é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

CACTI: Captcha Avoidance via Client-side
TEE Integration

Yoshimichi Nakatsuka and Ercan Ozturk, University of California, Irvine;
Andrew Paverd, Microsoft Research; Gene Tsudik, University of California, Irvine

https://www.usenix.org/conference/usenixsecurity21/presentation/nakatsuka

This paper is included in the Proceedings of the
30th USENIX Security Symposium.
August 11-13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium
is sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

CACTI: Captcha Avoidance via Client-side TEE Integration

Ercan Ozturk®
UC Irvine

ercano@uci.edu

Yoshimichi Nakatsuka*
UC Irvine

nakatsuy @uci.edu

Abstract

Preventing abuse of web services by bots is an increasingly
important problem, as abusive activities grow in both vol-
ume and variety. CAPTCHASs are the most common way for
thwarting bot activities. However, they are often ineffective
against bots and frustrating for humans. In addition, some
recent CAPTCHA techniques diminish user privacy. Mean-
while, client-side Trusted Execution Environments (TEEs) are
becoming increasingly widespread (notably, ARM TrustZone
and Intel SGX), allowing establishment of trust in a small part
(trust anchor or TCB) of client-side hardware. This prompts
the question: can a TEE help reduce (or remove entirely) user
burden of solving CAPTCHAs?

In this paper, we design CACTI: CAPTCHA Avoidance via
Client-side TEE Integration. Using client-side TEEs, CACTI
allows legitimate clients to generate unforgeable rate-proofs
demonstrating how frequently they have performed specific
actions. These rate-proofs can be sent to web servers in lieu
of solving CAPTCHAs. CACTI provides strong client pri-
vacy guarantees, since the information is only sent to the
visited website and authenticated using a group signature
scheme. Our evaluations show that overall latency of gener-
ating and verifying a CACTI rate-proof is less than 0.25 sec,
while CACTI’s bandwidth overhead is over 98% lower than
that of current CAPTCHA systems.

1 Introduction

In the past two decades, as Web use became almost universal
and abuse of Web services grew dramatically, there has been
an increasing trend (and real need) to use security tools that
help prevent abuse by automated means, i.e., so-called bots.
The most popular mechanism is CAPTCHAs: Completely
Automated Public Turing test to tell Computers and Humans
Apart [58]. A CAPTCHA is essentially a puzzle, such as an

*The first and second authors contributed equally to this work.
"Work partially done while visiting the University of California, Irvine,
as a US-UK Fulbright Cyber Security Scholar.

Gene Tsudik
UC Irvine
gene.tsudik@uci.edu

Andrew Paverd’
Microsoft Research

andrew.paverd @microsoft.com

object classification task (Figure 1a) or distorted text recogni-
tion (see Figure 1b), that aims to confound (or at least slow
down) a bot, while being easily' solvable by a human user.
CAPTCHA:s are often used to protect sensitive actions, such
as creating a new account or submitting a web form.

Although primarily intended to distinguish humans from
bots, it has been shown that CAPTCHAs are not very effec-
tive at this task [50]. Many CAPTCHASs can be solved by
algorithms (e.g., image recognition software) or outsourced
to human-driven CAPTCHA-farms’ to be solved on behalf
of bots. Nevertheless, CAPTCHAs are still widely used to
increase the adversary’s costs (in terms of time and/or money)
and reduce the rate at which bots can perform sensitive ac-
tions. For example, computer vision algorithms are compu-
tationally expensive, and outsourcing to CAPTCHA-farms
costs money and takes time.

From the users’ perspective, CAPTCHAs are generally
unloved (if not outright hated), since they represent a barrier
and an annoyance (a.k.a. Denial-of-Service) for legitimate
users. Another major issue is that most CAPTCHAs are vi-
sual in nature, requiring sufficient ambient light and screen
resolution, as well as good eyesight. Much less popular audio
CAPTCHAs are notoriously poor, and require a quiet setting,
decent-quality audio output facilities, as well as good hearing.

More recently, the reCAPTCHA approach has become pop-
ular. It aims to reduce user burden by having users click a
checkbox (Figure [c), while performing behavioral analysis
of the user’s browser interactions. Acknowledging that even
this creates friction for users, the latest version (“invisible re-
CAPTCHA”) does not require any user interaction. However,
the reCAPTCHA approach is potentially detrimental to user
privacy because it requires maintaining long-term state, e.g.,
in the form of Google-owned cookies. Cloudflare recently
decided to move away from reCAPTCHA due to privacy
concerns and changes in Google’s business model [14].

Notably, all current CAPTCHA-like techniques are server-

"Exactly what it means to be “easily” solvable is subject to some debate.
2A CAPTCHA farm is usually sweatshop-like operation, where employ-
ees solve CAPTCHAS for a living.

USENIX Association

30th USENIX Security Symposium 2561

side, i.e., they do not rely on any security features of, or make
any trust assumptions about, the client platform. The purely
server-side nature of CAPTCHAs was reasonable when client-
side hardware security features were not widely available.
However, this is rapidly changing with the increasing popu-
larity of Trusted Execution Environments (TEEs) on a variety
of computing platforms, e.g., TPM and Intel SGX for desk-
tops/laptops and ARM TrustZone for smartphones and even
smaller devices. Thus, it is now realistic to consider abuse
prevention methods that include client-side components. For
example, if a TEE has a trusted path to some form of user inter-
face, such as a mouse, keyboard, or touchscreen, this trusted
User Interface (UI) could securely confirm user presence. Al-
though this feature is still unavailable on most platforms, it
is emerging through features like Android’s Protected Confir-
mation [33]. This approach’s main advantages are minimized
user burden (e.g., just a mouse click) and increased security,
since it would be impossible for software to forge this action.
Admittedly however, this approach can be defeated by ad-
versarial hardware e.g., a programmable USB peripheral that
pretends to be a mouse or keyboard.

However, since the majority of consumer devices do not cur-
rently have a trusted UI, it would be highly desirable to reduce
the need for CAPTCHA s using only existing TEE functional-
ity. As discussed above, the main goal of modern CAPTCHAs
is to increase adversarial costs and reduce the rate at which
they can perform sensitive actions. Therefore, if legitimate
users had a way to prove that their rate of performing sensitive
actions is below some threshold, a website could decide to
allow these users to proceed without solving a CAPTCHA. If
a user can not provide such a proof, the website could simply
fall back to using CAPTCHAs. Though this would not fully
prevent bots, it would not give them any advantage compared
to the current arrangement of using CAPTCHAs.

Motivated by the above discussion, this paper presents
CACT], a flexible mechanism for allowing legitimate users to
prove to websites that they are not acting in an abusive manner.
By leveraging widespread and increasing availability of client-
side TEEs, CACTI allows users to produce rate-proofs, which
can be presented to websites in lieu of solving CAPTCHAs.
A rate-proof is a simple assertion that:

1. The rate at which a user has performed some action is

below a certain threshold, and

2. The user’s time-based counter for this action has been

incremented.
When serving a webpage, the server selects a threshold value
and sends it to the client. If the client can produce a rate-proof
for the given threshold, the server allows the action to proceed
without showing a CAPTCHA. Otherwise, the server presents
a CAPTCHA, as before. In essence, CACTI can be seen as a
type of “express checkout” for legitimate users.

One of the guiding principles and goals of CACTI is user
privacy — it reveals only the minimum amount of information
and sends this directly to the visited website. Another prin-

ciple is that the mechanism should not mandate any specific
security policy for websites. Websites can define their own
security policies e.g., by specifying thresholds for rate-proofs.
Finally, CACTI should be configurable to operate without any
user interaction, in order to make it accessible to all users,
including those with sight or hearing disabilities.

Although chiefly motivated by the shortcomings of
CAPTCHAs, we believe that the general approach of client-
side (TEE-based) rate-proofs, can also be used in other com-
mon web scenarios. For example, news websites could allow
users to read a limited number of articles for free per month,
without relying on client side cookies (which can be cleared)
or forcing users to log-in (which is detrimental to privacy). On-
line petition websites could check that users have not signed
multiple times, without requiring users to provide their email
addresses, which is once again, detrimental to privacy. We
therefore believe that our TEE-based rate-proof concept is a
versatile and useful web security primitive.

Anticipated contributions of this work are:

1. We introduce the concept of a rate-proof, a versatile web
security primitive that allows legitimate users to securely
prove that their rate of performing sensitive actions falls
below a server-defined threshold.

2. We use the rate-proof as the basis for a concrete client-
server protocol that allows legitimate users to present
rate-proofs in lieu of solving CAPTCHAs.

3. We provide a proof-of-concept implementation of
CACTI, over Intel SGX, realized as a Google Chrome
browser extension.

4. We present a comprehensive evaluation of security, la-
tency, and deployability of CACTI.

Organization: Section 2 provides background information,
and Section 3 defines our threat model and security require-
ments. Next, Section 4 presents our overall design and high-
lights the main challenges in realizing this. Then, Section 5
explains our proof of concept implementation and discusses
how CACTI overcomes the design challenges, followed by
Section 6 which presents our evaluation of the security, per-
formance, and deployability of CACTI. Section 7 discusses
further optimizations and deployment considerations, and Sec-
tion 8 summarizes related work.

2 Background

2.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a primitive that
protects confidentiality and integrity of security-sensitive code
and data from untrusted code. A typical TEE provides the
following features:

Isolated execution. The principal function of a TEE is to
provide an execution environment that is isolated from all
other software on the platform, including privileged system
software, such as the OS, hypervisor, or BIOS. Specifically,

2562 30th USENIX Security Symposium

USENIX Association

Select all images with

a fire hydrant

Click verify once there are none left.

c 0o

(a) Image-based object recognition reCAPTCHA [18]
- * ’
SverlpOks iogHuy
| =

Type the two words: ~]
o reCAPTCHA
2]

(b) Image-based text recognition reCAPTCHA [18]

I'm not a robot

(c) Behavior-based reCAPTCHA [18]

Figure 1: Examples of CAPTCHAs

data inside the TEE can only be accessed by the code run-
ning inside the TEE. The code inside the TEE provides well-
defined entry points (e.g., call gates), which are enforced by
the TEE.

