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Abstract

Training convolutional neural networks with a
Lipschitz constraint under the 5 norm is useful for
provable adversarial robustness, interpretable gra-
dients, stable training, etc. While 1-Lipschitz net-
works can be designed by imposing a 1-Lipschitz
constraint on each layer, training such networks
requires each layer to be gradient norm preserving
(GNP) to prevent gradients from vanishing. How-
ever, existing GNP convolutions suffer from slow
training, lead to significant reduction in accuracy
and provide no guarantees on their approxima-
tions. In this work, we propose a GNP convolu-
tion layer called Skew Orthogonal Convolution
(SOC) that uses the following mathematical prop-
erty: when a matrix is Skew-Symmetric, its ex-
ponential function is an orthogonal matrix. To
use this property, we first construct a convolution
filter whose Jacobian is Skew-Symmetric. Then,
we use the Taylor series expansion of the Jaco-
bian exponential to construct the SOC layer that
is orthogonal. To efficiently implement SOC, we
keep a finite number of terms from the Taylor
series and provide a provable guarantee on the
approximation error. Our experiments on CIFAR-
10 and CIFAR-100 show that SOC allows us to
train provably Lipschitz, large convolutional neu-
ral networks significantly faster than prior works
while achieving significant improvements for both
standard and certified robust accuracies.

1. Introduction

The Lipschitz constant? of a neural network puts an upper
bound on how much the output is allowed to change in
proportion to a change in input. Previous work has shown
that a small Lipschitz constant leads to improved general-
ization bounds (Bartlett et al., 2017; Long & Sedghi, 2020),
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adversarial robustness (Cissé et al., 2017; Szegedy et al.,
2014) and interpretable gradients (Tsipras et al., 2018). The
Lipschitz constant also upper bounds the change in gra-
dient norm during backpropagation and can thus prevent
gradient explosion during training, allowing us to train very
deep networks (Xiao et al., 2018). Moreover, the Wasser-
stein distance between two probability distributions can be
expressed as a maximization over 1-Lipschitz functions (Vil-
lani, 2008; Peyré & Cuturi, 2018), and has been used for
training Wasserstein GANs (Arjovsky et al., 2017; Gulrajani
et al., 2017) and Wasserstein VAEs (Tolstikhin et al., 2018).

Using the Lipschitz composition property (i.e. Lip(fog) <
Lip(f)Lip(g)). a Lipschitz constant of a neural network
can be bounded by the product of the Lipschitz constant
of all layers. 1-Lipschitz neural networks can thus be de-
signed by imposing a 1-Lipschitz constraint on each layer.
However, Anil et al. (2018) identified a key difficulty with
this approach: because a layer with a Lipschitz bound of
1 can only reduce the norm of the gradient during back-
propagation, each step of backprop gradually attenuates the
gradient norm, resulting in a much smaller gradient for the
layers closer to the input, thereby making training slow and
difficult. To address this problem, they introduced Gradi-
ent Norm Preserving (GNP) architectures where each layer
preserves the gradient norm by ensuring that the Jacobian
of each layer is an Orthogonal matrix (for all inputs to the
layer). For convolutional layers, this involves constraining
the Jacobian of each convolution layer to be an Orthogonal
matrix (Li et al., 2019b; Xiao et al., 2018) and using a GNP
activation function called GroupSort (Anil et al., 2018).

Li et al. (2019b) introduced an Orthogonal convolution layer
called Block Convolutional Orthogonal Parametrization
(BCOP). BCOP uses a clever application of 1D Orthog-
onal convolution filters of sizes 2 X 1 and 1 X 2 to construct
a 2D Orthogonal convolution filter. It overcomes common
issues of Lipschitz-constrained networks such as gradient
norm attenuation and loose lipschitz bounds and enables
training of large, provably 1-Lipschitz Convolutional Neural
Networks (CNN5s) achieving results competitive with exist-
ing methods for provable adversarial robustness. However,
BCOP suffers from slow training, significant reduction in
accuracy and provides no guarantees on its approximation

2Unless specified, we use Lipschitz constant under the I3 norm.
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Figure 1. Each color denotes a scalar, the minus sign (—) on top of some color denotes the negative of the scalar with that color. Given
any convolution filter M, we can construct a Skew-Symmetric filter (Figure 1a). Next, we apply spectral normalization to bound the norm
of the Jacobian (Figure 1b). On input X, applying convolution exponential (L %, X) results in an Orthogonal convolution (Figure 1c).

of an Orthogonal Jacobian matrix (details in Section 2).

