area of Il in early iterations.

Algorithm 1 Array Regularization

Input: PE array IT and placement solution v;
Output: Regularized solution ¢;, IT placement is regular

1: (Xf]j, yf]j) «— COG OfP.Ei,j, i=1..mj=1.,n
2 Xmin & minwyj Xi j» Xmax € MaXy; j Xi j

3 Ymin < MUy ; Yij, Ymax < MaAXy; | Yi,j

4 Py (xmax - xmin)/(n - 1)

5: Py — (Ymax — Ymin) /(M —1)

6 fori=1:mdo

7: for j=1:ndo

8 fork=1:pdo

9: xf] — xil e (] - 1)Px - (xl,l - xmin)
10: yfj — yil + (i - 1)Py - (yl,l - ymin)

The pseudo code for the regularization is provided in Algorithm 1.
It assumes that the PE array orientation is like Figure 5(c). The other
orientations can be handled in the same way, and the orientation
is determined in Step 0 (Section 6.2). In line 1, the COG (Center
of Gravity) of each PE in solution o; is calculated. Region R; is
defined by the bounding box (Xmin, Ymin) — (Xmax, Ymax), which
is obtained through lines 2 and 3. Note that the bounding box is
obtained through PE COGs instead of PE cell locations. This is
because PE COGs reflect the general shape of a PE array region,
while PE cells may include outliers far from the PE array’s mass.
Lines 4 and 5 caleulate the column and row pitches to be enforced in
the regularization. The locations of individual PE cells are decided
through lines 6-10. The first two terms on the right-hand side of
lines 9 and 10 are very similar to Equation (6) except that Py and
Py, are constants while Ay and A, are variables. The last two terms
in lines 9 and 10 are to handle a special case where PEj is not
at the lower-left corner of the array in »;. This case is illustrated
in Figure 7. By subtracting xy 1 — Xmin (41,1 — Ymin) in line 9 (line
10}, PEq 1 is forced to be at the lower-left corner in the regularized
solution @;.

After the array regularization, the computation of wirelength
gradient V,W in Step B.2 of Figure 4 can be accelerated due to the
repeated placement patterns. One example is shown in Figure 6,
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Figure 7: An example where PE;; is not at the lower-left
corner in sclution v;.

where the four nets in solid lines are identical. We only need to
compute the gradient for one of them and then duplicate the result
to the other nets of the same pattern.

The array regularization is performed only for RePlAce itera-
tions in Step 2 of Figure 4 but not for later iterations in Step 3. There
are two main reasons. First, RePlAce assumes that each cell carries
a positive charge and uses an electrical repelling force to spread out
cells. The resulting equipotential lines almost always have curva-
tures and cause uneven forces on each side of the PE array region.
Hence, RePlAce tends to place a PE array into a rounded shape
and conflicts with the effort of forming a rectangular array. Second,
random logic cells are not placed in a regular fashion, and they
have wire connections with PE cells, which tend to cause irregu-
larity for PE cell placement. Overall, continuing the regularization
throughout all RePlAce iterations easily incurs solution divergence.

7 EXPERIMENTS
7.1 Testcase Generation

To evaluate placement with 2D PE arrays, we designed three matrix
multiplication circuits and six CNN (Convolutional Neural Net-
work) circuits as test cases. Each circuit has an m X m PE array, and
the overall architecture is shown in Figure 8. Besides a PE array,
each circuit has data buffers and a controller that coordinates data
movement on the circuit.

| Controller I-,_,' >| ‘Weight Data Buffer |

Input Data Buffer

Output Data Buffer |

— = : Control Wire — : Data Wire

Figure 8: The overall architecture of the test cases

The six CNN circuits cover two commonly seen variants: weight
stationary (WS) and output stationary (OS). Here, the weight means
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the filter elements for the convolution operation of CNN. In a WS
design, weight data are preloaded onto the weight registers of each
PE. During computation, CNN input data are fed from the left
side and shifted toward the right side through the PE array, while
output data move top-down and accumulate the partial sum. In
an OS design, both input and weight data shift through the array
while output data are accumulated locally at each PE before they
are sent out. The PE designs for WS and OS cases are different and
are shown in Figure 9. The controller designs for WS and OS are
also different. In these designs, a PE contains near 200 cells.
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Figure 9: Weight stationary (left) and output stationary (right)
CNN PE designs.

These cases are designed with 8-bit fixed-point computation,
which is common for CNN circuit designs. They are synthesized
by Synopsys Design Vision using Nangate 45nm cell library. The
IO placement is obtained using Cadence Innovus.