Remote attestation. Remote attestation provides a remote
party with strong assurances about the TEE and the code run-
ning therein. Specifically, the TEE (i.e., the prover) creates a
cryptographic assertion that: (1) demonstrates that it is a gen-
uine TEE, and (2) unambiguously describes the code running
in the TEE. The remote party (i.e., the verifier) can use this
to decide whether to trust the TEE, and then to bootstrap a
secure communication channel with the TEE.

Data sealing. Data sealing allows the code running inside
the TEE to encrypt data such that it can be securely stored
outside the TEE. This is typically implemented by providing
the TEE with a symmetric sealing key, which can be used to
encrypt/decrypt the data. In current TEEs, sealing keys are
platform-specific, meaning that data can only be unsealed on
the same platform on which it was sealed.

Hardware monotonic counters. A well known attack
against sealed data is rollback, where the attacker replaces

the sealed data with an older version.Mitigating this requires
at least some amount of rollback-protected storage, typically
realized as a hardware monotonic counter. When sealing,
the counter can be incremented and the latest value is in-
cluded in the sealed data. When unsealing, the TEE checks
that the included value matches the current hardware counter
value. Since hardware counters themselves require rollback-
protected storage, TEEs typically only have a small number
of counters.

One prominent TEE example is Intel Software Guard Ex-
tensions (SGX) [24,43,48]. SGX is a hardware-enforced TEE
available on Intel CPUs from the Skylake microarchitecture
onwards. SGX allows applications to create isolated environ-
ments, called enclaves, running in the application’s virtual ad-
dress space. A special region in physical memory is reserved
for enclaves, called the Enclave Page Cache (EPC). The EPC
can hold up to 128MB of code and data, shared between all
running enclaves. When enclave data leaves the CPU bound-
ary, it is transparently encrypted and integrity-protected by
CPU’s Memory Encryption Engine (MEE) to defend against
physical bus snooping/tampering attacks. Since enclaves run
in the application’s virtual address space, enclave code can
access all the memory of its host application, even that outside
the enclave. Enclave code can only be called via predefined
function calls, called ECALLSs.

Every enclave has an enclave identity (MRENCLAVE), which
is a cryptographic hash of the code that has been loaded into
the enclave during initialization, and various other configu-
ration details. Each enclave binary must be signed by the
developer, and the hash of the developer’s public key is stored
as the enclave’s signer identity (MRSIGNER).

SGX provides two types of attestation: local and remote.
Local attestation allows two enclaves running on the same
platform to confirm each other’s identity and communicate se-
curely, even though this communication goes via the untrusted
OS. SGX uses local attestation to build remote attestation.
Specifically, an application enclave performs local attestation
with an Intel-provided quoting enclave, which holds a group
private key provisioned by Intel. The quoting enclave veri-
fies the local attestation and creates a signed guote, which
includes the application enclave’s and signer’s identities, as
well as user-defined data provided by the application enclave.
This quote is sent to the remote verifier, which, in turn, uses
the Intel Attestation Service (IAS) to verify it. Since the at-
testation uses a group signature scheme, the verifier cannot
determine whether two quotes were generated by the same
platform.

In SGX, data can be sealed in one of two modes, based
on: (1) the enclave’s identity, such that only the same type of
enclave can unseal it, or (2) the signer identity, such that any
enclave signed by the same developer (running on the same
platform) can unseal it. SGX provides hardware monotonic
counters and allows each enclave to use up to 256 counters at
a time.

USENIX Association

30th USENIX Security Symposium 2563

2.2 Group Signatures

A group signature scheme aims to prevent the verifier from
determining the group member which generated the signature.
Each group member is assigned a group private key under
a single group public key. In case a group member needs to
be revoked, a special entity called group manager can open
the signature. A group signature scheme is composed of five
algorithms [26]:

* Setup: Given a security parameter, an efficient algorithm
outputs a group public key and a master secret for the
group manager.

* Join: A user interacts with the group manager to receive
a group private key and a membership certificate.

* Sign: Using the group public key, group private key,
membership certificate, and a message m, a group mem-
ber generates a group signature of m.

* Verify: Using the group public key, an entity verifies a
group signature.

* Open: Given a message, a putative signature on the
message, the group public key and the master secret, the
group manager determines the identity of the signer.

A secure group signature scheme satisfies the following prop-
erties [26]:

» Correctness: Signatures generated with any member’s
group private key must be verifiable by the group public
key.

» Unforgeability: Only an entity that holds a group pri-
vate key can generate signatures.

* Anonymity: Given a group signature, it must be compu-
tationally hard for anyone (except the group manager) to
identify the signer.

* Unlinkability: Given two signatures, it must be compu-
tationally hard to determine whether these were signed
by the same group member.

* Exculpability: Neither a group member nor the group
manager can generate signatures on behalf of other group
members.

* Traceability: The group manager can determine the
identity of a group member that generated a particular
signature.

* Coalition-resistance: Group members cannot collude
to create a signature that cannot be linked to one of the
group members by the group manager.

Enhanced Privacy ID (EPID) [30] is a group signature scheme
used by remote attestation of Intel SGX enclaves. It satis-
fies the above properties whilst providing additional privacy-
preserving revocation mechanisms to revoke compromised or
misbehaving group members. Specifically, EPID’s signature-
based revocation protocol does not “Open” signatures but
rather uses a signature produced by the revoked member to
notify other entities that this particular member has been re-
voked.

3 System & Threat Models

The ecosystem that we consider includes three types of prin-
cipals/players: (1) servers, (2) clients, and (3) TEEs. There
are multitudes of these three principal types. The number of
clients is the same as that of TEEs, and each client houses
exactly one TEE. Even though a TEE is assumed to be phys-
ically within a client, we consider it to be separate security
entity. Note that a human user can, of course, operate or own
multiple clients, although there is clearly a limit and more
clients implies higher costs for the user.

We assume that all TEEs are trusted: honest, benign and
insubvertible. We consider all side-channel and physical at-
tacks against TEESs to be out of scope of this work and assume
that all algorithms and cryptographic primitives implemented
within TEEs are impervious to such attacks. We also consider
cuckoo attacks, whereby a malicious client utilizes multiple
(possibly malware infected) machines with genuine TEEs, to
be out of scope, since clients and their TEEs are not consid-
ered to be strongly bound. We refer to [62] and [36] as far as
means for countering such attacks. We assume that servers
have a means to authenticate and attest TEEs, possibly with
the help of the TEE manufacturer.

All clients and servers are untrusted, i.e., they may act mali-
ciously. The goal of a malicious client is to avoid CAPTCHAs,
while a malicious server either aims to inconvenience a client
(via DoS) or violate client’s privacy. For example, a malicious
server can try to learn the client’s identity or link multiple
visits by the same client. Also, multiple servers may collude
in an attempt to track clients.

Our threat model yields the following requirements for the
anticipated system:

» Unforgeability: Clients cannot forge or modify CACTI

rate-proofs.

* Client privacy: A server (or a group thereof) cannot

link rate-proofs to the clients that generated them.

We also pose the following non-security goals:

* Latency: User-perceived latency should be minimized.

* Data transfer: The amount of data transfer between

client and server should be minimized.

* Deployability: The system should be deployable on cur-

rent off-the-shelf client and server hardware.

4 CACTI Design & Challenges

This section discusses the overall design of CACTI and justi-
fies our design choices.

4.1 Conceptual Design

Rate-proofs. The central concept underpinning our design
is the rate-proof (RP). Conceptually, the idea is as follows:
Assuming that a client has an idealized TEE, the TEE stores

2564 30th USENIX Security Symposium

USENIX Association

one or more named sorted lists of timestamps in its rollback-
protected secure memory. To create a rate-proof for a specific
list, the TEE is given the name of the list, a threshold (Th),
and a new timestamp (¢). The threshold is expressed as a
starting time (#;) and a count (k). This can be interpreted
as: “no more than k timestamps since t;”. The TEE checks
that the specified list contains k or fewer timestamps with
values greater than or equal to #. If so, it checks if the new
timestamp ¢ is greater than the latest timestamp in the list.
If both checks succeed, the TEE pre-pends ¢ to the list and
produces a signed statement confirming that the named list
is below the specified threshold and the new timestamp has
been added. If either check fails, no changes are made to the
list and no proof is produced. Note that the rate-proof does
not disclose the number of timestamps in the list.

Furthermore, each list can also be associated with a public
key. In this case, requests for rate-proofs must be accompa-
nied by a signature over the request that can be verified with
the associated public key. This allows the system to enforce a
same-origin policy for specific lists — proofs over such lists
can only be requested by the same entity that created them.
Note that this does not provide any binding to the identity of
the entity holding the private key, as doing so would neces-
sitate the TEE to check identities against a global public key
infrastructure (PKI) and we prefer for CACTI not to require it.

Rate-proofs differ from rate limits because the user is al-
lowed to perform the action any number of times. However,
once the rate exceeds the specified threshold, the user will no
longer be able to produce rate-proofs. The client can always
decide to not use its TEE; this covers clients who do not have
TEEs or those whose rates exceeded the threshold. On the
other hand, if the server does not yet support CACTI, the client
does not store any timestamps, or perform any additional com-
putation.

CAPTCHA-avoidance. In today’s CAPTCHA-protected
services, the typical interaction between the client (C) and
server (S) proceeds as follows:

1. Crequests access to a service on S.

2. S returns a CAPTCHA for C to solve.
3. C submits the solution to S.
4. If the solution is verified, S allows C access to the ser-
vice.
Although modern approaches, e.g., eCAPTCHA, might in-
clude additional steps (e.g., communicating with third-party
services), these can be abstracted into the above pattern.

Our CAPTCHA-avoidance protocol keeps the same inter-
action sequence, while substituting steps 2 and 3 with rate-
proofs. Specifically, in step 2, the server sends a threshold
rate and the current timestamp. In step 3, instead of solving a
CAPTCHA, the client generates a rate-proof with the spec-
ified threshold and timestamp, and submits it to the server.
The server has two types of lists:

* Server-specific: The server requests a rate-proof over

its own list. The name of the list could be the server’s

URL, and the request may be signed by the server. This
determines the rate at which the client visits this specific
server.