To address these shortcomings, we introduce an Orthogo-
nal convolution layer called Skew Orthogonal Convolution
(SOC). For provably Lipschitz CNNs, SOC results in sig-
nificantly improved standard and certified robust accuracies
compared to BCOP while requiring significantly less train-
ing time (Table 2). We also derive provable guarantees on
our approximation of an Orthogonal Jacobian.

Our work is based on the following key mathematical prop-
erty: If A is a Skew-Symmetric matrix (i.e. A = —AT),
exp(A) is an Orthogonal matrix (i.e. exp(A)T exp(A) =

exp(A) exp(A)T = I) where
A A2 A3 Al
exp(A) =T+ 7+ S + 5 o0 = ZF (1)
=0

To design an Orthogonal convolution layer using this prop-
erty, we need to: (a) construct Skew-Symmetric filters, i.e.
convolution filters whose Jacobian is Skew-Symmetric; and
(b) efficiently approximate exp(J) with a guaranteed small
error where J is the Jacobian of a Skew-Symmetric filter.

To construct Skew-Symmetric convolution filters, we prove
(in Theorem 2) that every Skew-Symmetric filter L can be
written as L = M — conv _transpose(M) for some filter M
where conv_transpose represents the convolution transpose
operator defined in equation (3) (note that this operator is
different from the matrix transpose). This result is analogous
to the property that every real Skew-Symmetric matrix A
can be written as A = B — B7 for some real matrix B.

We can efficiently approximate exp(J) using a finite number
of terms in equation (1) and the convolution exponential
(Hoogeboom et al., 2020). But it is unclear whether the
series can be approximated with high precision and how
many terms need to be computed to achieve the desired
approximation error. To resolve these issues, we derive a
bound on the I3 norm of the difference between exp(J) and
its approximation using the first k& terms in equation (1),
called S (J) when J is Skew-Symmetric (Theorem 3):

< 13l

Skl < 1

[exp(J) — 2)

This guarantee suggests that when || J || is small, exp(J) can
be approximated with high precision using a small number
of terms. Also, the factorial term in denominator causes the
error to decay very fast as k increases. In our experiments,
we observe that using k = 12, ||J||2 < 1.8 leads to an error
bound of 2.415 x 105, We can use spectral normalization
(Miyato et al., 2018) to ensure ||J||2 is provably bounded
using the theoretical result of Singla & Feizi (2021). The
design of SOC is summarized in Figure 1. Code is available
athttps://github.com/singlasahill4/S0OC.

To summarize, we make the following contributions:

* We introduce an Orthogonal convolution layer (called
Skew Orthogonal Convolution or SOC) by first designing
a Skew-Symmetric convolution filter (Theorem 2) and
then computing the exponential function of its Jacobian
using a finite number of terms in its Taylor series.

* For a Skew-Symmetric filter with Jacobian J, we derive
a bound on the approximation error between exp (J) and
its k-term approximation (Theorem 3).

* SOC achieves significantly higher standard and provable
robust accuracy on 1-Lipschitz convolutional neural net-
works than BCOP while requiring less training time (Table
2.) For example, SOC achieves 2.82% higher standard
and 3.91% higher provable robust accuracy with 54.6%
less training time on CIFAR-10 using the LipConvnet-20
architecture (details in Section 6.5). For deeper networks
(> 30 layers), SOC outperforms BCOP with an improve-
ment of > 10% on both standard and robust accuracy
again achieving > 50% reduction in the training time.

* In Theorem 4, we prove that for every Skew-Symmetric
filter with Jacobian J, there exists Skew-Symmetric ma-
trix B satisfying: exp(B) = exp(J), ||B|l2 < 7. Since
| ||2 can be large, this can allow us to reduce the approx-
imation error without sacrificing the expressive power.

2. Related work

Provably lipschitz convolutional neural networks: Anil
et al. (2018) proposed a class of fully connected neural net-
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works (FCNs) which are Gradient Norm Preserving (GNP)
and provably 1-Lipschitz using the GroupSort activation and
Orthogonal weight matrices. Since then, there have been
numerous attempts to tightly enforce 1-Lipschitz constraints
on convolutional neural networks (CNNs) (Cissé et al., 2017,
Tsuzuku et al., 2018; Qian & Wegman, 2019; Gouk et al.,
2020; Sedghi et al., 2019). However, these approaches either
enforce loose lipschitz bounds or are computationally in-
tractable for large networks. Li et al. (2019b) introduced an
Orthogonal convolution layer called Block Convolutional
Orthogonal Parametrization (BCOP) that avoids the afore-
mentioned issues and allows the training of large, provably
1-Lipschitz CNNs while achieving provable robust accuracy
comparable with the existing methods. However, it suffers
from some issues: (a) it can only represent a subset of all
Orthogonal convolutions, (b) it requires a BCOP convolu-
tion filter with 2n channels to represent all the connected
components of a BCOP convolution filter with n channels
thus requiring 4 times more parameters, (c) to construct a
convolution filter with size k x k and n input/output chan-
nels, it requires 2k — 1 matrices of size 2n x 2n that must
remain Orthogonal throughout training; resulting in well
known difficulties of optimization over the Stiefel manifold
(Edelman et al., 1998), (d) it constructs convolution filters
from symmetric projectors and error in these projectors can
lead to an error in the final convolution filter whereas BCOP
does not provide guarantees on the error.

