
GANs with Conditional Independence Graphs:
On Subadditivity of Probability Divergences

Mucong Ding Constantinos Daskalakis Soheil Feizi
University of Maryland,

College Park
mcding@umd.edu

Massachusetts Institute of Technology University of Maryland,
College Park

Abstract

Generative Adversarial Networks (GANs) are
modern methods to learn the underlying dis-
tribution of a data set. GANs have been
widely used in sample synthesis, de-noising,
domain transfer, etc. GANs, however, are
designed in a model-free fashion where no ad-
ditional information about the underlying dis-
tribution is available. In many applications,
however, practitioners have access to the un-
derlying independence graph of the variables,
either as a Bayesian network or a Markov
Random Field (MRF). We ask: how can one
use this additional information in designing
model-based GANs? In this paper, we pro-
vide theoretical foundations to answer this
question by studying subadditivity properties
of probability divergences, which establish
upper bounds on the distance between two
high-dimensional distributions by the sum of
distances between their marginals over (local)
neighborhoods of the graphical structure of
the Bayes-net or the MRF. We prove that
several popular probability divergences sat-
isfy some notion of subadditivity under mild
conditions. These results lead to a principled
design of a model-based GAN that uses a set
of simple discriminators on the neighborhoods
of the Bayes-net/MRF, rather than a giant
discriminator on the entire network, provid-
ing significant statistical and computational
benefits. Our experiments on synthetic and
real-world datasets demonstrate the benefits
of our principled design of model-based GANs.
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1 Introduction

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have been successfully used to model com-
plex distributions such as image data. GANs model
the learning problem as a min-max game between gen-
erator and discriminator functions. Depending on the
specific cost function and constraints on the discrimina-
tor network, the associated optimization problem aims
at estimating a Wasserstein distance (Arjovsky et al.,
2017), an Integral Probability Measure (IPM) (Müller,
1997), an f -divergence (Nowozin et al., 2016), etc.,
between the target and generated distributions.

GANs are often designed in a model-free fashion where
no additional information about the underlying distri-
bution is available1. In some applications, however,
one may have some side information about the data
distribution. For example, one may know that there is
a Markov chain governing the underlying independence
graph of the variables. In general, the underlying in-
dependence graph of variables may be available as a
Bayesian network (i.e. a directed graph) or a Markov
Random Field (i.e. an undirected graph). In this paper,
we ask: how can we use this additional information in
a principled model-based design of GANs?

In this paper, we provide theoretical foundations to an-
swer the aforementioned question for high-dimensional
distributions with conditional independence structure
captured by either a Bayesian network or a Markov
Random Field (MRF). We mainly focus on the appli-
cation to GANs, while the theory developed can be
used by any other type of adversarial learning that ex-
ploits discriminator networks. The pertinent question

1Some works have studied GANs under some strict as-
sumptions on the input data distribution. For example,
Feizi et al. (2017) has designed GANs for multivariate Gaus-
sians while Balaji et al. (2019) and Farnia et al. (2020) have
studied GANs for mixtures of Gaussians. In contrast, our
method is applicable to any Bayesian network or Markov
Random Field, which are significantly richer families of
distributions.
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is whether a known Bayes-net or MRF structure can
be exploited to design a GAN with multiple discrim-
inators that are localized and simple. In particular,
we are interested in whether we can replace the large
discriminator of the vanilla GAN implementation with
several simple discriminators that are used to enforce
constraints on local neighborhoods of the Bayes-net or
the MRF (i.e. local discriminators). Ignoring the un-
derlying conditional independence structure we might
know about the target distribution and letting the
GAN “learn it on its own” requires a very large discrim-
inator network, especially in applications where data is
gathered across many time steps. Large discriminators
face computational and statistical challenges, given
that min-max training is computationally challenging,
and statistical hypothesis testing in large dimensions
requires sample complexity exponential in the dimen-
sion; see e.g. discussions by Daskalakis and Pan (2017);
Daskalakis et al. (2019); Canonne et al. (2020).

Our proposed framework is based on subadditivity prop-
erties of probability divergences over a Bayes-net or a
MRF, which establish upper bounds on the distance
between two high-dimensional distributions with the
same Bayes-net or MRF structure by the sum of dis-
tances between their marginals over (local) neighbor-
hoods of the graphical structure of the Bayes-net or
the MRF (Daskalakis and Pan, 2017). For a Bayes-Net,
each local neighborhood is defined as the union of a
node i and its parents Πi, as it is the smallest set that
encodes conditional dependence. For a MRF, the set
of local neighborhoods can be defined as the set of
maximal cliques C of the underlying graph.