* Global: The server requests a rate-proof over a global
list, with a well-known name, e.g. CACTI-GLOBAL. This
yields the rate at which the client visits all servers that
use the global list.

The main idea of CAPTCHA avoidance is that a legitimate
client should be able to prove that its rate is below the server-
defined threshold. In other words, the server should have suf-
ficient confidence that the client is not acting in an abusive
manner (where the threshold of between abusive and non-
abusive behaviors is set by the server). Servers can select their
own thresholds according to their own security requirements.
A given server can vary the threshold across different ac-
tions or even across different users or user groups, e.g., lower
thresholds for suspected higher-risk users. If a client cannot
produce a rate-proof, or is unwilling to do so, the server sim-
ply reverts to the current approach of showing a CAPTCHA.
CACT!] essentially provides a fast-pass for legitimate users.

The original CAPTCHA paper [58] suggested that
CAPTCHA s could be used in the following scenarios:

1. Online polls: to prevent bots from voting,

2. Free email services: to prevent bots from registering
for thousands of accounts,

3. Search engine bots: to preclude or inhibit indexing of
websites by bots,

4. Worms and spam: to ensure that emails are sent by
humans,

5. Preventing dictionary attacks. to limit the number of
password attempts.

As discussed in Section 1, it is unrealistic to assume that
CAPTCHAs cannot be solved by bots (e.g., using computer
vision algorithms) or outsourced to CAPTCHA farms. There-
fore, we argue that all current uses of CAPTCHA s are actually
intended to slow down attackers or increase their costs. In
the list above, scenarios 2 and 5 directly call for rate-limiting,
while scenarios 1, 3, and 4 can be made less profitable for
attackers if sufficiently rate-limited. Therefore, CACTI can be
used in all these scenarios.

In addition to CAPTCHASs, modern websites use a variety
of abuse-prevention systems (e.g., filtering based on client IP
address or cookies). We envision CACTI being used alongside
such mechanisms. Websites could dynamically adjust their
CACTI rate-proof thresholds based on information from these
other mechanisms. We are aware that rate-proofs are a ver-
satile primitive that could be used to fight abusive activity in
other ways, or even enable new use-cases. However, in this
paper, we focus on the important problem of reducing the user
burden of CAPTCHAs.

USENIX Association

30th USENIX Security Symposium 2565

4.2 Design Challenges

In order to realize the conceptual design outlined above, we
identify the following key challenges:

TEE attestation. In current TEEs, the process of remote
attestation is not standardized. For example, in SGX, a verifier
must first register with Intel Attestation Service (IAS) before
it can verify TEE quotes. Other types of TEEs would have
different processes. It is unrealistic to expect every web server
to establish relationships with such services from all manu-
facturers in order to verify attestation results. Therefore, web
servers cannot directly verify the attestation, but still need to
ascertain that the client is running a genuine TEE.

TEE memory limitations. TEEs typically have a small
amount of secure memory. For example, if the memory of an
SGX enclave exceeds the size of the EPC (usually 128 MB),
the CPU has to swap pages out of the EPC. This is a very
expensive operation, since these pages must be encrypted and
integrity protected. Therefore, CACTI should minimize the
required amount of enclave memory, since other enclaves may
be running on the same platform.

Limited number of monotonic counters. TEEs typically
have a limited number of hardware monotonic counters, e.g.,
SGX allows at most 256 per enclave. Also, the number of
counter increments can be limited, e.g., in SGX the limit is
100 in a single epoch [8] — a platform power cycle, or a 24 hour
period. This is a challenge because hardware monotonic coun-
ters are critical for achieving rollback-protected storage. Re-
call that CACTI requires rollback-protected storage for all
timestamps, to prevent malicious clients from rolling-back
the timestamp lists and falsifying rate-proofs. Furthermore,
this storage must be updated every time a new timestamp is
added, i.e., for each successful rate-proof.

TEE entry/exit overhead. Invoking TEE functionality
typically incurs some overhead. For example, whenever an
execution thread enters/exits an SGX enclave, the CPU has
to perform various checks and procedures (e.g., clearing reg-
isters) to ensure that enclave data does not leak. Identifying
and minimizing the number of TEE entries/exits, whilst main-
taining functionality, can be challenging.

4.3 Realizing CACTI Design

We now present a detailed design that addresses aforemen-
tioned design challenges. We describe its implementation in
Section 5.

4.3.1 Communication protocol

The web server must be able to determine that a supplied
rate-proof was produced by a genuine TEE. Typically, this
would be done using remote attestation, where the TEE proves
that it is running CACTI code. If the TEE provides privacy-
preserving attestation (e.g., the EPID protocol used in SGX
remote attestation), this would also fulfill our requirement

TEE PA

get_group_private_key()

request_attestation()

—d
Ml
u attestation_report

Figure 2: CACTI provisioning protocol. The interaction be-
tween the Provisioning Authority (PA) and the client’s TEE
takes place over a secure connection, using the client to pass
the encrypted messages. After verifying the attestation report
(and any other required information), the PA provisions the
TEE with a group private key (skreg).

for client privacy, since websites would not be able to link
rate-proofs to specific TEEs.

However, as described above, current TEE remote attesta-
tion is not designed to be verified by anonymous third parties.
Furthermore, as CACTI is not limited to any particular TEE
type, websites would need to understand attestation results
from multiple TEE vendors, potentially using different proto-
cols. Finally, some types of TEEs might not support privacy-
preserving remote attestation, which would undermine our
requirement for client privacy.

To overcome this challenge, we introduce a separate Provi-
sioning Authority (PA) in order to unify various processes for
attesting CACT| TEEs. Fundamentally, the PA is responsible
for verifying TEE attestation (possibly via the TEE vendor)
and establishing a privacy-preserving mechanism through
which websites can also establish trust in the TEE. Specifi-
cally, the PA protects user privacy by using the EPID group
signature scheme. The PA plays the role of the EPID issuer,
and — optionally — the revocation manager [30]. During the
provisioning phase (as shown in Figure 2), the PA verifies the
attestation from the client’s TEE and then runs the EPID join
protocol with the client’s TEE in order to provision the TEE
with a group private key skrgg. The PA certifies and publishes
the group public key pks. The PA may optionally require the
client to prove their identity (e.g., by signing into an account)
— this is a business decision and different PAs may take differ-
ent approaches. After provisioning, the PA is unable to link
signatures to any specific client thanks to the properties of
the underling BBS+ signature scheme and signature-based
revocation used in EPID [30]. We analyze security implica-
tions of malicious PAs in Section 6.1, and discuss the use of
other group signature schemes in Section 7.2. There can be
multiple PAs and websites can decide which PAs to trust. If a
TEE is provisioned by an unsupported PA, the website would
fall back to using CAPTCHAs.

2566 30th USENIX Security Symposium

USENIX Association

TEE C

GET example.com

fe----

: t, tg, k, name, pk, sig
I_r Signk, (rate-proof)

t, ts, k, name, pks, sig iu

Signk, (rate-proof)

e-e-

Verify

T

kZC
CAPTCHA_PASS, example.com

Figure 3: CACTI CAPTCHA-avoidance protocol. The client (C) requests a resource from the web server (S). In response, the
server provides a timestamp for the current event (¢), a threshold consisting of a starting time (#;) and a count (k), and the name
of the list. Optionally, the server also provides a signature (sig) over the request and the public key (pk,) with which the signature
can be verified. The client passes this information to its TEE in order to produce a rate-proof, signed by a group private key

(skreg), which can be verified by the server.

Once the TEE has been provisioned, the client can begin
to use CACTI when visiting supported websites, as shown
in Figure 3. Specifically, when serving a page, the server
includes the following information: a timestamp ¢, a threshold
Th (including start time #; and count k), the name of the list (or
CACTI-GLOBAL for the global list), and (optionally) a public
key and signature for rates that enforce a same-origin policy.
The client uses this information to request a rate-proof from
their TEE. If the client’s rate is indeed below the threshold,
the TEE produces the rate-proof, signed with its group private
key. The client then sends this to the server in lieu of solving
a CAPTCHA.

4.3.2 TEE Design

To realize the conceptual design above, the client’s TEE would
ideally store all timestamps indefinitely in integrity-protected
and rollback-protected memory. However, as discussed above,
current TEEs fall short of this idealized representation, since
they have limited integrity-protected memory and a limited
number of hardware counters for rollback protection. To over-
come this challenge, we store all data outside the TEE, e.g., in
a standard database. To prevent dishonest clients from mod-
ifying this data, we use a combination of hash chains and
Merkle Hash Trees (MHTSs) to achieve integrity and rollback-
protection.

Hash chains of timestamps. To protect integrity of stored
timestamps, we compute a hash chain over each list of times-
tamps, as shown in Figure 4. Thus the TEE only needs to
provide integrity and rollback-protected storage for the most

recent hash in each hash chain. For efficiency, we store inter-
mediate value of the hash chain along with each timestamp
outside the TEE.

MHT of lists. Although it would be possible for the TEE to
seal the most recent hash of each list individually, the lists may
be updated independently, so the TEE would need separate
hardware monotonic counters to provide rollback protection
for each list. In a real-world deployment, the number of lists
is likely to exceed the number of available hardware counters,
e.g., 256 counters per enclave in SGX. To overcome this
challenge, we combine the lists into a Merkle Hash Tree
(MHT). As shown in Figure 5, each leaf of the MHT is a hash
of the list information (list name and public key) and the most
recent hash in the list’s hash chain. With this arrangement, the
TEE only needs to provide integrity and rollback-protected
storage for the MHT root R, which can be achieved using
sealing and a single hardware monotonic counter.

4.3.3 Producing a Rate-Proof

The TEE first needs to verify the integrity of its externally-
stored data structures (i.e., hash chains and MHT described
above), and if successful, update these with the new timestamp
and produce the rate-proof, as follows:

1. TEE inputs. The client supplies its TEE with the list
information and all timestamps in the list that are greater than
or equal to the server-defined start time #;. The client also
supplies the largest timestamp that is smaller than ¢,, which
we denote #,_g, and the intermediate value of the hash chain
up to, but not including, #,_g. The client supplies the sealed

USENIX Association

30th USENIX Security Symposium 2567

Hb = H(t§) P{Hi = H(Hb,) [.. ={Hh o = H(H, th 1)

Figure 4: Hash chain of timestamps t;'. for list i. H() is a
cryptographic hash function.