Provable defenses against adversarial examples: A clas-
sifier is said to be provably robust if one can guarantee that a
classifier’s prediction remains constant within some region
around the input. Most of the existing methods for provable
robustness either bound the Lipschitz constant of the neural
network or the individual layers (Weng et al., 2018; Zhang
et al., 2019; 2018; Wong et al., 2018; Wong & Kolter, 2018;
Raghunathan et al., 2018; Croce et al., 2019; Singh et al.,
2018; Singla & Feizi, 2020). However, these methods do
not scale to large and practical networks on ImageNet. To
scale to such large networks, randomized smoothing (Liu
et al., 2018; Cao & Gong, 2017; Lécuyer et al., 2018; Li
et al., 2019a; Cohen et al., 2019; Salman et al., 2019; Kumar
et al., 2020; Levine et al., 2019) has been proposed as a prob-
abilistically certified defense. In contrast, the defense we
propose in this work is deterministic and hence not directly
comparable to randomized smoothing.

3. Notation

For a vector v, v; denotes its j th element. For a matrix A,
A; . and A., denote the j'" row and k" column respec-
tively. Both A ;. and A j are assumed to be column vectors
(thus A ; . is the transpose of jt row of A). A ; . denotes
the element in 5 row and k" column of A. A ; ;. denotes
the matrix containing the first j rows and k columns of A.

0 0

Jacobian transpose

1D convolution
filter and its flip

Jacobian
Figure 2. Each color denotes a scalar. Flipping a conv. filter (of
odd size) transposes its Jacobian. Thus, any odd-sized filter that
equals the negative of its flip leads to a Skew-Symmetric Jacobian.

The same rules are directly extended to higher order tensors.
Bold zero (i.e. 0) denotes the matrix (or tensor) consisting
of zero at all elements and I denotes the identity matrix. ®
denotes the kronecker product. We use C to denote the field
of complex numbers and R for real numbers. For a scalar
a € C, @ denotes its complex conjugate. For a matrix (or
tensor) A, A denotes the element-wise complex conjugate.
For A € C™*", AH denotes the Hermitian transpose (i.e.
A = AT), Fora € C, Re(a), Im(a) and |a| denote the
real part, imaginary part and modulus of a, respectively. We
use ¢ to denote the imaginary part iota (i.e. 12 = —1).

. —
For a matrix A € C7%" and a tensor B € CPX7*" A

denoﬁgs the vector constructed by stacking the rows of A
and B by stacking the vectors B, . ., j € [p — 1] so that:

(X)T — [AL,, AT, ..., AT ]

(B) - [(BT;)T (B (mﬂ

For a 2D convolution filter, L € CP*7%7*5 we define the
tensor conv_transpose(L) € CI*P*7*# a5 follows:

[conv_transpose(L)]i ks = [L]; ;1 ko1

Note that this is very different from the usual matrix trans-
pose. See an example in Section 4. Given an input
X € Ci*nXn we use L « X € CPX"X"™ to denote the
convolution of filter L with X. We use the the notation
L« X £ L' (LxX). Unless specified, we assume
zero padding and stride 1 in each direction.

4. Filters with Skew Symmetric Jacobians

We know that for any matrix A that is Skew-Symmetric
(A = —AT), exp(A) is an Orthogonal matrix:
T T
exp(A) (exp(A))” = (exp(A))” exp(A) =1
This suggests that if we can parametrize the complete set of
convolution filters with Skew-Symmetric Jacobians, we can

use the convolution exponential (Hoogeboom et al., 2020) to
approximate an Orthogonal matrix. To construct this set, we
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first prove that, if convolution using filter L € R™*™m*P*4q
(p and ¢ are odd) has Jacobian J, the convolution using
conv_transpose(L) results in Jacobian J7. We note that
convolution with conv_transpose(L) filter results exactly
in an operation often called transposed convolution (adjoint
of the convolution operator), which appears in backpropaga-
tion through convolution layers (Goodfellow et al., 2016).

