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Abstract

Artificial Intelligence (Al) is an integral part of our daily technology use and will
likely be a critical component of emerging technologies. However, negative user
preconceptions may hinder adoption of Al-based decision making. Prior work
has highlighted the potential of factors such as transparency and explainability in
improving user perceptions of Al. We further contribute to work on improving user
perceptions of Al by demonstrating that bringing the user in the loop through mock
model training can improve their perceptions of an Al agent’s capability and their
comfort with the possibility of using technology employing the Al agent.

1 Motivation and Background

Fueled by increasingly available user data, growing computing power, and recent advances in
machine learning, Artificial Intelligence (AI) technologies are transforming our society and daily
lives. However, users’ negative preconceptions of Al may hinder adoption and continued use
of Al technologies. Negative user preconceptions can affect user trust, which is a key factor in
determining acceptance of technology [1]. Inadequate user trust can in turn lead to misuse (i.e.,
inappropriate reliance on technology) and disuse (i.e., underutilization of technology due to rejection
of its capability) [2, 3]. To enhance user perceptions of Al systems, previous research has investigated
Al transparency, explainability, and interpretability (e.g., [4, 5]), as modern machine learning methods
are largely black boxes [6, 7]. For example, prior work has explored how visualization may aid user
understanding of how machine learning models work (e.g., [8, 9]). Explanations of these models and
justifications for decisions made by intelligent machines help users understand their inner workings
once they begin interacting with the Al technologies. In this work, we explore how to improve users’
existing preconceptions of Al agents prior to any interactions with the agents.

Simulated setups, such as mock trials, mock interviews, and drills, have been used as low-cost,
hands-on tools in early training phases to help people become accustomed to unfamiliar practices and
processes prior to engaging in them. Similarly, we explore the potential of using mock interactions
in which users label training data for AI models in modulating users’ confidence in Al agents’
capabilities and their comfort with the possibility of using technologies employing the Al agents
before engaging in real interactions with the Al agents. We contextualize our exploration within the
scenario of training Al agents for use in autonomous vehicles—a safety-critical domain that is likely
to involve interactions with everyday users. Our findings indicate that users’ perceptions of Al agents
improved through participation in mock model training, especially when they were able to precisely
label objects that they perceived to be important.
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Figure 1: We explore how mock model training involving various data labeling strategies may affect
users’ perceptions of Al agents posed as driving assistants.

2 Methods

2.1 Experimental Design, Task, and Conditions

We conducted a within-subjects study that consisted of four experimental conditions (Figure 1). The
study was contextualized within the scenario of labeling images to train four Al agents to perform
driving-related object identification:

» Al: To train this agent, the participant was presented with a grid of images that included
five positive examples for each of six item categories commonly encountered during driving:
stop sign, speed limit sign, traffic light, car, bicyclist, and pedestrian. This labeling process
is similar to image selection tasks commonly used in web security checks. It represents low
labeling precision (i.e., the user did not localize the object within the image) and passive
labeling (i.e., the user only labeled items for the requested categories). It is analogous to
binary object detection (i.e., indicating whether or not a specified item is present).

* A2: The participant followed a similar labeling process to train agent A2 as done for Al,

with the additional task of drawing bounding boxes around the target item in all images. This
process represents high labeling precision and is analogous to binary object recognition..

* A3: In training this agent, the participant was provided with a set of individual images for
labeling. For each image, the user was prompted to list all items within the image that they
considered to be relevant via text. The user was free to specify as many item categories as
they wanted. This method is analogous to multiple object detection.

* A4: Similarly to the training task for A3, the participant was prompted to draw bounding
boxes around all items that they considered to be relevant and to specify the associated
labels via text within each image in the set. This process represents high labeling precision
and is analogous to multiple object recognition.

We also presented a baseline pre-trained agent to the participant at the beginning of the study. The
participant was able to review the images used to the train the agent. We used this baseline condition
as a reference to measure users’ preconceptions of an Al agent without undergoing mock training.