‘ R = H(Me,M/) ‘

\

Mf = H(M¢, M%) ‘

|
N

W=mu%m\Mhm\

‘ Me = H(M¢, MY)

Me = H(L%, HE,)

M = H(L", Hpy1)

Figure 5: Merkle Hash Tree over lists a...d. Each leaf is a
hash of the list information L’ (list name and public key) and
the most recent hash of the list’s hash chain H! . H() is a
cryptographic hash function, R is the root of the MHT, and
the nodes in blue illustrate the inclusion proof path for list b.

MHT root and intermediate hashes required to verify that the
list is in the MHT.

2. Hash chain checks. The TEE first checks that 7,_g is
smaller than #; and then recomputes the hash chain over in-
cluded timestamps in order to reach the most recent value.
During this process, it counts the number of included times-
tamps and checks that this is less than the value k specified
in the threshold. The inclusion of one timestamp outside the
requested range (#,_g) ensures that the TEE has seen all times-
tamps within the range. This process requires O(n) hashes,
where 7 is the number of timestamps in the requested range.

3. MHT checks. The TEE then unseals the MHT root
and uses the hardware counter to verify that it is the latest
version. The TEE then checks that the list information and the
calculated most recent hash value is indeed a leaf in the MHT.
This process requires O(log(s)) hashes, where s is the number
of lists. Including the list name in the MHT leaf ensures that
the timestamps have not been substituted from another list.
If the list has an associated public key, the TEE uses this to
verify the signature on the server’s request.

4. Starting a new list. If the rate-proof is requested over a
new list (e.g., when the user firsts visits a website), the TEE
must also verify that the list name does not appear in any
MHT leaves. In this case, the client supplies the TEE with
all list names and their most recent hash values. The TEE
reconstructs the full MHT and checks that the new list name
does not appear. This requires O(s) string comparisons and
hashes for s lists.

5. Updating a list. If the above verification steps are suc-
cessful, the TEE checks that the new timestamp ¢ supplied by

the server exceeds the latest timestamp in the specified list. If
so, the TEE adds 7 to the list and updates the MHT to obtain
anew MHT root. The new root is sealed alongside the TEE’s
group private key. The TEE then produces a signed rate-proof,
using its group private key. The rate-proof includes a hash of
the original request provided by the server, thus confirming
that the TEE checked the rate and added the server-supplied
timestamp. The TEE returns the rate-proof to the client, along
with the new sealed MHT root for the client to store. In the
above design, the whole process of producing the rate-proof
can be performed in a single call to the TEE, thus minimizing
the overhead of entering/exiting the TEE.

4.3.4 Reducing Client-Side Storage

The number of timestamps stored by CACTI grows as the
client visits more websites. However, in most use-cases, it is
unlikely that the server will request rate-proofs going back
beyond a certain point in time #p.

To reduce client-side storage requirements, we provide a
mechanism to prune a client’s timestamp list by merging all
timestamps prior to 7p. Specifically, the server can include tp
in any rate-proof request, and upon receiving this, the client’s
TEE counts and records how many timestamps are older than
tp. The old timestamps and associated intermediate hash val-
ues can then be deleted from the database. In other words,
the system merges all timestamps prior to fp into a single
count value cp. The TEE stores ¢p and the count value in the
database outside the TEE and protects their integrity by in-
cluding both values in the list information that forms the MHT
leaf. Pruning can be done repeatedly: when a new pruning
request is received for tpr > tp, CACTI fetches and verifies all
timestamps up to ¢ and adds these to cp to create cp. It then
replaces tp and cp with #pr and cpr respectively.

This pruning mechanism does not reduce security of CACTI.
If the server does request a rate-proof going back beyond
tp, CACTI will include the full count of timestamps stored
alongside #p. This is always greater than or equal to the actual
number of timestamps; thus, there is no incentive for the
server to abuse the pruning mechanism. Similarly, even if a
malicious client could trigger this pruning (i.e., assuming the
list is not associated to the server’s public key), there is no
incentive to do so because it would never decrease the number
of timestamps included in rate-proofs.

Since the global list CACTI-GLOBAL is used by all web-
sites, the client is always allowed to prune this list to reduce
storage requirements. CACTI blocks servers from pruning
CACTI-GLOBAL since this can be used as an attack vector
to inflate the client rate by compressing all rates into one
value — thus preventing use of CACTI on websites that utilize
CACTI-GLOBAL. Thus, we expect pruning of CACTI-GLOBAL
to be done automatically by the CACTI host application or
browser extension.

2568 30th USENIX Security Symposium

USENIX Association

Web Browser
Host Application
SQLite CACTI Extension B | resource.html
]
—]
Background Content
- g' [. <divid=...>
t Script Script
Intel SGX
Enclave

Figure 6: Overview of CACTI client-side components.

5 Implementation

We now describe the implementation of the CACTI design pre-
sented in the previous section. We focus on proof-of-concept
implementations of: client-side browser extension, native host
application, and CACTI TEE, as shown in Figure 6. Finally,
we discuss how CACTI is integrated into websites.

5.1 Browser Extension

The browser extension serves as a bridge between the web
server and our host application. We implemented a proof-of-
concept browser extension for the Chrome browser (build
79.0.3945.130) [6]. Chrome extensions consist of two parts:
a content script and a background script.

* Content script: scans the visited web page for an
HTML div element with the id CACTI-div. If the page
contains this, the content script parses the parameters it
contains and sends them to the background script.

* Background script: we use Chrome Native Messaging
to launch the host application binary when the browser
is started and maintain an open port [20] to the host
application until the browser is closed. The background
script facilitates communication between the content
script and the host application.

User notification. The browser extension is also responsi-
ble for notifying the user about requests to access CACTI.
Notifications can include information, such as server’s do-
main name, timestamp to be inserted, and threshold used to
generate the rate-proof. By default, the background script no-
tifies the user whenever a server requests to use CACTI, and
waits for user confirmation before proceeding. This prevents
malicious websites from abusing CACTI by adding multiple
timestamps without user permission (for possible attacks, see
Section 6.1). However, asking for user confirmation for every
request could cause Ul fatigue. Therefore, CACTI could allow
the user to choose from the following options: (1) Always ask
(the default), (2) Ask only upon first visit to site, (3) Only ask
for untrusted sites, (4) Only ask for more than x requests per

site per time period, and (5) Never ask. Advanced users can
also modify our extension or code their own extension to en-
force arbitrary policies for requesting user confirmation. The
notification is displayed using Chrome’s Notification API [3].

5.2 Host Application

The host application running on the client is responsible for:
(1) creating the CACTI TEE, which we implement as an SGX
enclave, and exposing its ECALL API to the browser exten-
sion; (2) storing (and forwarding) timestamps and additional
integrity information for secure calculation of rate-proofs (to
the enclave); and (3) returning the enclave’s output to the
browser extension.

The host application is implemented in C and uses Chrome
Native Messaging [15] to communicate with the browser
extension. Since Chrome Native Messaging only supports
communication with JSON objects, the host application uses
a JSON parser to extract parameters to the API calls. We used
the JSMN JSON parser [12]. Moreover, the host application
implements the Chrome Native Messaging protocol [2] and
communicates with the browser extension using Standard I/O
(stdio), since this is currently the only means to communi-
cate between browser extensions and native applications.

The host application stores information in an SQLite
database. This database has two tables: LISTS stores the list
names and associated public keys, and TIMESTAMPS stores
all timestamps and intermediate values of the hash chains.
For each rate-proof request, the host application queries the
database and provides the data to the enclave.

Since the timestamps are stored unencrypted, we use ex-
isting features of the SQLite database to retrieve only the
necessary range of timestamps for a given list. Note that
since data integrity is maintained through other mechanisms
(i.e., hash chains and MHT), the mechanism used by the host
application to store this data does not affect the security of
the system. Alternative implementations could use different
database types and/or other data storage approaches. Instead
of hash chains and MHTs, it is possible to use a database
managed by the enclave, e.g., EnclaveDB [54]. However, this
would increase the amount of code running inside the enclave,
thus bloating the trusted code base (TCB).

5.3 SGX Enclave

We implemented the TEE as an SGX enclave using the Ope-
nEnclave SDK [16] v0.7.0. OpenEnclave was selected since
it aims to unify the programming model across different types
of TEEs. The process of requesting a rate-proof is imple-
mented as a single get_rate ECALL. For timestamps, we use
the UNIX time which denotes the number of seconds elapsed
since the UNIX Epoch (midnight 1/1/1970) and is represented
as a 4-byte signed integer. We use cryptographic functions
from the mbed TLS library [13] included in OpenEnclave.

USENIX Association

30th USENIX Security Symposium 2569

Specifically, we use SHA-256 for all hashes and ECDSA for
all digital signatures. For EPID signatures, we use Intel EPID
SDK (v7.0.1) [5] with the performance-optimized version of
Intel Integrated Performance Primitives (IPP) Cryptography
library [9]. We use a formally-verified and platform-optimized
MHT implementation from EverCrypt [55]. As an optimiza-
tion, if the MHT is sufficiently small, we can cache fully
inside the enclave. When a request for a rate-proof is received,
the enclave recalculates the timestamp hash chain and then
directly compares the most recent value to the corresponding
leaf in the cached MHT, as described in Section 4.3.3.
OpenEnclave currently does not support SGX hardware
monotonic counters, so we could not include these in the
proof-of-concept implementation. However, a production im-
plementation can easily include hardware counter functional-
ity. Although our implementation uses SGX, CACTI can be
realized on any suitable TEE. For example, OpenEnclave is
currently being updated to support ARM TrustZone. When
this version is released, we plan to port the current implemen-
tation to TrustZone, with minimal expected modifications.

5.4 Website Integration

Integrating CACTI into a website involves two aspects: send-
ing the rate-proof request to the client, and verifying the
response. The server generates the rate-proof request (see
Section 4.3.1) and encodes it as data-* attributes in the
CACTI-div HTML div. The server also includes the URL to
which the generated rate-proofs should be sent. The browser
extension determines whether the website supports CACTI by
looking for the CACTI-div element. The server implements
an HTTP endpoint for receiving and verifying rate-proofs . If
the verification succeeds, this endpoint notifies the website
and the user is granted access.