To motivate our proof, consider a filter L € RI*1x3x3,
Applying conv_transpose (equation (3)), we get:

a b ¢ i h g
L=|d e f|, conv_transpose(L)= |f e d
g h i c b a

That is, for a 2D convolution filter with 1 channel,
conv_transpose flips it along the horizontal and vertical
directions. To understand why this flipping transposes
the Jacobian, we provide another example for a 1D con-
volution filter in Figure 2. Our proof uses the following
expression for the Jacobian of convolution using a filter
Lec R1><1><(2p+1)><(2q+1) and input X € RIXan:

b q
J=2_ > Looptiats (P(i) ® PU))

i=—pj=—q

where P(F) ¢ R>7 PE? = 1ifi—j = k and 0 otherwise.
The above equation leads to the following theorem:

Theorem 1. Consider a 2D convolution filter L €
R7n><m><(2p+1)><(2q+1) and li’lpl/th c RMXNXN [or J =

Vg (LxX ), then JT = V3 (conv_transpose(L) x X).

Next, we prove that any 2D convolution filter L. whose
Jacobian is a Skew-Symmetric matrix can be expressed as:
L = M — conv_transpose(M) where M has the same
dimensions as L. This allows us to parametrize the set of all
convolution filters with Skew-Symmetric Jacobian matrices.

Theorem 2. Consider a 2D convolution filter L €
Rm*mx@p+0x Q9+ gpd jnput X € R™ ™ ™. The Ja-

cobian Vs (L x X) is Skew-Symmetric if and only if:
L = M — conv_transpose(M)
for some filter M € R™>mx(2p+1)x(2¢+1)

Thus, convolution using the filter L results in a skew-
symmetric operator. This operator can also be interpreted as
a Lie algebra for the special orthogonal group i.e the group
of orthogonal matrices with determinant 1.

We prove Theorems 1 and 2 for the more general case of
complex convolution filters (L; j x; € C) in Appendix Sec-
tions B.1 and B.2. Theorem 2 allow us to convert any arbi-
trary convolution filter into a filter with a Skew-Symmetric
Jacobian. This leads to the following definition:

Definition 1. (Skew-Symmetric Convolution Filter) A con-
volution filter L € R™** 2p+1)x(2a+1) jg sqid to be Skew-
Symmetric if given an input X € R™*"*" the Jacobian

matrix V3 (L x X) is Skew-Symmetric.

We note that although Theorem 2 requires the height and
width of M to be odd integers, we can also construct a
Skew-Symmetric filter when M has even height/width by
zero padding M to make the desired dimensions odd.

5. Skew Orthogonal Convolution layers

In this section, we derive a method to approximate the ex-
ponential of the Jacobian of a Skew-Symmetric convolution
filter (i.e. exp(J)). We also derive a bound on the ap-
proximation error. Given an input X € R™*™*™ and a
Skew-Symmetric convolution filter L € R™*™>xkxk (L jg
odd), let J be the Jacobian of convolution filter LL so that:

IX = Lx X )

By construction, we know that J is a Skew-Symmetric ma-
trix, thus exp(J) is an Orthogonal matrix. We are interested

in computing exp (J) X efficiently where:

eXp(J))_f:iﬂLqutﬁiJrJgijt

2! 3!

Using equation (4), the above expression can be written as:

exp (J) X

_3 L+X L2X L&X
R TR TR TR

where the notation L x* X £ L %=1 (L x X). Using the
above equation, we define L %, X as follows:
LxX Lx*X L#+X

+ + +

Lx X=X+ 1 o1 3]

®)

The above operation is called convolution exponential, and
was introduced by Hoogeboom et al. (2020). By construc-
tion, L %, X satisfies: exp (J) = L %, X. Thus, the
Jacobian of L %, )_(> with respect to 2 is equal to exp(J)
which is Orthogonal (since J is Skew-Symmetric). How-
ever, Lx. X can only be approximated using a finite number
of terms in the series given in equation (5). Thus, we need
to bound the error of such an approximation.