Let δ be some divergence or probability metric, such
as some Wasserstein distance or f -divergence, that
is estimated by each of the local discriminators in
their dedicated neighborhood. If we train a gener-
ator with the set of local discriminators, it samples
a distribution Q that minimizes the sum of diver-
gences δ between marginals of P and Q over the
local neighborhoods, where P is the target distribu-
tion. As per our description of what the local neigh-
borhoods are in each case, the optimization objec-
tive becomes

∑n
i=1 δ(PXi∪XΠi

, QXi∪XΠi
) on a Bayes-

net, and
∑
C∈C δ(PXC , QXC ) on a MRF. However,

our real goal is to minimize some divergence δ′(P,Q)
of interest measured on the joint (high-dimensional)
distributions. We say that δ(., .) satisfies general-
ized subadditivity if the sum

∑n
i=1 δ(PXi∪XΠi

, QXi∪XΠi
)

or
∑
C∈C δ(PXC , QXC ) upper-bounds the divergence

δ′(P,Q) of interest up to some constant factor α >
0 and additive error ε ≥ 0, i.e. δ′(P,Q) − ε ≤
α ·

∑n
i=1 δ(PXi∪XΠi

, QXi∪XΠi
) (on Bayes-nets), or

δ′(P,Q)−ε ≤ α·
∑
C∈C δ(PXC , QXC ) (on MRFs), where

δ′ can be the same or different from δ. In this sense,

the generator effectively minimizes δ′(P,Q) by mini-
mizing its upper-bound. Since, in many applications,
local neighborhoods can be significantly smaller than
the entire graph, local discriminators targeting each
of these neighborhoods will enjoy improved computa-
tional and statistical properties in comparison to a
global discriminator targeting the entire graph.

The key question is which divergences or metrics ex-
hibit subadditivity to be used in our proposed frame-
work. For testing the identity of Bayes-nets, Daskalakis
and Pan (2017) shows that squared Hellinger distance,
Kullback-Leibler divergence, and Total Variation dis-
tance satisfy some notion of generalized subadditivity.
Since our goal in this paper is to exploit subadditivity
in the design of GANs, we are interested in establish-
ing generalized subadditivity bounds for distances and
divergences that are commonly used in GAN formula-
tions. In this work, we prove that

• Jensen-Shannon divergence used in the original GAN
model (Goodfellow et al., 2014),

• Wasserstein distance used in Wasserstein GANs (Ar-
jovsky et al., 2017), and Integral Probability Metric
(IPM) (Müller, 1997) used in Wasserstein, MMD and
Energy-based GANs (Li et al., 2015; Zhao et al.,
2017),

• and nearly all f -divergences used in f -GANs
(Nowozin et al., 2016),

satisfy some notion of generalized subadditivity over
Bayes-nets under some mild conditions.2 Moreover, we
prove that under some mild conditions

• Wasserstein distance and IPM satisfy generalized
subadditivity on MRFs.

These results establish theoretical foundations for using
underlying conditional independence graphs in GAN’s
designs. We demonstrate benefits of our design over
several synthetic and real datasets such as the synthetic
“ball throwing trajectory” dataset and two real Bayes-
net datasets: the EARTHQUAKE dataset (Korb and
Nicholson, 2010) and the CHILD dataset (Spiegelhalter,
1992).

2 Related Works

In many applications, adversarial learning has been
used in a broader sense where multiple local discrimina-
tors have been employed in the learning framework. For
example, in image-to-image translation methods (Isola
et al., 2017; Zhu et al., 2017; Yi et al., 2017; Choi et al.,
2018; Yu et al., 2019; Demir and Unal, 2018), local