Table 1: Statistics of the testcases

Testcase | #cells | #movables | #nets | % PE cells

MM 16 X 16 83K 82K 95K 58%
MM 32 X 32 326K 325K 377K 58%
MM 64 X 64 | 1292K 1290K | 1497K 59%
CNNOS 16 X 16 83K 83K 96K 57%
CNNOS 32 x 32 326K 325K 378K 58%
CNNOS 64 x 64 | 1293K 1291K | 1498K 58%
CNNWS 16 X 16 83K 82K 95K 59%
CNNWS 32 X 32 328K 327K 379K 60%
CNNWS 64 X 64 | 1306K 1305K | 1511K 60%

The major characteristics of the test cases are summarized in
Table 1, where MM means matrix multiplication, CNNOS indicates
output stationary design of CNN and CNNWS denotes weight
stationary design of CNN. The PE array sizes are also provided in
the first column. Each large case has near 1.3 million cells and near
1.5 million nets. The number of PE cells accounts for 56% — 60% of
the total number of cells.

7.2 Experiment Setup

The experiments were performed on a computer with AMD 3700X
processor of 4.05GHz and 16GB memory and 64-bit Linux OS. Our
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approach is compared with ReRIAce [Cheng et al. 2019], NTU-
place3 [Chen et al. 2008] and POLAR [Lin et al. 2013]. The imple-
mentation of our approach is based on the source code of RePlAce.
The results of RePlAce! and NTUplace3? are obtained through run-
ning downloaded software. We implemented POLAR and matched
its results on ISPD2005 contest benchmark. The global placement
solutions of these methods are continued with the detailed place-
ment of NTUplace3, where the target utilization is 1.0. Steiner tree
wirelength is estimated using FLUTE [Chu and Wong 2008].

7.3 Main Results

The main results are summarized in Table 2. On average, our ap-
proach reduces HPWL by 5.97%, 11.8%, 13.3% over RePlAce, NTU-
pLACE3, and POLAR, respectively. In addition, our approach results
in 12% less Steiner tree wirelength than RePlAce. A close look tells
that our Steiner tree wirelength results are usually similar to HPWL,
while RePlAce results in a much more significant difference. This
observation is consistent with that in datapath layout [Ward et al.
2013]. Although our approach increases CPU runtime, the increase
is limited. For instance, the runtime difference from NTUplace is
less than 5%. We set the timeout limit as 3 hours, which is about 6x
the longest runtime among all cases. NTUplace3 cannot complete
CNNWS 64 X 64 within this limit.

7.4 Other Results

The effect of hard regularity constraints in initial quadratic place-
ment (Section 6.3) is examined, and the results are shown in Table 3.
Although the regularity constraints increase HPWL at the quadratic
placement stage, they contribute to the overall HPWL reduction af-
ter detailed placement. Moreover, the constraints reduce quadratic
placement runtime by 38.9%.
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Figure 10: Electrical fields and an equipotential line for an
intermediate RePlAce solution on CNNOS 16 X 16.

In Section 6.4, it is mentioned that the array regularization cannot
continue throughout all RePlAce iterations as the rectangle regular-
ity would conflict with the tendency of curving equipotential lines
in RePlAce. In Figure 10, the electrical fields of an intermediate
RePlAce solution are indicated by short red arrows, and the circle
is an equipotential line. We further investigate the effect of increas-
ing/decreasing the number of iterations with array regularization.
Suppose Step 2 of Figure 4 has I iterations, where the array reg-
ularization is performed. If I = 0, our approach is reduced to the
original RePlAce. We vary the value of I and observe the effect on
solution convergence and HPWL. This experiment was conducted
for CNNOS 16 X 16, with two variants where the target overflows in

Lhttps://github.com/The-OpenROAD-Project/RePl Ace/tree/standalone
%https://github.com/The-OpenROAD-Project/RePl Ace/tree/standalone/ntuplace
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Table 2: Main results on HPWL (x10°), Steiner tree wirelength stWL (x10°) and CPU runtime (s).