5.1. Bounding the Approximation Error

To bound the approximation error using a finite number of
terms, first note that since the Jacobian matrix J is Skew-
Symmetric, all the eigenvalues are purely imaginary. For a
purely imaginary scalar A € C (i.e. Re()) = 0), we first
bound the error between exp(A) and approximation py ()



Skew Orthogonal Convolutions

Algorithm 1 Skew Orthogonal Convolution

Input: feature map: X € R%*"*"  convolution filter:
M € Rm*mxhxw (g = max(c;, ¢,)) , terms: K
Output: output after applying convolution exponential: Y
if ¢; < c, then
| X'+ pad(X, (¢, —¢;,0,0))
end
L + M — conv_transpose(M)
L + spectral_normalization(L)
Y X'
factorial - 1
for j < 210 K do
X'+ LxX
factorial + factorial * (j — 1)
Y — Y + (X'/factorial)
end
if ¢; > ¢, then
| Y« Y[0:co :,:]
end
Return: Y

computed using & terms of the exponential series as follows:
AP

< —

— k! )

The above result then allows us to prove the following result
for a Skew-Symmetric matrix in a straightforward manner:

|exp(A) — pe(N)] YA:Re(A)=0 (6)

Theorem 3. For Skew-Symmetric J, we have the inequality:

k—1

where Si(J) = Z —

=0

k
Jexp(@) S () < 1T

A more general proof of Theorem 3 (for J € C"*™ and
skew-Hermitian i.e. J = —J) is given in Appendix Sec-
tion B.3. The above theorem allows us to bound the approx-
imation error between the true matrix exponential (which is
Orthogonal) and its £ term approximation as a function of
the number of terms (k) and the Jacobian norm ||J||2. The
factorial term in the denominator causes the error to decay
very fast as the number of terms increases. We call the
resulting algorithm Skew Orthogonal Convolution (SOC).

We emphasize that the above theorem is valid only for Skew-
Symmetric matrices and hence not directly applicable for
the convolution exponential (Hoogeboom et al., 2020).

5.2. Complete Set of Skew Orthogonal Convolutions
Observe that for Re(A) = 0, (i.e. A = 0, 6 € R), we have:

exp(A) = exp(A + 2umk) = cos(f) + ¢sin(f), k€ Z

This suggests that we can shift A by integer multiples of 27¢
without changing exp () while reducing the approximation

error (using Theorem 3). For example, exp(c7/3) requires
fewer terms to achieve the desired approximation (using
equation (6)) than say exp(c(7/3 + 2)) because the latter
has higher norm (i.e. 27 + /3 = 7n/3) than the former
(i.e. w/3). This insight leads to the following theorem:

Theorem 4. Given a real Skew-Symmetric matrix A, we
can construct another real Skew-Symmetric matrix B such
that B satisfies: (i) exp(A) = exp(B) and (ii) ||B||2 < 7.

A proof is given in Appendix Section B.4. This proves
that every real Skew-Symmetric Jacobian matrix J (associ-
ated with some Skew-Symmetric convolution filter L) can
be replaced with a Skew-Symmetric Jacobian B such that
exp (B) = exp (J) and ||B||2 < 7 (note that ||J||2 can be
arbitrarily large). This strictly reduces the approximation
error (Theorem 3) without sacrificing the expressive power.

We make the following observations about Theorem 4: (a) If
J is equal to the Jacobian of some Skew-Symmetric convo-
lution filter, B may not satisfy this property, i.e. it may not
exhibit the block doubly toeplitz structure of the Jacobian
of a 2D convolution filter (Sedghi et al., 2019) and thus may
not equal the jacobian of some Skew-Symmetric convolu-
tion filter; (b) even if B satisfies this property, the filter size
of the Skew-Symmetric filter whose Jacobian equals B can
be very different from that of the filter with Jacobian J.

In this sense, Theorem 4 cannot directly be used to
parametrize the complete set of SOC because it is not clear
how to efficiently parametrize the set of all matrices B that
satisfy (a) | Bl|2 < 7 and (b) exp(B) = exp(J) where J
is the Jacobian of some Skew-Symmetric convolution filter.
We leave this question of efficient parametrization of Skew
Orthogonal Convolution layers open for future research.

5.3. Extensions to 3D and Complex Convolutions

When the matrix A € C"*" is skew-Hermitian (A =
—A™), then exp(A) is a unitary matrix:

exp(A) (exp(A)™ = (exp(A))"

To use the above property to construct a unitary convolution
layer with complex weights, we first define:

exp(A) =1

Definition 2. (Skew-Hermitian Convolution Filter) A con-
volution filter L € C™*™*2p+1)x(24+1) g said to be Skew-
Hermitian if given an input X € C™*"*" the Jacobian

matrix Vg (L x X) is Skew-Hermitian.

Using the extensions of Theorems 1 and 2 for complex con-
volution filters (proofs in Appendix Sections B.1 and B.2),
we can construct a 2D Skew-Hermitian convolution filter.
Next, using an extension of Theorem 3 for complex Skew-
Hermitian matrices (proof in Appendix Section B.3), we
can get exactly the same bound on the approximation error.
The resulting algorithm is called Skew Unitary Convolution
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Figure 3. Invertible downsampling operation

(SUC). We also prove an extension of Theorem 4 for com-
plex Skew-Hermitian matrices in Appendix Section B.5. We
discuss the construction of 3D Skew-Hermitian convolution
filters in Appendix Sections B.6 and B.7.