Integrating CACTI into a website is thus very similar to us-
ing existing CAPTCHA systems. For example, reCAPTCHA
adds the g-recaptcha HTML div to the page, and imple-
ments various endpoints for receiving and verifying the re-
sponses [19]. We evaluate server-side overhead of CACTI, in
terms of both processing and data transfer requirements, in
Section 6.

6 Evaluation

We now present and discuss the evaluation of CACTI. We
start with a security analysis, based on the threat model and
requirements defined in Section 3. Next, we evaluate perfor-
mance of CACTI in terms of latency and bandwidth. Finally,
we discuss CACTI deployability issues.

6.1 Security Evaluation

Data integrity & rollback attacks. Since timestamps are
stored outside the enclave, a malicious host application can

try to modify this data, or roll it back to an earlier version. If
successful, this might trick the enclave into producing falsified
rate-proofs. However, if any timestamp is modified outside the
enclave, this would be detected because the most recent value
of the hash chain would not match the corresponding MHT
leaf. Assuming a suitable collision-resistant cryptographic
hash function, it is infeasible for the malicious host to find
alternative hash values matching the MHT root. Similarly, a
rollback attack against the MHT is detected by comparing the
included counter with the hardware monotonic counter.

Timestamp omission attacks. A malicious application
can try to provide the enclave with only a subset of the times-
tamps for a given request, e.g., to pretend to be below the
threshold rate. Specifically, the host could try to omit one
or more timestamps at the start, in the middle, and/or at the
end, of the range. If timestamps are omitted at the start, the
enclave detects this when it checks that the first timestamp
supplied by the host is prior to the start time of request z,. If
timestamps are omitted in the middle (or at the end) of the
range, the most recent hash value will not match the value in
the MHT leaf.

List substitution attacks. A malicious client might at-
tempt to use a timestamp hash chain from a different list,
or claim that the requested list does not exist. The former is
prevented by including list information (list name and public
key) in the MHT leaf. If there is a mismatch between the
name and the timestamp chain, the resulting leaf would not
exist in the MHT. For the latter, when the host calls the en-
clave’s get_rate function for a new list, the enclave checks
the names of all lists in the MHT to ensure that the new list
name does not already exist.

TEE reset attacks. A malicious client might attempt to
delete all stored data, including the sealed MHT root, in or-
der to reset the TEE. Since the group private key received
from the provisioning authority is sealed together with the
MHT root, it is impossible to delete one and not the other.
Deleting the group private key would force the TEE to be re-
provisioned by the provisioning authority, which may apply
its own rate-limiting policies on how often a given client can
be re-provisioned.

CACTI Farms. Similar to CAPTCHA farms, a multitude
of devices with TEE capabilities could be employed to sat-
isfy rate thresholds set by servers. However, this would be
infeasible because: (1) CACTI enclaves would stop producing
rate-proofs after reaching server thresholds and would thus
require a TEE reset and CACTI re-provisioning — which is a
natural rate limit; (2) the cost of purchasing a device would
be significantly higher than CAPTCHA solving costs. For ex-
ample, currently the cheapest service charges $1.8 for solving
1,000 reCAPTCHAs [1]°, while a low-end bare-bones CPU
with SGX support alone costs ~ $70 [11], in addition to the
maintenance and running costs.

3See a comparison of CAPTCHA solving services [22]

2570 30th USENIX Security Symposium

USENIX Association

CACTI Botnets. An adversary might try to build a CACTI
botnet consisting of compromised devices with suitable TEEs
in order to bypass CAPTCHAs at scale, similarly to a CACTI
farm. However, if the compromised devices are not yet run-
ning CACTI, the adversary would have to provision them
using a suitable PA, which could be made arbitrarily costly
and time-consuming. Alternatively, if the compromised de-
vices are already running CACTI, the adversary gains little
advantage because the legitimate users will likely have been
using CACTI to create their own rate-proofs. Furthermore, the
legitimate user would probably notice any overuse/abuse of
their system due to quickly exceeding the thresholds.

Client-side malware. A more subtle variant of the reset
attack can occur if malware on the client’s own system cor-
rupts or deletes TEE data. This is a type of denial-of-service
(DoS) attack against the client. However, defending against
such DoS attacks is beyond the scope of this work, since this
type of malware would have many other avenues for causing
DoS, e.g., deleting critical files.

Other DoS attacks. A malicious server might try to mount
a DoS attack against an unsuspecting client by inserting a
timestamp for a future time. If successful, the client would be
unable to insert new timestamps and create rate-proofs for any
other servers, since the enclave would reject these timestamps
as being in the past. This attack can be mitigated if the client’s
browser extension and/or host application simply check that
the server-provided timestamp is not in the future.

Client tracking. A malicious server (or group of servers)
might attempt to track clients by sending multiple requests
for rate-proofs with different thresholds in order to learn the
precise number of timestamps stored by the client. A success-
ful attack of this type could potentially reduce the client’s
anonymity set to only those clients with the same rate. How-
ever, this attack is easy to detect by monitoring the thresholds
sent by the server. A more complicated attack targeting a
specific client is to send an excessive number of successful
rate-proof requests in order to increase the client’s rate. The
goal is to reduce the size of the target’s anonymity set. This
attack is also easy to detect or prevent by simply rate-limiting
the number of increments accepted from a particular server.
Note that the window of opportunity for this targeted attack is
limited to a single session, because malicious servers cannot
reliably re-identify the user across multiple sessions (since
this is what the attack is trying to achieve). The above attacks
cannot be improved even if multiple servers collude.

Rogue PAs. A malicious PA might try to compromise or di-
minish client privacy. However, this is prevented by CACTI’s
use of the EPID protocol [30]. Specifically, due to the BBS+
signature scheme [27] during EPID key issuance, clients’ pri-
vate keys are never revealed to PAs. Also, EPID’s signature-
based revocation mechanism does not require member private
keys to be revealed. Instead, signers generate zero-knowledge
proofs showing that they are not on the revocation list. There-
fore, client privacy does not depend on any PA business prac-

tices, e.g., log deletion or identifier blinding.

Each website has full discretion to decide which PAs it
trusts; if a server does not trust the PA who issued the member
private key to the TEE, it can simply fall back to CAPTCHAs.
This provides no advantage to attackers, and websites can be
as conservative as they like. If higher levels of assurance are
required, PAs can execute within TEEs and provide attesta-
tion of correct behavior; we defer the implementation of this
optional feature to future work.

Overall, we claim that CACTI meets all security require-
ments defined in Section 3 and significantly increases the
adversary’s cost to perform DoS attacks. Specifically, the Un-
forgeability requirement is satisfied since it is impossible for
the host to perform rollback, timestamp exclusion and list
substitution attacks. Client privacy is achieved because the
rate-proof does not reveal the actual number of timestamps
included, and is signed using a group signature scheme.

6.2 Latency Evaluation

We conducted all latency experiments on an Intel NUC Kit
NUC7PJYH [10] with an Intel Pentium Silver J5005 Proces-
sor (4M Cache, up to 2.80 GHz); 4 GB DDR4-2400 1.2V
SO-DIMM Memory; running Ubuntu 16.04 with the Linux
4.15.0-76-generic kernel Intel SGX DCAP Linux 1.4 drivers.

Recall that the host application is responsible for initializ-
ing the enclave, fetching data necessary for enclave functional-
ity, performing ECALLs, and finally updating states according
to enclave output. Therefore, we consider the latency in the
following four key phases in the host application:

* Init-Enclave: Host retrieves the appropriate data from
the database and calls init_mt ECALL that initializes the
MHT within the enclave.*

* Pre-Enclave: Host retrieves the required hashes and
timestamps from the database.

* In-Enclave: Host calls the get_rate ECALL. This phase
concludes when the ECALL returns.

» Post-Enclave: Host updates/inserts the data it received
from the enclave into the database.

We investigated the latency impact by varying (1) the number
of timestamps in the rate-proof (Section 6.2.1), and (2) the
number of lists in the database (Section 6.2.2). We evaluated
the end-to-end latency in Section 6.2.4. Unless otherwise
specified, each measurement is the average of 10 runs.

Note: The ECDSA and EPID signature operations are, by far,
the dominant contributors to latency. However, they represent
a fixed latency overhead that does not vary with the number
of timestamps or servers. Therefore, for clarity’s sake, figures
in the following sections do not include these operations. We
analyze them separately in Section 6.2.3.

“4Init-Enclave is done only when the enclave starts.

USENIX Association

30th USENIX Security Symposium 2571

6.2.1 Varying Number of Timestamps in Query

We measured the effect of varying the number of timestamps
included in the query, while holding the number of lists con-
stant. As shown in Figure 7, query latency increases linearly
with the number of timestamps included in the query. The
most notable increase is in the in-enclave phase, since this
involves calculating a longer hash chain. However, even with
10,000 timestamps in a query, the total latency only reaches
~40 milliseconds (excluding signature operations).

6.2.2 Varying Number of Lists

Next, we varied the number of lists while holding the number
of timestamps fixed at one per list. We considered two separate
scenarios: adding a new list and updating an existing list.

Adding a new list. As shown in Figure 8, the latency
for the pre-enclave phase is lower compared to Figure 7.
This is because we optimize the host to skip the expensive
TIMESTAMPS table look up operation if the host knows that
this is a new list. The in-enclave phase increases as the num-
ber of lists increases due to the string comparison operations
performed by the enclave to prevent list substitution attacks.
However, this phase can be optimized by sorting the server
names inside the enclave during initial MHT construction.
The post-enclave latency is due to the cost of adding entries
to the TIMESTAMPS table. Figure & assumes the enclave has
already been initialized (see Figure 9 for the corresponding
init-enclave phase).

Updating an existing list. As shown in Figure 9, the la-
tency of the init-enclave phase increases as the number of lists
increases. This is expected, since the enclave reconstructs the
MHT in this phase. The pre-enclave phase also increases
slightly due to the database operations.

