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Abstract

We develop an approach to recover the underlying prop-

erties of fluid-dynamical processes from sparse measure-

ments. We are motivated by the task of imaging the stochas-

tically evolving environment surrounding black holes, and

demonstrate how flow parameters can be estimated from

sparse interferometric measurements used in radio astro-

nomical imaging. To model the stochastic flow we use

spatio-temporal Gaussian Random Fields (GRFs). The high

dimensionality of the underlying source video makes di-

rect representation via a GRF’s full covariance matrix in-

tractable. In contrast, stochastic partial differential equa-

tions are able to capture correlations at multiple scales by

specifying only local interaction coefficients. Our approach

estimates the coefficients of a space-time diffusion equation

that dictates the stationary statistics of the dynamical pro-

cess. We analyze our approach on realistic simulations of

black hole evolution and demonstrate its advantage over

state-of-the-art dynamic black hole imaging techniques.

1. Introduction

The first-ever black hole image was produced by the

Event Horizon Telescope (EHT) collaboration in 2019 [35].

This image, of the black hole in the center of the M87

galaxy was computationally constructed from radio mea-

surements collected over an entire night [2]. The massive

size of the M87 black hole gives rise to evolution timescales

greater than acquisition length, thus, the image could be re-

constructed assuming a static source [8]. In contrast, the

Milky Way’s galactic center hosts a smaller [18] more dy-

namic [15, 23] black hole: Sgr A*.

While black holes are not directly observable by radio

telescopes, it is their imprint on the fluid-dynamic backdrop

that can be observed. In this work, our goal is to recover

the fluid-dynamics of quickly evolving phenomena, such

as Sgr A*, from sparse remote sensing data. Recovering

these dynamic properties could reveal information about the

spin and mass of Sgr A* and pose a stronger test [11] to

General Relativity than M87 (due to the tighter mass con-

straints). While motivated by the evolving plasma surround-

ing a black hole, our approach is also applicable to other

inference problems with fluid-dynamics at their core.

Inference of dynamics from sparse measurements can be

placed on a spectrum of approaches ranging from model-

free, with many degrees of freedom (DOFs), to fully

physics-based, with only a handful of DOFs. On the model-

free end of the spectrum are approaches that first recover

an entire video sequence from the sparse observations [7].

In theory, video estimation is extremely flexible and could

capture any evolution. In practice, to estimate many DOFs

(every pixel in the video) strong inter-frame regularization

is imposed and much of the dynamic information is lost.

On the other end of the spectrum, are approaches that

seek to infer parameters of high fidelity physics-based mod-

els [36]. While advantageously characterized by a small

number of parameters, these models lack the flexibility for

novel scientific discovery. For instance, it is crucial to avoid

a model that assumes the presence of a black hole obeying

our current numerical models of physics, as this could skew

the results and interpretation. Furthermore, in many sce-

narios physics-based models are complex and non-linear,

resulting in computationally intensive simulations that are

intractable for use in an inverse problem. For instance, high-

fidelity models used for black hole require thousands of core

hours for a single simulation1.

We instead seek to find a middle ground between these

two ends of the spectrum, using a physics-motivated sur-

rogate model that is able to capture key features of the

fluid-dynamical process. In particular, we model the spatio-

temporal flow surrounding a black hole as an output of a

stochastic partial differential equation (SPDE). This model

enables the efficient drawing of video samples with spatio-

temporal correlation at multiple scales (Fig. 1), and was pre-

viously shown to capture the spatio-temporal variability of

astrophysical disks [24]. The inference task we propose is

to recover the SPDE coefficients, which characterize pixel

interactions. These coefficients are interpretable and can be

related back to the local correlations of physics-based sim-

ulations [19].

1General relativistic magneto-hydrodynamics (GRMHD) [31]







tion of radius r from the origin (Fig. 2). We define a con-

stant ratio λ2=ǫλ1 for ǫ∈[0, 1] that dictates the direction-

ality of spatial correlations (ǫ=1.0 yields isotropic correla-

tions). In our experimental results (Sec. 5) we fix ǫ = 0.1.