RePlAce NTUplace3 POLAR Ours
Testcase | HPWL | stWL | CPU | HPWL CPU | HPWL | CPU | HPWL | stWL | CPU
MM 16X 16 5.89 6.34 38 6.07 37 6.14 33 5.76 5.98 60
MM 32x 32 23.49 25.84 280 24.77 281 25.17 188 22.92 | 23.49 494
MM 64 64 96.45 | 104.23 | 1406 | 105.25 1063 | 107.04 968 86.31 | 89.85 | 1827
CNNOS 16x16 5.89 6.60 39 6.35 40 6.22 36 5.71 6.11 37
CNNOS 32x32 26.70 29.89 261 28.16 291 28.59 229 24.85 | 26.83 151
CNNOS 64x64 99.25 [ 109.84 | 1537 | 107.71 1120 | 109.80 929 89.02 | 92.31 | 1681
CNNWS 16x16 5.92 6.37 41 6.3 41 5.94 31 5.80 5.90 43
CNNWS 32x32 26.56 28.71 203 26.98 328 27.52 225 25.49 | 25.40 256
CNNWS 64x64 99.32 | 107.32 | 1195 N/A | Timeout | 111.16 915 91.27 | 91.55 | 1406
Norm average 1.059 1.120 | 0.918 1.118 0.958 1.133 | 0.750 1.000 | 1.000 | 1.000

Table 3: Effects of hard regularity constraints in quadratic placement. QP: Quadratic Placement. DP: Detailed Placement.

QP with regularity constraints QP without regularity constraints
Testcase | OP HPWL | QP CPU(s) | DP HPWL(x10°) | Total CPU(s) | QP HPWL | QP CPU(s) | DP HPWL(x10°) | Total CPU(s)
CNNWS 16X16 32403 2.03 5.80 43 27067 2.72 5.91 47
CNNWS 32x32 87249 7.78 25.49 256 85818 11.19 25.60 277
CNNWS 64x64 352790 35.91 91.27 1406 328115 49.95 95.58 1772
Norm average 1.000 1.000 1.000 1.000 0.91 1.389 1.018 1.145
global placement were set to 0.1 and 0.2, respectively. The conver-
gence results are plotted in Figure 11 where the dashed line means O J
that there is no convergence. The leftmost dots correspond to the B E:g:t z::::zx - gj;
original RePlAce. One can see that the solution convergence be- 6.2 |
comes difficult when I is large. Especially when the target overflow |
is 0.1, there is no convergence as Iy reaches 250. The post-detailed 6.0 j
placement HPWL results are shown in Figure 12. There is a sweet % — ’,
spot for HPWL minimization, and HPWL increases when I is too Tss k S \/
large. These results confirm that the array regularization cannot be =
carried out throughout all RePlAce iterations. 56
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Figure 11: Effect of increasing #iterations of Step 2.

In Step B.2 of Figure 4, the computation of wirelength func-
tion gradient V, W is accelerated by making use of the regularity.
Table 4 shows the effect of this technique. Compared to computa-
tions without this acceleration, this technique can reduce the global
placement runtime by about 30%.

7.5 Placement Demonstration

In order to obtain an intuition of the soft regularity in our approach,
we plot placement visualizations for CNNWS 16 x 16 in Figure 13,

# iterations of step 2

Figure 12: HPWL vs. #iterations of Step 2.

Table 4: Global placement runtime (in seconds) comparison
between our approach with Step B.2 in Figure 4, where the
computation of V,W is accelerated, and ordinary computa-
tion without the acceleration.

Testcase | Fast V,,W Ordinary V,,W
CNNOS 16x16 37 43
CNNOS 32x32 151 196
CNNOS 64x64 1681 2427

Average 1.00 1.30

where cells of the same PE share the same color and all random
logic cells are in red color. In (a) and (b), we compare intermediate
solutions from RePlAce and our approach at the same iteration. In
our approach, the first 200 iterations are Step 2 in Figure 4 where ar-
ray regularization is performed. The placement regularity of the PE
array is evident in Figure 13(b), while the regularity in Figure 13(a}
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(a) RePlAce iteration 200 (b) Our approach after 200 iterations in

Step 2

(c) Detailed placement from RePlAce (d) Detailed placement from our ap-
proach

Figure 13: (a) Placement of RePlAce at iteration 200; (b) Place-
ment after 200 iterations in Step 2 of our approach; (c) Final
detailed placement resulted from RePlAce; (d) Final detailed
placement resulted from our approach.

is much weaker. The final solutions after detailed placement are
compared in Figures 13(c) and (d). One can see that the PE array
from our approach shows an approximated regularity or soft regu-
larity while RePlAce tends to form a rounded shape.

8 CONCLUSION AND FUTURE WORK

The regularity of 2D PE arrays allows placement tools to improve for
a category of designs with growing popularity, such as CNN circuits.
This work proposes a global placement technique for exploiting the
regularity based on RePlAce, the latest state-of-the-art placement
framework. Experimental results show that the proposed technique
can reduce half perimeter wirelength and Steiner tree wirelength
by 6% and 12%, respectively. In future research, we will extend this
technique to handle routability.
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