6.2.3 Signature Operation Latency

Evaluation results presented thus far have not included the
ECDSA signature verification or EPID signature creation op-
erations. Specifically, the server creates an ECDSA signature
on the request, which the enclave verifies. The enclave creates
an EPID group signature on the response, which the server
verifies using the EPID group public key. The average laten-
cies over 10 measurements for these four signature operations
are shown in Figure 10. We can see that the EPID group
signature generation operation is an order magnitude slower
compared to the other cryptographic operations including
EPID group signature verification. The latency of our enclave
is thus dominated by the EPID signature generation operation.

6.2.4 End-to-End Latency

Table | shows the end-to-end latency (excluding network com-
munication) from when the server begins generating a request
until it has received and verified the response from the client.

In both settings, the end-to-end latency is below 250 millisec-
onds. The latency will be lower if there are fewer lists or in-
cluded timestamps. Compared to other types of CAPTCHA:s,
image-based CAPTCHAs take ~10 seconds to solve [31]
and behavior-based reCAPTCHA takes ~400 milliseconds,
although this might change depending on the client’s network
latency.

6.3 Bandwidth Evaluation

We measured the amount of additional data transferred over
the network by different types of CAPTCHA techniques. Min-
imizing data transfer is critical for both servers and clients.
We compared CACTI against image-based and behavior-based
reCAPTCHA [18] (see Figure 1). The former asks clients
(one or more times) to find and mark certain objects in a given
image or images, whilst the latter requires clients to click a
button. To isolate the data used by reCAPTCHA, we hosted a
webpage with the minimal auto-rendering reCAPTCHA ex-
ample [19]. We visited this webpage and recorded the traffic
using the Chrome browser’s debugging console.

Table 2 shows the additional data received and sent by the
client to support each type of CAPTCHA. Image-based re-
CAPTCHA incurs the highest bandwidth overhead since it
has to download images, often multiple times. Although not
evaluated here, text-based CAPTCHAs also use images and
would thus have a similar bandwidth overhead. Behavior-
based reCAPTCHA downloads several client-side scripts.
Both types of reCAPTCHA made several additional connec-
tions to Google servers. Overall, CACTI achieves at least a
97% reduction in client bandwidth overhead compared to
contemporary reCAPTCHA solutions.

6.4 Server Load Evaluation

We analyzed the additional load imposed on the server by
CACTI. Unfortunately, CAPTCHAs offered as services, such
as recCAPTCHA [18] and hCAPTCHA [7], do not disclose
their source code and we have no reliable way of estimating
their server-side overhead. Therefore, we compared CACTI
against two open-source CAPTCHA projects published on
GitHub (both have more than 1,000 stars and been forked
more than a hundred times):

dchest/captcha [17] (Figure | 1a) generates image-based
text recognition CAPTCHAS consisting of transformed digits
with noise in the form of parabolic lines and additional clus-
ters of points. It can also generate audio CAPTCHAs, which
are pronunciations of digits with randomized speed and pitch
and randomly-generated background noise.

produck/svg-captcha [21] (Figure 11b) generates sim-
ilar image-based text recognition CAPTCHAs, as well as
challenge-based CAPTCHAs consisting of simple algebraic
operations on random integers. Noise is introduced by varying
the text color and adding parabolic lines.

2572 30th USENIX Security Symposium

USENIX Association

B Post-Enclave

351 BN In-Enclave
W Pre-Enclave
Init-Enclave
301
2 4
2- I

Query Latency in Host App [ms]
5 : o w

o

10 100 1000 2000 5000 7500 10000
Number of Timestamps in Query

Bl Post-Enclave
1751 mmm Tn-Enclave
N Pre-Enclave

Query Latency in Host App [ms]
- v s o 2 5 &
= @ > & =) =)
l_

Number of Existing Nodes in Merkle Tree

Figure 7: Latency of initializing the enclave and creating a Figure 8: Latency of creating the first rate-proof in a new list
rate_proof for different numbers of timestamps in the query for different numbers of existing lists (excludlng enclave ini-

(excluding signature operations).

70 1
B Post-Enclave -
BN In-Enclave

= 601 B Pre-Enclave
A Init-Enclave
& 50
&9
7
<]
T 401
=
o —
2 30
g
@
=
2 201
=
c

10 1

—
o m— —
8 16 128 1024 2048 4096

Number of Existing Nodes in Merkle Tree

tialization and signature operations).

120 4

1001

®
=)

Latency [ms]
f=2]
f=}

401

204

o

ECDSA-Sign ECDSA-Verify EPID-Sign

Cryptographic Operation

EPID-Verify

Figure 9: Latency of initializing the enclave and updating an Figure 10: Microbenchmarks of signature operations. ECDSA

existing list for different numbers of existing lists (excluding

signature operations).

(a) dchest/captcha image-based CAPTCHA [17].

(b) produck/svg-captcha image-based CAPTCHAs [21].

Figure 11: CAPTCHA s generated using open-source libraries.

signatures were created and verified using the mbed TLS li-
brary [13] and EPID signatures with the Intel EPID SDK [5].

Table 3 shows the time to generate different types of
CAPTCHAS using the above libraries with typical configura-
tion parameters (e.g., eight characters for text CAPTCHAS).
Since CAPTCHA verification with these libraries is a sim-
ple string comparison, we assume this is negligible. CACTI’s
server-side processing is due almost entirely to the EPID sig-
nature verification operation. We expect that this time could
be improved by using more optimized implementations of
this cryptographic operation. Additionally, CACTI uses signif-
icantly less communication bandwidth than other approaches,
which also reduces the server load (which is not captured
in this measurement). Most importantly, the biggest gain of
CACTI is on the user side; saving more than ~10 seconds per
CAPTCHA for users.

USENIX Association

30th USENIX Security Symposium 2573

Table 1: End-to-End Latency of CACTI for different numbers of timestamps and lists. The Browser column represents the latency
of the browser extension marshalling data to and from the host application. The other columns are as described above.

ECDSA-Sign Browser Pre-Enclave In-Enclave Post-Enclave EPID-Verify Total
10,000 timestamps 6.3 ms 15.2 ms 7.7 ms 181.7 ms 1.0 ms 27.3ms 239.2 ms
in 1 list
4,096 lists with 1 6.3 ms 15.2 ms 1.8 ms 157.4 ms 2.0 ms 27.3ms 210.0 ms

timestamp each

Table 2: Additional data received and sent by the client for
image-based and behavior-based reCAPTCHA, compared
with CACTI.

Received Sent Total
Image-based 140.05 kB 2897kB 169.02 kB
Behavior-based 54.38 kB 26.12 kB 80.50 kB
CACTI 0.82 kB 1.10 kB 1.92 kB

Table 3: Server-side processing time for generating a
CAPTCHA and verifying the response.

Library Type Time
Audio 13.3 ms
dehest/captcha Image-based text 1.7 ms
Image-based text 2.2 ms
produck/sve-captcha Image-based math 1.4 ms
CACTI Rate-proof 33.6 ms

6.5 Deployability Analysis

We analyze deployability of CACTI by considering changes
required from both the server’s and client’s perspectives:

Server’s perspective. The server will have to make the fol-
lowing changes: (1) create and maintain a new public/private
key pair and obtain a certificate for the public key, (2) add an
additional div to pages for which they wish to enable CACTI,
(3) create and sign requests using the private key, and (4) add
an HTTP endpoint to receive and verify EPID signatures. The
server-side deployment could be further simplified by pro-
viding the request generation and signature operations as an
integrated library.

Client’s perspective. The client will have to make the fol-
lowing changes: (1) download and install the CACTI native
software, and (2) download and install the browser extension.
Although CACTI requires the client to have a suitable TEE,
this is a realistic assumption given the large and increasing
deployed base of devices with e.g., ARM TrustZone or Intel
SGX TEEs.

7 Discussion

7.1 PA Considerations

As discussed in Section 4.3, CACTI’s use of a provisioning
authority (PA) provides the basis for client privacy. CACTI
does not prescribe the PA’s policies. For example, the PA has
the choice of running the provisioning protocol (Figure 2)
as a one-off operation (e.g., when installing CACTI) or on
a regular basis, depending on its risk appetite. If there are
attacks or exploits threatening the Intel SGX ecosystem (and
consequently the security of group private keys), the PA can
revoke all group member keys. This would force all enclaves
in the group to re-register with the PA. A similar scenario ap-
plies if key-rotation is implemented on the PA, e.g., the master
secret held by the PA is rotated periodically. This forces all
enclaves to regularly contact the PA to obtain new group mem-
ber keys. Frequent key-rotation introduces a heavier burden
on the clients (although this can be automated), but provides
better security.

7.2 EPID

Even though CACTI uses EPID group signatures to protect
client privacy, CACTI is agnostic to the choice of the underly-
ing signature scheme as long as it provides signer unlinkabil-
ity and anonymity. We also considered other schemes, such
as Direct Anonymous Attestation (DAA) [28], as used in the
Trusted Platform Module (TPM). However, DAA is suscepti-
ble to various attacks [29,45,56] and, due to its design target-
ing low-end devices, suffers from performance problems. In
contrast, EPID is used in current Intel SGX remote attestation
and is thus a good fit for enclaves. Moreover, as mentioned in
the previous section, the PA must revoke group member keys
in the event of a compromise. EPID offers privacy-preserving
signature-based revocation, wherein the issuer can revoke any
key using only a signature generated by that key. Signature
verifiers use signature revocation lists published by issuers to
check whether the group member keys are revoked. Using this
mechanism, CACTI provides PAs with revocation capabilities
without allowing them to link keys to individual users. PAs
can define their own revocation policies to maximize their
reputation and trustworthiness.

2574 30th USENIX Security Symposium

USENIX Association

7.3 Optimizations
7.3.1 Database Optimizations

As with most modern database management systems, SQLite
supports creating indexes in database tables to reduce query
times. Also, as discussed in Section 6, placing all timestamps
for all servers in one table and conducting JOIN operations
incurs performance overhead. An alternative is to use a sepa-
rate table per list. However, we presented CACTI evaluation
results without creating any indexes or separate timestamp
tables in order to show the worst-case performance. Perfor-
mance optimizations, such as changing the database layout,
can be easily made by third parties, since they do not affect
the security of CACTI.