2We discuss the notion of “local subadditivity" in Sec-
tion 6 and Appendix F.
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discriminators are applied to different patches of im-
ages (Li and Wand, 2016). In the analysis of time-series
data as well as natural language processing (NLP) tasks,
local discriminators based on sliding windows (Li et al.,
2019), self-attention (Clark et al., 2019), recurrent neu-
ral networks (RNNs) (Esteban et al., 2017; Mogren,
2016), convolution neural networks (CNNs) (Nie et al.,
2018), and dilated causal convolutions (Oord et al.,
2016; Donahue et al., 2019) have been applied on dif-
ferent subsequences of the data. These models have
been applied to a wide range of tasks including image
style transfer (Isola et al., 2017; Zhu et al., 2017; Yi
et al., 2017; Choi et al., 2018), inpainting (Yu et al.,
2019; Demir and Unal, 2018), and texture synthesis (Li
and Wand, 2016), as well as time-series generation (Es-
teban et al., 2017; Mogren, 2016), imputation (Liu
et al., 2019), anomaly detection (Li et al., 2019), and
even video generation (Clark et al., 2019) and inpaint-
ing (Chang et al., 2019).

Intuitively, these methods aim at structuring the gener-
ation process and/or narrowing down the purview of the
discriminator to capture known dependencies leading
to improved computational and statistical properties.
These methods, however, are mostly not accompanied
by theoretical foundations. In particular, it is not clear
what subset of features each local discriminator should
be applied to, how many local discriminators should be
used in the learning process, and what the effect of the
discriminator localization is on estimating the distance
between the generated and target distributions.

3 Notation

Consider a Directed Acyclic Graph (DAG) G with
nodes {1, . . . , n}. Let Πi be the set of parents of node
i in G. Assume that (1, . . . , n) is a topological ordering
of G, i.e. Πi ⊆ {1, . . . , i−1} for all i. A probability dis-
tribution P (x) defined over space Ω = {(x1, . . . , xn)}
is a Bayes-net with respect to graph G if it can be
factorized as P (x) =

∏n
i=1 PXi|XΠi

(xi|xΠi).

Given an undirected graph G with nodes {1, . . . , n}, a
probability distribution P (x) defined over space Ω =
{(x1, . . . , xn)} is a MRF with respect to graph G if any
two disjoint subsets of variables A,B ⊆ {1, . . . , n} are
conditionally independent conditioning on a separating
subset S of variables (i.e. S such that all paths in G
from nodes in A to nodes in B pass through S). This
conditional independence property is denoted XA ⊥⊥
XB | XS . Such P (x) can be factorized as P (x) =∏
C∈C ψC(XC), where C is the set of maximal cliques

in G. In this paper, unless otherwise noted, we always
assume Xi ∈ Rd, thus Ω ⊆ Rnd, and use the Euclidean
metric. We always assume the density exists.

4 Generalized Subadditivity on
Bayes-nets

In this section, we define the notion of generalized
subadditivity of a statistical divergence δ on Bayes-nets.
We discuss subadditivity on MRFs in Section 5.

Definition 1 (Generalized Subadditivity of Diver-
gences on Bayes-nets). Consider two Bayes-nets P,Q
over the same sample space Ω = {(x1, . . . , xn)} and
defined with respect to the same DAG, G, i.e. fac-
torizable as P (x) =

∏n
i=1 PXi|XΠi

(xi|xΠi), Q(x) =∏n
i=1QXi|XΠi

(xi|xΠi), where Πi is the set of parents
of node i in G. For a pair of statistical divergences δ
and δ′, and constants α > 0 and ε ≥ 0, if the following
holds for all Bayes-nets P,Q as above:

δ′(P,Q)− ε ≤ α ·
n∑
i=1

δ(PXi∪XΠi
, QXi∪XΠi

),

then we say that δ satisfies α-linear subadditivity with
error ε with respect to δ′ on Bayes-nets. For the com-
mon case ε = 0 and δ′ = δ, we say that δ satisfies
α-linear subadditivity on Bayes-nets. When addition-
ally α = 1, we say that δ satisfies subadditivity on
Bayes-nets.

We refer to the right-hand side of the subadditivity
inequality as the subadditivity upper bound. If a sta-
tistical divergence δ satisfies linear subadditivity with
respect to δ′, minimizing the subadditivity upper bound
serves as a proxy to minimizing δ′(P,Q). The subad-
ditivity upper bound is often used as the objective
function in adversarial learning when local discrimina-
tors are employed.

We argue that subadditivity of δ on (1) product mea-
sures, and (2) length-3 Markov Chains suffices to imply
subadditivity on all Bayes-nets. The claim is implicit
in the proof of Theorem 2.1 by Daskalakis and Pan
(2017); we state it explicitly here and provide its proof
in Appendix A.1 for completeness. Roughly speaking,
the proof follows because we can always combine nodes
of a Bayes-net into super-nodes to obtain a 3-node
Markov Chain or a 2-node product measure, and ap-
ply the Markov Chain/Product Measure subadditivity
property recursively.