6. Implementation details of SOC

In this section, we explain the key implementation details
of SOC (summarized in Algorithm 1).

6.1. Bounding the norm of Jacobian

To bound the norm of the Jacobian of Skew-Symmetric
convolution filter, we use the following result:

Theorem. (Singla & Feizi, 2021) Consider a convolution
filter L € Re>cxhxw gpplied to input X. Let J be the
Jacobian of L x X w.r.t X, we have the following inequality:

[I]l2 < Vhw min ([|R|l2, [|S[l2, [ Tll2, [|Ul2) ,

where R € Reoh*civ § ¢ Reowxeih ¢ Reoxcihw gpg
U € R X< qgre obtained by reshaping the filter L.

Using the above theorem, we divide the Skew-Symmetric
convolution filter by min (||R||2, ||S]l2, |T||2, [[U|l2) so
that the spectral norm of the resulting filter is bounded
by vhw. We next multiply the normalized filter with the
hyperparameter, 0.7 as we find that it allows faster conver-
gence with no loss in performance. Unless specified, we
use h = w = 3 in all of our experiments resulting in the
norm bound of 2.1. Note that while the above theorem also
allows us to bound the Lipschitz constant of a convolution
layer, for deep networks (say 40 layers), the Lipschitz bound
(assuming a 1-Lipschitz activation function) would increase
to 2.140 = 7.74 x 10'2. Thus, the above bound alone is
unlikely to enforce a tight global Lipschitz constraint.

6.2. Different input and output channels

In general, we may want to construct an orthogonal convolu-
tion that maps from c; input channels to ¢, output channels
where ¢; # c,. Consider the two cases:

Case 1 (¢, < ¢;): We construct a Skew-Symmetric convolu-
tion filter with ¢; channels. After applying the exponential,
we select the first ¢, output channels from the output layer.

Case 2 (c, > ¢;): We use a Skew-Symmetric convolution

Output .

Size Convolution layer Repeats

16x 16 com [3 x 3,32,1] (n/5)—1
conv [3 x 3,64, 2] 1

8% 8 conv [3 x 3,64, 1] (n/5)—1
conv [3 x 3,128, 2] 1

Axd conv [3 x 3,128, 1] (n/5)—1
conv [3 x 3,256, 2] 1

9% 9 conv [3 x 3,256, 1] (n/5)—1
conv [3 x 3,512, 2] 1

1x1 conv [3 x 3,512,1] (n/5)—1
conv [1 x 1,1024, 2] 1

Table 1. LipConvnet-n Architecture. Each convolution layer is
followed by the MaxMin activation.

filter with ¢, channels. We zero pad the input with ¢, — ¢;
channels and then compute the convolution exponential.

6.3. Strided convolution

Given an input X € R%*"*™ (n, is even), we may want
to construct an orthogonal convolution with output Y €
Reo*(n/2)x(n/2) (j.e. an orthogonal convolution with stride
2). To perform a strided convolution, we first apply invert-
ible downsampling 1) as shown in Figure 3 (Jacobsen et al.,
2018) to construct X/ € RA¢ix(n/2)x(n/2) " Next, we ap-
ply convolution exponential to X’ using a Skew-Symmetric
convolution filter with 4¢; input and ¢, output channels.

6.4. Number of terms for the approximation

During training, we use 6 terms to approximate the exponen-
tial function for speed. During evaluation, we use 12 terms
to ensure that the exponential of the Jacobian is sufficiently
close to being an orthogonal matrix.