2.2 Measures

We used a range of metrics to measure user perceptions that may affect user trust in and adoption of Al
technologies. For each trained agent, we computed the difference in comfort, projected capability, and
task confidence relative to the baseline, pre-trained agent (i.e., positive values indicate an improvement
in user perceptions relative to the baseline). We normalized the data from all questionnaire responses
to get values in a 0 — 1 range before computing the difference.

* Trustworthiness. Trust was measured through a single question asking which Al agent the
participant would trust the most if it was employed in an autonomous vehicle.

* Comfort. Comfort was measured through a custom scale consisting of six statements
(Cronbach’s ac = 0.90) prompting users to rate how comfortable they felt towards a self-
driving car employing the trained agent (Appendix A.1).

* Projected Capability. Projected capability was measured through a custom scale consisting
of four statements (Cronbach’s o = 0.87) prompting participants to rate how capable they
felt the self-driving car employing the trained agent to be (Appendix A.2).
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Figure 2: One-way repeated measures ANOVAs were conducted to discover effects of experimental
condition on comfort, projected capability, and task confidence for seen and unseen cases. Error bars
represent 95% confidence intervals; only significant comparisons (p < .05) are highlighted.

» Task Confidence. To quantify their perception of the Al agent’s performance, we asked
participants to rate their confidence (0-100%) in its ability to identify specified items (e.g.,
stop sign) for a set of 14 images. This set included two images for each of the six item
categories (12 images) and two images representing “unseen’ items (e.g., no-left-turn sign
and pedestrian-crossing sign) that were not included in the object categories used for training
agents Al and A2.

2.3 Procedure

The study consisted of five phases: (1) Introduction and consent. Upon opening the website,
participants were briefed about the study and were informed that they would be training Al agents to
become driving assistants by providing examples of things (e.g., stop signs and pedestrians) that the
agents may encounter on the road. (2) Reference. The participants review the images used to train
the baseline, pre-trained agent and complete the confidence assessment and perception survey. (3)
Labeling training examples for Al agents A1-A4. The participants labeled training data for for the four
experimental conditions, which were counterbalanced using a Latin square design. (4) Confidence
assessment and perception survey. Participants were asked to rate task confidence and questions about
trust. They then continued to the next condition and repeated phase 3—4. (5) Post-study questionnaire.
At the end, participants filled out a post-study questionnaire, which asked which agent they trusted the
most and collected demographics information. The study was approved by our institutional review
board and took approximately 45 minutes to complete. The participants were compensated with $10
USD upon completion of the study.

3 Results

A total of 35 participants (17 females, 17 males, 1 non-binary) were recruited for this online study
via convenience sampling. The participants were aged between 18 to 35 (M = 25.91, 5D = 4.78)
and were from a variety of educational backgrounds, including computer science, engineering and
technology, social work, healthcare, life sciences, business, law, media, public policy, and education.
The participants reported having minimal experience with self-driving cars (M = 1.40, SD = 0.85),
and moderate experience with Al products (M = 3.49, 5D = 1.72) and with training Al or machine
learning models (M = 3.09, SD = 1.69), using 6-point rating scales with 1 being no experience and
6 being lots of experience. Figure 2 summarizes our main findings. For all statistical tests reported
below, p < .05 was considered a significant effect. We followed Cohen’s guidelines on effect size
and considered 2 = 0.01 a small effect size, 72 = 0.06 a medium effect size, and 72 = 0.14 a large
effect size [10].

A chi-square goodness-of-fit test showed that users did not perceive Al agents, including the baseline
agent, as equally trustworthy, x?(4,35) = 43.60,p < .001,v = 0.56. In particular, A4 (active
labeling with high precision) was considered the most trustworthy agent by the most participants
(51%). A one-way repeated measures analysis of variance (ANOVA) yielded a significant main
effect of experimental condition on comfort, F'(3,102) = 3.75,p = .013,17]% = .099. Post-hoc



pairwise comparisons with a Bonferroni correction revealed that comfort increased with active
labeling with precision, A4 (M = 0.10,SD = 0.19), more than with active labeling without
precision, A3 (M = 0.02,SD = 0.22), p = .028. Moreover, a one-way repeated measures
ANOVA yielded a significant main effect of the experimental condition on projected capability,
F(3,102) = 4.69,p = .004, 77127 = .121. Post-hoc pairwise comparison with a Bonferroni correction
revealed that active labeling with precision, A4 (M = 0.09, SD = 0.22), had higher improvement in
projected capability than active labeling without precision, A3 (M = —0.02, SD = 0.22), p = .009.