Theorem 1. If a divergence δ satisfies the following:

(1) For any two Bayes-nets P and Q on DAG
X → Y → Z, the following subadditivity holds:
δ(PXY Z , QXY Z) ≤ δ(PXY , QXY ) + δ(PY Z , QY Z).

(2) For any two product measures P and Q over vari-
ables X and Y , the following subadditivity holds:
δ(PXY , QXY ) ≤ δ(PX , QX) + δ(PY , QY ).

then δ satisfies subadditivity on Bayes-nets.
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Using Theorem 1, it is not hard to prove that squared
Hellinger distance has subadditivity on Bayes-nets, as
shown by Daskalakis and Pan (2017). For completeness,
we provide proof of the following in Appendix A.2
Theorem 2 (Theorem 2.1 by Daskalakis and Pan
(2017)). The squared Hellinger distance defined as
H2(P,Q) := 1 −

∫ √
PQ dx satisfies subadditivity on

Bayes-nets.

4.1 Subadditivity of f-Divergences

For two probability distributions P and Q on Ω, the
f -divergence of P from Q, denoted Df (P,Q), is de-
fined as Df (P,Q) =

∫
Ω
f (P (x)/Q(x))Q(x)dx. We

assume P is absolutely continuous with respect to
Q, written as P � Q. Common f -divergences are
Kullback-Leibler divergence (KL), Symmetric KL di-
vergence (SKL), Jensen-Shannon divergence (JS), and
Total Variation distance (TV); see Appendix B. The
subadditivity of KL-divergence on Bayes-nets is claimed
by Daskalakis and Pan (2017) without a proof. We
provide a proof in Appendix A.3 for completeness.
Theorem 3 (Claimed by Daskalakis and Pan
(2017)). The KL-divergence defined as KL(P,Q) :=∫
P log (P/Q) dx satisfies subadditivity on Bayes-nets.

It follows from the proof of Theorem 3 that the fol-
lowing conditions suffice for the KL subadditivity to
become additivity: ∀i, PXΠi

= QXΠi
(almost every-

where). From the investigation of local subadditivity of
f -divergences (Theorem 21 in Appendix F), we will see
that this is the minimum set of requirements possible.
The subadditivity of KL divergence easily implies the
subadditivity of the Symmetric KL divergence.
Corollary 4. The Symmetric KL divergence defined
as SKL(P,Q) := KL(P,Q) + KL(Q,P ) satisfies subad-
ditivity on Bayes-nets.

Moreover, the linear subadditivity of Jensen-Shannon
divergence (JS) follows from the subadditivity property
of squared Hellinger distance; see Appendix A.4.
Corollary 5. The Jensen-Shannon divergence
defined as JS(P,Q) := 1

2KL (P, (P +Q)/2) +
1
2KL (Q, (P +Q)/2) satisfies (1/ ln 2)-linear subaddi-
tivity on Bayes-nets.

Using a slightly modified version of Theorem 1, it
is not hard to derive the linear subadditivity of To-
tal Variation distance, which is stated without proof
by Daskalakis and Pan (2017). We provide a proof in
Appendix A.5 for completeness.
Theorem 6 (Claimed by Daskalakis and Pan (2017)).
The Total Variation distance defined as TV(P,Q) :=
1
2

∫
|P −Q| dx satisfies 2-linear subadditivity on Bayes-

nets.

4.2 Subadditivity of Wasserstein Distance
and IPMs

Suppose Ω is a metric space with distance d(·, ·). The
p-Wasserstein distance Wp is defined as Wp(P,Q) :=
(infγ∈Γ(P,Q)

∫
Ω×Ω

d(x, y)pdγ(x, y))1/p, where γ ∈
Γ(P,Q) denotes the set of all possible couplings of
P and Q; see Appendix C.

In general, Wasserstein distance does not satisfy subad-
ditivity on Bayes-nets and MRFs shown by a counter-
example using Gaussian distributions (Appendix E).
However, based on the linear subadditivity of TV on
Bayes-nets, one can prove that all p-Wasserstein dis-
tances with p ≥ 1 satisfy α-linear subadditivity when
space Ω is discrete and finite (Appendix A.6).