6.5. Network architecture

We design a provably 1-Lipschitz architecture called
LipConvnet-n (n is the number of convolution layers and a
multiple of 5 in our experiments). It consists of (n/5)—1 Or-
thogonal convolutions of stride 1 (followed by the MaxMin
activation function), followed by Orthogonal convolution of
stride 2 (again followed by the MaxMin). It is summarized
in Table 1. conv [k x k,m, s] denotes convolution layer
with filter of size k£ x k, out channels m and stride s. It
is followed by a fully connected layer to output the class
logits. The MaxMin activation function (Anil et al., 2018)
is described in Appendix Section C.
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C CIFAR-10 CIFAR-100
Model T on:. Standard  Robust Time per | Standard Robust Time per
P Accuracy Accuracy epoch (s) | Accuracy Accuracy epoch (s)
. BCOP | 74.35% 58.01% 96.153 42.61% 28.67 % 94.463
LipConvnet-5
SOoC 75.78 % 59.16% 31.096 42.73% 27.82% 30.844
. BCOP | 74.47% 58.48% 122.115 42.08% 27.75% 119.038
LipConvnet-10
SOocC 76.48 % 60.82% 48.242 43.71% 29.39% 48.363
. BCOP | 73.86% 57.39% 145.944 39.98% 26.17% 144.173
LipConvnet-15
SocC 76.68 % 61.30% 63.742 42.93% 28.79% 63.540
. BCOP | 69.84% 52.10% 170.009 36.13% 22.50% 172.266
LipConvnet-20
SOC 76.43% 61.92% 77.226 43.07 % 29.18% 76.460
. BCOP | 68.26% 49.92% 207.359 28.41% 16.34% 205.313
LipConvnet-25
SOC 75.19% 60.18% 98.534 43.31% 28.59% 95.950
. BCOP | 64.11% 43.39% 227916 26.87% 14.03% 229.840
LipConvnet-30
SOoC 74.47 % 59.04% 110.531 42.90% 28.74% 107.163
. BCOP | 63.05% 41.72% 267.272 21.71% 10.33% 274.256
LipConvnet-35
SOoC 73.70% 58.44% 130.671 42.44% 28.31% 126.368
. BCOP | 60.17% 38.87% 295.350 19.97% 8.66% 289.369
LipConvnet-40
SOocC 71.63% 54.36 % 144.556 41.83% 27.98% 140.458

Table 2. Results for provable robustness against adversarial examples (2 perturbation radius of 36/255). Time per epoch is the training

time per epoch (in seconds).

7. Experiments

Our goal is to evaluate the expressiveness of our method
(SOC) compared to BCOP for constructing Orthogonal con-
volutional layers. To study this, we perform experiments in
three settings: (a) provably robust image classification, (b)
standard training and (c) adversarial training.

All experiments were performed using 1 NVIDIA GeForce
RTX 2080 Ti GPU. All networks were trained for 200
epochs with an initial learning rate 0.1, dropped by a factor
of 0.1 after 50 and 150 epochs. We use no weight decay for
training with BCOP convolution as it significantly reduces
its performance. For training with standard convolution and
SOC, we use a weight decay of 10~%. We use the same
setup for training with BCOP as given in their github repos-
itory. While this implementation uses 20 Bjorck iterations
for orthogonalizing matrices, we compare with BCOP using
30 Bjorck iterations in Appendix Table 5. Unless specified,
we use BCOP with 20 Bjorck iterations.

To evaluate the approximation error for SOC at convergence
(using Theorem 3), we compute the norm of the Jacobian of
the Skew-Symmetric convolution filter using real normaliza-
tion (Ryu et al., 2019). We observe that the maximum norm
(across different experiments and layers of the network) is
below 1.8 (i.e. slightly below the theoretical upper bound of

2.1 discussed in Section 6.1) resulting in a maximum error
of 1.812/12! = 2.415 x 1076,

7.1. Provable Defenses against Adversarial Attacks

To certify provable robustness of 1-Lipschitz network f
for some input x, we first define the margin of prediction:
Mp(x) = max (0,5, — max; 2 yi) where y = [y,32,..]
is the predicted logits from f on x and y; is the correct
logit. Using Theorem 7 in Li et al. (2019b), we can de-
rive the robustness certificate as M (x)/v/2. The prov-
able robust accuracy, evaluated using an [» perturbation ra-
dius of 36/255 (same as in Li et al. (2019b)) equals the
fraction of data points (x) in the test dataset satisfying
M;(x)/V/2 > 36/255. Additional results using lo per-
turbation of 72/255 are given in Appendix Table 6.

In Table 2, we show the results of our experiments using
different LipConvnet architectures with varying number of
layers on CIFAR-10 and CIFAR-100 datasets. We make
the following observations: (a) SOC achieves significantly
higher standard and provable robust accuracy than BCOP
for different architectures and datasets, (b) SOC requires
significantly less training time per epoch than BCOP and
(c) as the number of layers increases, the performance of
BCOP degrades rapidly but that of SOC remains largely
consistent. For example, on a LipConvnet-40 architecture,
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CIFAR-10 CIFAR-100
Model Conv. Type Standard Time per | Standard Time per
Accuracy epoch (s) | Accuracy epoch (s)

Standard 95.10% 13.289 77.60% 13.440
Resnet-18  BCOP 92.38% 128.383 71.16% 128.146

SOoC 94.24% 110.750 74.55% 103.633

Standard 95.54% 22.348 78.60% 22.806
Resnet-34  BCOP 93.79% 237.068 73.38% 235.367

SOoC 94.44 % 170.864 75.52% 164.178

Standard 95.47% 38.834 78.11% 37.454
Resnet-50

SOC 94.68 % 584.762 77.95% 597.297

Table 3. Results for standard accuracy. For Resnet-50, we observe OOM (Out Of Memory) error when using BCOP.