7.3.2 System-level Optimizations

As a system-level optimization, CACTI can perform some
processing steps in the background while waiting for the
user to confirm the action. For example, while the browser
extension is displaying the notification and waiting for user
approval, the request can already be sent to the enclave to
begin processing (e.g., loading and verifying the hash chain
of timestamps and the MHT). The enclave creates the signed
rate-proof but does not release it or update the hash chain
until the user approves the action. This optimization reduces
user-perceived latency to that of client-side post-enclave and
server-side EPID verification processes, which is less than
14% of the end-to-end latency reported in Section 6.2.4.

7.3.3 Optimizing Pruning

Although it is possible to create another ECALL for pruning,
this might incur additional enclave entry/exit overhead (see
Section 4.2). Instead, pruning can be implemented within the
get_rate ECALL. Since get_rate already updates the hash
chain and MHT, the pruning can be performed at the same
time, thus eliminating the need for an additional ECALL and
hash chain and MHT update.

7.4 Deploying CACTI
7.4.1 Integration with CDNs and 3’/ Party Providers

Although CACTI aims to reduce developer effort by choosing
well-known primitives (e.g., SQLite and EPID), we do not
expect all server operators to be experienced in implementing
CACTI components. The server-side components of CACTI
can be provided by Content Delivery Networks (CDNs) or
other independent providers.

CDNss are widely used to reduce latency by serving web
content to clients on behalf of the server operator. CDNs
have already recognized the opportunity to provide abuse
prevention services to their customers. For example, Cloud-
flare offers CAPTCHAS as a free rate-limiting service [4] to

its customers [14]. CACTI could easily be adapted for use
by CDNs, which would bring usability benefits across all
websites served by the CDN.

In addition, independent CACTI providers could offer
rate-proof services that are easy to integrate into websites
— similar to how CAPTCHAs are currently offered by re-
CAPTCHA [18] or hCAPTCHA [7]. These services would
implement the endpoints described in Section 5.4 and could
be integrated into websites with minimal effort.

7.4.2 Website Operator Incentives

There are several incentives for website operators to support
CACTL. Firstly, in terms of usability, CACTI can drastically
improve user experience by allowing legitimate users to avoid
having to solve CAPTCHAs. Secondly, in terms of privacy,
some concerns have been raised about existing CAPTCHA
services [14]. By design, CACTI rate-proofs cannot be linked
to specific users or to other rate-proofs created by the same
user. Thirdly, in terms of bandwidth usage, CACTI requires an
order of magnitude less data transfer than other CAPTCHA
systems.

User demand for privacy-preserving solutions that reduce
the amount of time spent solving CAPTCHAs has led Cloud-
flare to offer Privacy Pass [35], a system designed to reduce
the number of CAPTCHASs presented to legitimate users, es-
pecially while using VPNs or anonymity networks [23].

7.4.3 PA Operator Incentives

In CACTI, PAs are only involved when provisioning creden-
tials to CACTI enclaves (i.e., not when the client produces a
rate-proof). This is a relatively lightweight workload from
a computational perspective. PAs could be run by various
different organizations with different incentives, for example:
1. TEE hardware vendors wanting to increase the desirabil-
ity of their hardware;
2. Online identity providers (e.g., Google, Facebook, Mi-
crosoft) who already provide federated login services;
3. For-profit businesses that charge fees and provide e.g., a
higher level of assurance;
4. Non-profit organizations, similarly to the Let’s Encrypt
Certificate Authority service.
CACT] users can, and are encouraged to, register with mul-
tiple PAs and randomly select which private key to use for
generating each rate-proof. This allows new PAs to join the
CACTI ecosystem and ensures that clients have maximum
choice of PA without the risk of vendor lock-in.

7.4.4 Client-side components

On the client-side, CACTI could be integrated into web
browsers, and would thus work “out of the box™ on platforms
with a suitable TEE.

USENIX Association

30th USENIX Security Symposium 2575

8 Related Work

CACTI is situated in the intersection of multiple fields of
research, including DoS (or Distributed DoS (DDoS)) pro-
tection, human presence, and CAPTCHA improvements and
alternatives. In this section, we discuss related work in each
of these fields and their relevance to CACTI.

Network layer defenses. The main purpose of network
layer DoS/DDoS protection mechanisms is to detect mali-
cious network flows targeting the availability of the system.
This is done by using filtering [47] or rate-limiting [32] (or
a combination thereof) according to certain characteristics
of a flow. We refer the reader to [52] for an in-depth survey
of network-level defenses. Moreover, additional countermea-
sures can be employed depending on the properties of the
system under attack (e.g., sensor-based networks [51], peer-
to-peer networks [53] and virtual ad-hoc networks [44]).

Application layer defenses. Application layer measures
for DoS/DDoS protection focus on separating human-
originated traffic from bot-originated traffic. To this end, prob-
lems that are hard to solve by computers and (somewhat) easy
to solve by humans comprise the basis of application layer so-
lutions. As explained in Section 1, CAPTCHAs [58] are used
extensively. Although developing more efficient CAPTCHAs
is an active area of research [34,41,57,59], research aiming
to subvert CAPTCHAS is also prevalent [39,40,49,61]. In
addition to such automated attacks, CAPTCHAs suffer from
inconsistency when solved by humans (e.g., perfect agree-
ment when solved by three humans are 71% and 31% for
image and audio CAPTCHAs, respectively [31]). [50] sug-
gest that although CAPTCHAS succeed at telling humans and
computers apart, by using CAPTCHA-solving services (oper-
ated by humans), with an acceptable cost, CAPTCHAs can
be defeated. Moreover, apart from questions regarding their
efficacy, one other concern about CAPTCHA is their usabil-
ity. Studies such as [31, 38] show that CAPTCHAs are not
only difficult but also time-consuming for humans, with com-
pletion time of ~10 seconds on average. While behavioral
CAPTCHAs are available, they suffer from privacy issues. A
prevalent example, reCAPTCHA [18], works by analyzing
user behavioral data (which requires sharing this data with
the CAPTCHA provider) and claims to work more efficiently
if used on multiple pages. In contrast, CACTI can provide
at least the equivalent of abuse-prevention as CAPTCHAs,
whilst minimizing the burden on users and offering strong
privacy guarantees.

Human presence detection. Human presence refers to
determining whether specific actions were performed by a
human. VButton [46] proposes a system design based on
ARM’s TrustZone [25]. Secure detection of human presence
is achieved by setting the display and the touch input periph-
erals as secure peripherals which can only be controlled by
the TEE while VButton Ul is displayed. With a secure I/O
mechanism in place, user actions can be authenticated to orig-

inate from VButton Ul by a remote server using software
attestation. Similarly, Not-a-Bot [42] designs a system based
on TPMs by tagging each network request with an attestation
assuring that the request has been performed not long after
a keyboard or mouse input by the user. Unfortunately, Intel
SGX does not support secure I/0 and it is not currently possi-
ble to implement similar systems on devices with only Intel
SGX support. SGXIO [60] proposes an architecture for creat-
ing secure paths to I/O devices from enclaves using a trusted
stack which contains a hypervisor, I/O drivers and an enclave
for trusted boot. In addition, an untrusted VM hosts secure ap-
plications. The communication between secure applications
and drivers are encrypted using keys generated at the end of
the local attestation process. Unfortunately, the implementa-
tion of this system is not yet available. Fidelius [37] protects
user secrets from a compromised browser or OS by protecting
the path from the input and output peripherals to the hardware
enclave. Similar to SGXIO, this is a promising step towards
general-purpose trusted UL If trusted UI capabilities do be-
come widely available on TEEs, these can complement our
CACTI design (e.g., providing stronger assurance of human
presence).

Privacy Pass. Privacy Pass [35] implements a browser ex-
tension to reduce the burden of CAPTCHAs for legitimate
users when visiting websites served by Cloudflare. When
a user solves a CAPTCHA, Cloudflare sends the user mul-
tiple anonymous cryptographic tokens, which the user can
later “spend” to access Cloudflare-operated services without
encountering additional CAPTCHAs Although Privacy Pass
significantly benefits benign users, it could still be exploited
by CAPTCHA farms. Additionally, Privacy Pass’ is currently
limited to Cloudflare users.

9 Conclusion & Future Work

CACTI is a novel approach for leveraging client-side TEEs
to help legitimate clients avoid solving CAPTCHAS on the
Web. The unforgeable yet privacy-preserving rate-proofs gen-
erated by the TEE provide strong assurance that the client
is not behaving abusively. Our proof-of-concept implemen-
tation demonstrates that rate-proofs can be generated in less
than 0.25 seconds on commodity hardware, and that CACTI
reduces data transfer by more than 98% compared to existing
CAPTCHA schemes. As for future work, we plan to employ
optimization techniques discussed in Section 7, implement
and evaluate CACTI on ARM TrustZone using OpenEnclave,
and explore new types of web security applications that are
enabled using client-side TEEs.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments on prior versions of this paper. The first author was

2576 30th USENIX Security Symposium

USENIX Association

supported in part by The Nakajima Foundation. The work of
UCT was supported in part by: NSF Award #:1840197, NSF
Award # 1956393, NCAE-C CCR 2020 Award #: H98230-
20-1-0345, as well as UCI VCR and School of ICS Seed
Funding Awards. The third author was supported by a US-UK
Fulbright Cyber Security Scholar Award.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

AntiCAPTCHA. https://anti-captcha.com/mainpage, [Online]
Accessed: 2020-05-22.

Chrome Native Messaging Protocol.
https://developer.chrome.com/extensions/
nativeMessaging#native-messaging-host-protocol, [Online]
Accessed: 2020-02-09.

Chrome Notifications.
https://developer.chrome.com/apps/notifications, [Online]
Accessed: 2020-02-14.

Cloudflare Rate Limiting.
https://www.cloudflare.com/rate-1limiting/, [Online]
Accessed: 2020-05-19.

EPID SDK. https://github.com/Intel-EPID-SDK/epid-sdk,
[Online] Accessed: 2020-02-14.

Google Chrome. https://www.google.com/chrome/, [Online]
Accessed: 2020-02-11.

hCaptcha. https://www.hcaptcha.com/, [Online] Accessed:
2020-05-21.