Corollary 7. If Ω is a finite metric space,
p-Wasserstein distance for p ≥ 1 satisfies
(21/pdiam(Ω)/dmin)-linear subadditivity on Bayes-nets,
where diam(Ω) is the diameter and dmin is the smallest
distance between pairs of distinct points in Ω.

Integral Probability Metrics (IPMs) are a class
of probability distances defined as dF (P,Q) :=
supφ∈F {Ex∼P [φ(x)]− Ex∼Q[φ(x)]}, which include the
Wasserstein distance, Maximum Mean Discrepancy,
and Total Variation distance. The IPM with F being
all 1-Lipschitz functions is the 1-Wasserstein distance
(Villani, 2008). Practical GANs take F as a parametric
function class, F = {φθ(x)|θ ∈ Θ}, where φθ(x) is a
neural network. The resulting IPMs are called neu-
ral distances (Arora et al., 2017).

Next, we prove that neural distances (even those ex-
pressible by a single ReLU neuron) satisfy generalized
subadditivity with respect to the Symmetric KL diver-
gence. This property establishes substantive theoretical
justification for the local discriminators used in GANs
based on IPMs.

Theorem 8. Consider two Bayes-nets P,Q on Ω =
{(X1, . . . , Xn)} ⊆ Rnd with a common DAG G, and
any set of function classes {F1, . . . ,Fn}. Suppose the
following conditions are fulfilled:

(1) the space Ω is bounded, i.e. diam(Ω) <∞;
(2) each discriminator class (Fi) is larger than the set

of single neuron networks with ReLU activations,
i.e. {max{wTx+ b, 0}

∣∣‖[w, b]‖2 = 1}; and
(3) log(PXi∪XΠi

/QXi∪XΠi
) are bounded and Lipschitz

continuous for all i.

Then the neural distances defined by F1, . . . ,Fn satisfy
the following α-linear subadditivity with error ε with
respect to the Symmetric KL divergence on Bayes-nets:

SKL(P,Q)− ε ≤ α ·
n∑
i=1

dFi(PXi∪XΠi
, QXi∪XΠi

),
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where α and ε are constants independent of P,Q and
{F1, . . . ,Fn}, satisfying

α > R
(

(kmax+1)d
)

and ε = O
(
nα−

2
(kmax+1)d+1 logα

)
,

where R((kmax + 1)d) is a function that only depends
on kmax (the maximum in-degree of G) and d (the
dimensionality of each variable of the Bayes-net).

Regarding condition (1), bounded space Ω still al-
lows many real-world data-types, including images and
videos. Regarding condition (2), all practical neural net-
works using ReLU activations satisfy this requirement.
Thus, the only non-trivial requirement is condition (3).
In practical GAN training, Q is the output distribu-
tion of a generative model, which can be regarded as
a transformation of a Gaussian distribution. Thus,
in general, Q is bounded and Lipschitz. If we have
P � Q, for bounded and Lipschitz real distribution P ,
the condition (3) is satisfied. If the subadditivity upper
bound is minimized, we can minimize SKL(P,Q) up
to O(n). For the detailed proof, see Appendix A.7.

5 Generalized Subadditivity on MRFs

The definition of generalized subadditivity of a statistical
divergence with respect to another one over MRFs
is the same as in Definition 1, except that the local
neighborhoods are defined as maximal cliques C ∈ C of
the MRF. For an alternative definition of subadditivity
on MRFs, see Appendix D.

The clique factorization of MRFs (i.e. P (x) =∏
C∈C ψ

P
C (XC)) offers a special method to prove the

subadditivity of IPMs on MRFs. Consider the Sym-
metric KL divergence SKL(P,Q) := KL(P,Q) +
KL(Q,P ) = Ex∼P [log(P/Q)] − Ex∼Q[log(P/Q)].
Clique factorization of P and Q decomposes SKL(P,Q)

into SKL(P,Q) =
∑
C∈C(ExC∼PXC [log(ψPC/ψ

Q
C )] −

ExC∼QXC [log(ψPC/ψ
Q
C )]), where each term in the sum-

mation is upper-bounded by an IPM dFC (PXC , QXC )

on the clique C, as long as log(ψPC/ψ
Q
C ) ∈ FC . This im-

plies the subadditivity of 1-Wasserstein distance with
respect to the Symmetric KL divergence, whenever each
log(ψPC/ψ

Q
C ) is Lipschitz continuous; see Appendix A.8

for the proof.