A one-way repeated measures ANOVA yielded a significant main effect of the experimental condition
on task confidence for unseen cases, F'(3,102) = 6.76,p < .001, 7712) = .166. Post-hoc pairwise
comparisons with a Bonferroni adjustment revealed that active labeling with precision, A4 (M =
18.00, SD = 32.16), had higher improvement in task confidence than passive labeling with precision,
A2 (M = —2.57,5D = 16.47), p = .004. While a one-way repeated measures ANOVA yielded a
significant main effect of the experimental condition on task confidence for seen cases, F'(3,102) =
4.44,p = .006, 77127 = .115, we did not observe any significant differences in pairwise comparisons.

4 Discussion

In this study, we observed that users associated higher levels of comfort and projected capability
with the agents for which they labeled training data with precision. Moreover, for unseen cases,
users perceived the agent for which they were able to freely label objects of interest to be more
capable. Our results suggest that everyday users can perceive the importance of high-precision
training data representative of diverse scenarios in determining Al task performance. Therefore,
involving users in mock training exercises where they obtain hands-on experience with training data
may help them in developing accurate mental models of how an Al agent operates and in maintaining
appropriate trust levels in the Al agent’s performance before working with or using the Al technology.
Furthermore, our study suggests that greater levels of user involvement (e.g., precise labeling using
bounding boxes) may help users feel more comfortable with using an Al agent, even in a more
safety-critical scenario. Overall, our study suggests that mock training setups can serve to help set up
appropriate user understanding and improved preconceptions of how an Al agent will operate prior to
real interaction with the Al agent.

One of the limitations of this study is that we focused on user trust in Al through a questionnaire
item, rather than relying on behavioral (e.g., [11]) or physiological (e.g., [12]) measures. As a result,
we may have failed to accurately or fully capture actual user trust in Al systems. In future studies,
we would like to investigate alternate methods for measuring and investigating trust so that we can
better understand the range of factors that contribute to user trust in human-Al interaction. We would
also like to expand our study of mock model training in Al systems to encompass new types of
interactions in different domains. In this work, we chose to contextualize our study within the scenario
of training Al agents for self-driving cars, which is a safety-critical domain that many users may not
have direct experience with. Therefore, we would like to further investigate how our findings would
apply to more general, commonplace scenarios that may involve lower stakes, such as speech-based
interactions with Al agents in smart-speakers. Furthermore, we investigated the effects of mock
model training as explicit participation in this work, but users may participate in different forms and in
other phases of machine learning, such as algorithm design or error correction. Furthermore, modern
machine learning systems may involve users without their knowledge or explicit consent, such as
recommender systems used in online services. Future work should investigate if user participation
still positively influences perceptions of Al in cases where users are engaged outside of Al training or
implicitly without their awareness.
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A Appendix

A.1 Comfort — Cronbach’s o = 0.90
Please rate the following regarding the self-driving car that has employed Driving Assistant X:

+ I would be wary of the self-driving car!

» I would be afraid that the self-driving car would be harmful'
* I would be confident riding in self-driving car

* I would be comfortable riding in the self-driving car

* I would be relaxed while riding in the self-driving car

« I would be agitated while riding in the self-driving car'

A.2 Projected capability — Cronbach’s o = 0.87
Please rate following regarding the self-driving car that has employed Driving Assistant X:

* I believe that the self-driving car would NOT be dependable!
* I believe that the self-driving car would be reliable

* I would trust the self-driving car to identify pedestrians, signs and signals, and obstacles
correctly

* T am confident that the self-driving car would comply with traffic rules

A.3 Image Sources

The images that we used in the study included public domain images from the web and images from
various datasets, including the Penn-Fudan Database for Pedestrian Detection and Segmentation
[13], the MIO-TCD Dataset [14], the LISA Traffic Sign Dataset [15], and ImageNet [16]. Figure 1
shows examples of images used for our study tasks.

'Reverse scale items
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