Intel Dynamic Application Loader Developer Guide: Monotonic
Counters. https://software.intel.com/en-us/
dal-developer-quide-features-monotonic-counters,

[Online] Accessed: 2020-02-05.

Intel Integrated Performance Primitives Cryptography.
https://github.com/intel/ipp-crypto, [Online] Accessed:
2020-05-28.

Intel NUC Kit NUC7PJYH.
https://ark.intel.com/content/www/us/en/ark/products/
126137/intel-nuc-kit-nuc7pjyh.html, [Online] Accessed:
2020-02-11.

Intel Pentium Processor G4400. https:
//ark.intel.com/content/www/us/en/ark/products/88179/
intel-pentium-processor-g4400-3m-cache-3-30-ghz.html,
[Online] Accessed: 2020-05-19.

JSMN JSON Parser. https://github.com/zserge/jsmn, [Online]
Accessed: 2020-02-13.

Mbed TLS. https://github.com/ARMmbed/mbedtls, [Online]
Accessed: 2020-02-14.

Moving from reCAPTCHA to hCaptcha. https://blog.
cloudflare.com/moving-from-recaptcha-to-hcaptcha/,
[Online] Accessed: 2020-05-19.

Native Messaging. https:
//developer.chrome.com/extensions/nativeMessaging,
[Online] Accessed: 2020-02-13.

Open Enclave SDK. https://openenclave.io/sdk/, [Online]
Accessed: 2020-02-14.

Package captcha. https://github.com/dchest/captcha, [Online]
Accessed: 2020-05-21.

reCAPTCHA.
https://www.google.com/recaptcha/intro/v3.html, [Online]
Accessed: 2020-02-05.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

reCAPTCHA v2.
https://developers.google.com/recaptcha/docs/display,
[Online] Accessed: 2020-02-13.

runtime.Port. https:
//developer.chrome.com/extensions/runtime#type-Port,
[Online] Accessed: 2020-02-12.

svg captcha. https://github.com/produck/svg-captcha,
[Online] Accessed: 2020-05-21.

Top 10 Captcha Solving Services Compared.
https://prowebscraper.com/blog/
top-10-captcha-solving-services-compared/, [Online]

Accessed: 2020-05-22.

Using Privacy Pass with Cloudflare.
https://support.cloudflare.com/hc/en-us/articles/
115001992652-Using-Privacy-Pass-with-Cloudflare,
[Online] Accessed: 2020-06-01.

I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology
for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for
security and privacy, volume 13, page 7. ACM New York, NY, USA,
2013.

ARM Holdings. ARM Security Technology, Building a Secure System
using TrustZone Technology, 2009.

G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and
Provably Secure Coalition-Resistant Group Signature Scheme. In
M. Bellare, editor, Advances in Cryptology — CRYPTO 2000, pages
255-270, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In
International conference on security and cryptography for networks,
pages 111-125. Springer, 2006.

E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM conference on Computer and
communications security, pages 132—145, 2004.

E. Brickell, L. Chen, and J. Li. A static diffie-hellman attack on
several direct anonymous attestation schemes. In International
Conference on Trusted Systems, pages 95—111. Springer, 2012.

E. Brickell and J. Li. Enhanced Privacy ID: A Direct Anonymous
Attestation Scheme with Enhanced Revocation Capabilities. In
Proceedings of the 2007 ACM Workshop on Privacy in Electronic
Society, WPES 07, page 21-30, New York, NY, USA, 2007.
Association for Computing Machinery.

E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Jurafsky.
How good are humans at solving CAPTCHASs? A large scale

evaluation. In 2010 IEEE symposium on security and privacy, pages
399-413. IEEE, 2010.

C.-M. Cheng, H. Kung, and K.-S. Tan. Use of spectral analysis in
defense against DoS attacks. In Global Telecommunications
Conference, 2002. GLOBECOM’02. IEEE, volume 3, pages
2143-2148. IEEE, 2002.

J. Danisevskis. Android Protected Confirmation: Taking transaction
security to the next level.
https://developer.android.com/training/articles/
security-android-protected-confirmation, [Online]

Accessed: 2020-02-05.

R. Datta, J. Li, and J. Z. Wang. IMAGINATION: a robust image-based
CAPTCHA generation system. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages 331-334, 2005.

A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda.
Privacy pass: Bypassing internet challenges anonymously.
Proceedings on Privacy Enhancing Technologies, 2018(3):164—180,
2018.

USENIX Association

30th USENIX Security Symposium 2577

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

(48]

[49]

X. Ding and G. Tsudik. Initializing trust in smart devices via presence
attestation. Computer Communications, 131:35 — 38, 2018.

S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Brandon, D. Franke,
F. Fraser, G. Garcia, E. Gong, H. T. Nguyen, T. K. Sethi, V. Subbiah,
M. Backes, G. Pellegrino, and D. Boneh. Fidelius: Protecting user
secrets from compromised browsers. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 264-280, 2019.

C. A. Fidas, A. G. Voyiatzis, and N. M. Avouris. On the necessity of
user-friendly CAPTCHA. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 2623-2626, 2011.

H. Gao, W. Wang, and Y. Fan. Divide and conquer: an efficient attack
on Yahoo! CAPTCHA. In 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications,
pages 9-16. IEEE, 2012.

P. Golle. Machine learning attacks against the Asirra CAPTCHA. In
Proceedings of the 15th ACM conference on Computer and
communications security, pages 535-542, 2008.

R. Gossweiler, M. Kamvar, and S. Baluja. What’s up CAPTCHA? A
CAPTCHA based on image orientation. In Proceedings of the 18th
international conference on World wide web, pages 841-850, 2009.
R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy.

Not-a-Bot: Improving Service Availability in the Face of Botnet
Attacks. In NSDI, volume 9, pages 307-320, 2009.

M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.

Using innovative instructions to create trustworthy software solutions.

HASP@ ISCA, 11(10.1145):2487726-2488370, 2013.

C. A. Kerrache, N. Lagraa, C. T. Calafate, and A. Lakas. TFDD: A
trust-based framework for reliable data delivery and DoS defense in
VANETS. Vehicular Communications, 9:254-267, 2017.

A. Leung, L. Chen, and C. J. Mitchell. On a possible privacy flaw in
direct anonymous attestation (DAA). In International Conference on
Trusted Computing, pages 179-190. Springer, 2008.

W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan.

Vbutton: Practical attestation of user-driven operations in mobile apps.

In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, pages 28—40, 2018.

X. Liu, X. Yang, and Y. Lu. To filter or to authorize: Network-layer
DoS defense against multimillion-node botnets. In Proceedings of the
ACM SIGCOMM 2008 conference on Data communication, pages
195-206, 2008.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. Hasp@ isca, 10(1), 2013.

G. Mori and J. Malik. Recognizing objects in adversarial clutter:
Breaking a visual CAPTCHA. In 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2003.
Proceedings., volume 1, pages I-1. IEEE, 2003.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker,
and S. Savage. Re: CAPTCHAs-Understanding CAPTCHA-Solving
Services in an Economic Context. In USENIX Security Symposium,
volume 10, page 3, 2010.

X. Ouyang, B. Tian, Q. Li, J.-y. Zhang, Z.-M. Hu, and Y. Xin. A novel
framework of defense system against DoS attacks in wireless sensor
networks. In 2011 7th International Conference on Wireless
Communications, Networking and Mobile Computing, pages 1-5.
IEEE, 2011.

T. Peng, C. Leckie, and K. Ramamohanarao. Survey of network-based
defense mechanisms countering the DoS and DDoS problems. ACM
Computing Surveys (CSUR), 39(1):3—es, 2007.

P. Perlegos. DoS defense in structured peer-to-peer networks.
Computer Science Division, University of California, 2004.

C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A secure database
using SGX. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 264-278. IEEE, 2018.

J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud,

C. Fournet, N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy,
C. Wintersteiger, and S. Zanella-Beguelin. EverCrypt: A Fast, Verified,
Cross-Platform Cryptographic Provider. Cryptology ePrint Archive,
Report 2019/757, 2019.

C. Rudolph. Covert identity information in direct anonymous
attestation (DAA). In IFIP International Information Security
Conference, pages 443—-448. Springer, 2007.

M. Sanghavi and S. Doshi. Progressive captcha, Apr. 30 2009. US
Patent App. 11/929,716.

L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA:
Using Hard AI Problems for Security. In E. Biham, editor, Advances
in Cryptology — EUROCRYPT 2003, pages 294-311, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

J. Z. Wang, R. Datta, and J. Li. Image-based CAPTCHA generation
system, Apr. 19 2011. US Patent 7,929,805.

S. Weiser and M. Werner. SGXIO: Generic trusted I/O path for Intel
SGX. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, pages 261-268, 2017.

J. Yan and A. S. El Ahmad. A Low-cost Attack on a Microsoft
CAPTCHA. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 543-554, 2008.

Z.Zhang, X. Ding, G. Tsudik, J. Cui, and Z. Li. Presence Attestation:
The Missing Link in Dynamic Trust Bootstrapping. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS *17, page 89-102, New York, NY,
USA, 2017. Association for Computing Machinery.

2578 30th USENIX Security Symposium

USENIX Association

	Introduction
	Background
	Trusted Execution Environments
	Group Signatures

	System & Threat Models
	CACTI Design & Challenges
	Conceptual Design
	Design Challenges
	Realizing CACTI Design
	Communication protocol
	TEE Design
	Producing a Rate-Proof
	Reducing Client-Side Storage

	Implementation
	Browser Extension
	Host Application
	SGX Enclave
	Website Integration

	Evaluation
	Security Evaluation
	Latency Evaluation
	Varying Number of Timestamps in Query
	Varying Number of Lists
	Signature Operation Latency
	End-to-End Latency

	Bandwidth Evaluation
	Server Load Evaluation
	Deployability Analysis

	Discussion
	PA Considerations
	EPID
	Optimizations
	Database Optimizations
	System-level Optimizations
	Optimizing Pruning

	Deploying CACTI
	Integration with CDNs and 3rd Party Providers
	Website Operator Incentives
	PA Operator Incentives
	Client-side components

	Related Work
	Conclusion & Future Work