Theorem 9. Consider two MRFs P , Q with the same
factorization. If any of the following is fulfilled:

(1) The space Ω is discrete and finite.
(2) log(ψPC/ψ

Q
C ) are Lipschitz continuous for all C ∈ C.

Then, the 1-Wasserstein distance satisfies α-linear sub-
additivity with respect to the Symmetric KL Divergence
on MRFs, for some constant α > 0 independent of P
and Q.

Using the aforementioned property of Symmetric KL
divergence, the subadditivity of neural distances (Theo-
rem 8) can be generalized to MRFs; see Appendix A.9.
Corollary 10. For two MRFs P,Q on a common
graph G and a set of function classes {FC |C ∈ C},
if all of the three conditions in Theorem 8 are ful-
filled (with condition (3) replaced by: log(ψPC/ψ

Q
C ) are

bounded and Lipschitz continuous for all C ∈ C), the
neural distances induced by {FC |C ∈ C} satisfy α-linear
subadditivity with error ε with respect to the Symmet-
ric KL divergence on MRFs, i.e. SKL(P,Q) − ε ≤
α ·

∑
C∈C dFC (PXC , QXC ), where α and ε are con-

stants independent of P,Q and {FC |C ∈ C}, satisfying
α > R(cmaxd) and ε = O

(
|C|α−

2
cmaxd+1 logα

)
. |C| is

the number of maximal cliques in G and R(cmaxd) is a
function that only depends on cmax = max{|C|

∣∣C ∈ C}
(the maximum size of the cliques in G) and d.

6 Local Subadditivity

So far, we have stated and proved the subadditivity
or generalized subadditivity of some f -divergences on
Bayes-nets or MRFs. However, many divergences may
not enjoy subadditivity property (see such a counter-
example of 2-Wasserstein distance in Appendix E).
It is difficult to formulate a general framework for
determining which divergence is subadditive.

In this section, we consider a particular scenario when
two distributions P,Q are close to each other, which
can happen after some initial training steps in a GAN.
In this case, we are able to determine if an arbitrary f -
divergence satisfies generalized subadditivity on Bayes-
nets. We only report our main results here. See Ap-
pendix F and Appendix G for more details and proofs.
We consider two notions of “closeness” for distributions.
Definition 2. Distributions P,Q are one-sided ε-close
for some 0 < ε < 1, if ∀x ∈ Ω ⊆ Rnd, P (x)/Q(x) <
1 + ε. Moreover, P,Q are two-sided ε-close, if ∀x,
1−ε < P (x)/Q(x) < 1+ε. Note this requires P �� Q.

We find that most f -divergences satisfy generalized
linear subadditivity when the distributions are one- or
two-sided ε-close.
Theorem 11. An f-divergence whose f(·) is con-
tinuous on (0,∞) and twice differentiable at 1 with
f ′′(1) > 0 satisfies α-linear subadditivity, when P,Q
are two-sided ε(α)-close with ε > 0, where ε(α) is a
non-increasing function and limε↓0 α = 1.
Theorem 12. An f -divergence whose f(·) is continu-
ous and strictly convex on (0,∞), twice differentiable
at t = 1, and has finite f(0) = limt↓0 f(t), satisfies α-
linear subadditivity, when P,Q are one-sided ε(α)-close
with ε > 0, where ε(α) is a non-increasing function and
limε↓0 α > 0.
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Figure 1: Conceptual diagram of the Bayes-net GANs
with local discriminators compared with the standard
GANs.

7 GANs with Bayes-Nets/MRFs

Our proposed model-based GAN minimizes the general-
ized subadditivity upper bound of a divergence measure
δ. For example, a Bayes-net GAN3 is formulated as
the following optimization problem:

min
Q

n∑
i=1

δ(PXi∪XΠi
, QXi∪XΠi

).

Similar to a standard GAN (Goodfellow et al., 2014;
Arjovsky et al., 2017), the generated distribution Q
is characterized as G(Z) where G(.) is the generator
function and Z is a normal distribution. Note that
the discriminator is implicit in the definition of the
δ (Figure 1). Since local neighborhoods are often sig-
nificantly smaller than the entire graph, our proposed
model-based GAN enjoys improved computational and
statistical properties compared to a model-free GAN
that uses a global discriminator targeting the entire
graph.