CIFAR-10 CIFAR-100
Model Conv. Type Standard Robust Time per | Standard Robust Time per
Accuracy Accuracy epoch (s) | Accuracy Accuracy epoch (s)
Standard 83.05% 44.39% 28.139 59.87% 22.78% 28.147
Resnet-18  BCOP 79.26% 34.85% 264.694 54.80% 16.00% 252.868
SOC 82.24% 43.73% 203.860 58.95% 22.65% 199.188

Table 4. Results for empirical robustness against adversarial examples (I~ perturbation radius of 8/255).

SOC achieves 11.46% higher standard accuracy; 15.49%
higher provable robust accuracy on the CIFAR-10 dataset
and 21.86% higher standard accuracy; 19.32% higher prov-
able robust accuracy on the CIFAR-100 dataset. We further
emphasize that none of the other well known deterministic
provable defenses (discussed in Section 2) are scalable to
large networks as the ones in Table 2. BCOP, while scalable,
achieves significantly lower standard and provable robust
accuracies for deep networks than SOC.

7.2. Standard Training

For standard training, we perform experiments using Resnet-
18, Resnet-34 and Resnet-50 architectures on CIFAR-10 and
CIFAR-100 datasets. Results are presented in Table 3. We
again observe that SOC achieves higher standard accuracy
than BCOP on different architectures and datasets while
requiring significantly less time to train. For Resnet-50,
the performance of SOC almost matches that of standard
convolution layers while BCOP results in an Out Of Mem-
ory (OOM) error. However, for Resnet-18 and Resnet-34,
the difference is not as significant as the one observed for
LipConvnet architectures in Table 2. We conjecture that this
is because the residual connections allows the gradient to
flow relatively freely compared to being restricted to flow
through the convolution layers in LipConvnet architectures.

7.3. Adversarial Training

For adversarial training, we use a threat model with an [,
attack radius of 8/255. Note that we use the [, threat
model (instead of /) because it is known to be a stronger
adversarial threat model for evaluating empirical robust-
ness (Madry et al., 2018). For training, we use the FGSM
variant by Wong et al. (2020). For evaluation, we use 50
iterations of PGD with step size of 2/255 and 10 random
restarts. Results are presented in Table 4. We observe
that for Resnet-18 architecture and on both CIFAR-10 and
CIFAR-100 datasets, SOC results in significantly improved
standard and empirical robust accuracy compared to BCOP
while requiring significantly less time to train. The perfor-
mance of SOC comes close to the performance of a standard
convolution layer with the difference being less than 1% for
both standard and robust accuracy on both the datasets.

8. Discussion and Future work

In this work, we design a new orthogonal convolution layer
by first constructing a Skew-Symmetric convolution filter
and then applying the convolution exponential (Hoogeboom
et al., 2020) to the filter. We also derive provable guaran-
tees on the approximation of the exponential using a finite
number of terms. Our method achieves significantly higher
accuracy than BCOP for various network architectures and
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datasets under standard, adversarial and provably robust
training setups while requiring less training time per epoch.
We suggest the following directions for future research:

Reducing the evaluation time: While SOC requires less
time to train than BCOP, it requires more time for eval-
uation because the convolution filter needs to be applied
multiple times to approximate the orthogonal matrix with
the desired error. In contrast, BCOP constructs an orthog-
onal convolution filter that needs to be applied only once
during evaluation. From Theorem 3, we know that we can
reduce the number of terms required to achieve the desired
approximation error by reducing the Jacobian norm ||J||5.
Training approaches such as spectral norm regularization
(Singla & Feizi, 2021) and singular value clipping (Sedghi
et al., 2019) can be useful to further lower ||J||2 and thus
reduce the evaluation time.

Complete Set of SOC convolutions: While Theorem 4
suggests that the complete set of SOC convolutions can be
constructed from a subset of Skew-Symmetric matrices B
that satisfy (a) || B|l2 < 7 and (b) exp(B) = exp(A) where
A is the Jacobian of some Skew-Symmetric convolution fil-
ter, it is an open question how to efficiently parametrize this
subset for training Lipschitz convolutional neural networks.
This remains an interesting problem for future research.
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