8 Experiments

In this section, we provide experimental results demon-
strating the benefits of exploiting the underlying Bayes-
net or MRF structure of the data in the design of model-

3A model-based GAN on MRFs can be formulated simi-
larly.

based GANs. In our experiments, we consider a syn-
thetic ball throwing trajectory dataset as well as two real
Bayes-net datasets: the EARTHQUAKE dataset (Korb
and Nicholson, 2010) and the CHILD dataset (Spiegel-
halter, 1992). Unless otherwise stated, the Wasserstein
GAN (Arjovsky et al., 2017) with gradient penalty (Gul-
rajani et al., 2017) is used in the experiments. Detailed
experimental setups (including network architectures
and hyper-parameters) can be found in Appendix K.
The experiments on MRF datasets and more experi-
mental findings on Bayes-nets including the sensitivity
analysis of Bayes-net GANs are reported in Appendix J.

8.1 Synthetic Ball throwing trajectories

In this section, we consider a simple synthetic
dataset that consists of single-variate time-series data
(y1, . . . , y15) representing the y-coordinates of ball
throwing trajectories lasting 1 second, where yt =
v0 ∗ (t/15)− g(t/15)2/2. v0 is a Gaussian random vari-
able and g = 9.8 is the gravitational acceleration. These
trajectories are Bayes-nets, where the underlying DAG
has the following structure: each node t ∈ {1, . . . , 15}
has two parents, (t− 1) and (t− 2) (if they exist). This
is because, given g and without known v0, one can
determine yt from yt−1 and yt−2.

We train two types of GANs to generate “ball throwing
trajectories”: (1) Bayes-net GANs with local discrim-
inators where each discriminator has a certain time
localization width and (2) a standard GAN with one
global discriminator. From the underlying physics of
this dataset, we know that a proper discriminator de-
sign should have at least a localization width of 3
since one needs at least three consecutive coordinates
yt−2, yt−1, yt to estimate the gravitational acceleration
g. Thus, from the theory, a GAN trained using local
discriminators with a localization width of 2 should not
be able to generate high-quality samples. This is in fact
verified by our experiments. In Fig. 2, we see samples
generated by the local-width 3 GAN (Fig. 2(c)) are
visually very similar to the ground truth trajectories
(Fig. 2(a)), while samples generated by the local-width
2 GAN demonstrate poor quality.

Note that increasing the localization width of the dis-
criminators enhances their discrimination power, but
at the same time, it increases the model complexity,
which can cause statistical and computational issues
during the training. To understand this trade-off, we
progressively increase the localization width from 3
to 15, obtaining one giant discriminator at the end.
The quality of generated trajectories from the standard
GAN (corresponding to the giant discriminator) is, in
fact, worse (Fig. 2(d)).

In Fig. 3, we compare the estimation errors of the gravi-
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(d) Standard GAN

Figure 2: GAN-generated ball throwing trajectories by (b) the Bayes-net GAN (ours) with localization width 2
(the width of the local neighborhoods that the discriminators test on), (c) the Bayes-net GAN with local-width 3,
and (d) the standard GAN.

Dataset GAN used Energy Stats. (×10−2)
(smaller is better)

Detection AUC
(smaller is better)

Rel. BIC (×102)
(larger is better)

Rel. GED
(smaller is better)

EARTHQUAKE Bayes-net (ours) 0.24± 0.04 0.523± 0.005 +1.68± 0.17 0.4± 0.7
Standard 1.72± 0.08 0.564± 0.012 −4.30± 0.21 5.6± 0.7

CHILD Bayes-net (ours) 2.37± 0.10 0.644± 0.008 +0.6± 1.5 9± 4
Standard 4.40± 0.22 0.689± 0.019 −7.1± 2.0 24± 8

Table 1: Quality metrics of samples generated by the standard and Bayes-net GANs trained on the Bayes-nets.
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Figure 3: Estimation errors of gravitational accelera-
tion g and residual errors of degree-2 polynomial re-
gression on the generated trajectories with varying
localization width.

tational acceleration g and the residual errors of degree-
2 polynomial regression (which evaluate the “smooth-
ness” of generated trajectories) among GANs with dif-
ferent localization widths. Interestingly, the curves of
both metrics demonstrate a U -shaped behavior indicat-
ing that there is an optimal localization width balanc-
ing between the discrimination power and the model
complexity and its resulting statistical/computational
burden.

8.2 Real Bayes-nets

Next, we consider two real Bayes-net datasets: (1) the
EARTHQUAKE dataset which is a small Bayes-net
with 5 nodes and 4 edges characterizing the alarm

system against burglary which can get occasionally
set off by an earthquake (Korb and Nicholson, 2010),
and (2) the CHILD dataset which is a Bayes-net for
diagnosing congenital heart disease in a newborn “blue
baby” (Spiegelhalter, 1992), with 20 nodes and 25 edges.
The underlying Bayes-nets of both datasets are known.
We first generate samples from the Bayes-nets, then
train both standard GANs and Bayes-net GANs (us-
ing the subadditivity upper-bound as objectives) on
them (Since all the features are categorical, we use
Gumbel-Softmax (Jang et al., 2016) as a differentiable
approximation to the Softmax function in the generator;
see Appendix K.)

If a GAN learns the Bayes-net well, it should learn both
the joint distribution and the conditional dependencies.
We evaluate the quality of the generated samples by
four scores:

• Energy Statisticsmeasuring how close the real and
fake empirical distributions based on a statistical
potential energy (a function of distances between
observables) (Székely and Rizzo, 2013),

• Detection AUC: AUC scores of binary classifiers
trained to distinguish fake samples from real ones,

• Relative BIC: the Bayesian information criterion
of fake samples (a log-likelihood score with an addi-
tional penalty for the network complexity) (Koller
and Friedman, 2009) subtracted by the BIC of real
ones, and
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Figure 4: Causal structures predicted from (b) the observed data, (c) the data generated by the standard GAN,
and (d) the data generated by the Bayes-net GAN (ours).
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Figure 5: Causal structures predicted from the data generated by the Bayes-net GAN at different stages of
training and the Wasserstein loss curve.
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Figure 6: Energy statistics between generated and
observed samples at different stages of training.

• Relative GED: the graph editing distance between
the DAGs predicted from the fake and real samples
by a greedy search starting from the ground truth
DAG.

The first two metrics characterize the similarity between
the joint distributions, while the last two evaluate how
accurately the causal structure is learned.

We find that the Bayes-net GAN using the ground

truth causal graph consistently outperforms the model-
free standard GAN on all four quality metrics (Ta-
ble 1). For Bayes-net GANs, the relative BIC scores
(the second last column) are positive, i.e., the BIC
of samples generated by the Bayes-net GANs is even
higher than the BIC of observed data. Because the
Bayes-net GANs are designed to conveniently capture
the ground truth causal dependencies (compared to
the other correlations), the likelihood of the ground
truth causal structure can further increase. On the
EARTHQUAKE dataset, we can usually recover the
true causal graph from the data generated by the Bayes-
net GAN (Fig. 4(d)). This is not the case if we use
standard GANs (Fig. 4(c)), where any pair of nodes
are directly dependent on each other. In this regard,
we conclude the standard GANs cannot efficiently cap-
ture the conditional independence relationships among
variables.

Next, we study how a Bayes-net GAN learns the causal
structure during the training (Fig. 5). In general, dis-
crete Bayes-nets are multi-modals. The Bayes-net GAN
learns some strong conditional dependencies at first,
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e.g. “Burglary” leads to “JohnCalls” in the second
snapshot, although it is not a direct dependence (in
fact, “Burglary” triggers “Alarm”, then “JohnCalls”).
After some training, the dependence relation is further
specified, and the edge (“Burglary”→“JohnCalls”) is
replaced by a pair of new edges, (“Burglary”→“Alarm”)
and (“Alarm”→“JohnCalls”) in the second last snap-
shot. During training, we rarely observe that the Bayes-
net GAN captures any non-existing dependencies (e.g.
“Earthquake” and “Burglary”). However, this happens
often for standard GANs; see Fig. 4(c) for an example.

The success of learning causal independence structures
also simplifies the task of learning joint distribution.
Without changing any setup or hyper-parameters, re-
placing the discriminator with a set of local discrim-
inators brings a performance gain on the first two
scores as well (Table 1). Moreover, Bayes-net GANs
are computationally efficient when the Bayes-nets are
not very large. On average, they converge faster than
the standard GAN on Bayes-nets; see Fig. 6 for the
averaged curves of energy statistics on the EARTH-
QUAKE dataset. These results highlight the statistical
and computational benefits of our principled design of
Bayes-net GANs.
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