Moreover, we parameterize the directions of flow veloc-

ity, v, and spatial correlation, φ, with two angles ϕ0 and

ϕ1, respectfully. These angles dictate the flow direction5

and spiral opening angle (Fig. 2). For the accrection disk

model, the inverse problem we formulate seeks to recover

the unknown angles (ϕ0, ϕ1). Recovering (ϕ0, ϕ1) reveals

disk rotation that could shed light on important questions

in fundamental physics [3, 19]. Refer to the supplemental

material [1] for mathematical definitions of this parameter-

ization.

4. Inverse Problem Formulation

Let Θ denote the unknown dynamic parameters (e.g.,

Θ = {ϕ0, ϕ1}) of ρ (x). We seek to estimate Θ from mea-

surements y (yet to be defined). Recall that Θ only dic-

tates the statistics of evolution seen in ρ (x), not the indi-

vidual pixel values. In fact, as is shown in Figure 1, mul-

tiple ρ’s sampled from the same PDE parameters, Θ, re-

sult in movies with very different pixel values over time.

Therefore, in order to naively solve for parameters, Θ,

that lead to movies that directly match ρ (e.g., via an ℓp-

norm), we would also have to recover the unknown random

noise source, w. Unfortunately, jointly estimating Θ and

w is impractical, as w is i.i.d. random noise and as high-

dimensional as the video itself. Thus we seek a metric D,

that is invariant to w when solving for the statistical param-

eters of ρ’s evolution, Θ:

I∗,Θ∗ = argmin
I,Θ

D(I,Θ|y). (10)

Our key insight to designing D is recognizing that the

underlying dynamic video, ρ, will be best captured by a

low-dimensional subspace describing videos drawn from

the true parameters, Θtrue. The challenge is to compute the

low-dimensional subspace for every possible Θ, and then

identify which subspace best captures ρ.

Since we model ρ as a (zero-mean) GRF (Sec. 2.1),

its statistics are fully captured by a covariance matrix

parametrized by Θ. If we had access to this covariance ma-

trix we could simply compute an eigenvalue decomposition

to reduce the dimensionality – selecting the top eigenvec-

tors, which explain most of the variability seen in videos

drawn with parameters Θ. However, recall that a spatio-

temporal covariance matrix describing the video ρ would

be intractably large to store in memory; thus, we cannot

use standard eigenvalue decompositions to recover the low-

dimensional subspace. An alternative, but inefficient, ap-

5Direction with respect to counter-clockwise (CCW) rotation. For ex-

ample, ϕ0 = {0◦, 90◦, 180◦, 270◦} describe counter-clockwise (CCW)

flow, radial outflow, clockwise (CW) flow, and radial inflow

proach to reduce the dimensionality is by sampling multiple

GRFs with parameters Θ (via the SPDE in Sec. 2.2) and

applying Principle Component Analysis (PCA) [29]. For a

large number of GRF samples, PCA vectors should coincide

with the eigenvectors of the covariance. However, this PCA

approach is either very computationally intensive or inaccu-

rate (see further analysis in the supplemental material [1]).

Alternatively, in Section 4.1 we describe a tractable ap-

proach for dimensionality reduction without explicit access

to the covariance matrix.

4.1. Dimensionality Reduction

In this section we describe a matrix-free approach to re-

duce the dimensioanlity of an SPDE system parameterized

by Θ. It is convenient to symbolically re-write Eq. (2) as

ρ = Aw, (11)

where A=D−1B. The dependency on Θ is omitted

throughout for clarity (i.e. A ↔ AΘ). We seek to find

a low-rank approximation for the forward operator

A ≃ Â = UΣQ⊤, (12)

where U and Q⊤ are of size N×K, Σ is a K×K diago-

nal matrix, and K≪N . The challenge is that A is a large,

dense matrix that we do not have access to; thus, we must

rely on methods to recover a low-dimensional decomposi-

tion without having access to A.

We employ randomized matrix-free computations [28]

to solve for U and Σ. A matrix-free approach is advan-

tageous for both high-dimensional spaces in which matrix

operations (i.e. direct SVD or QR) are too costly, as well as

for numerical simulations in which an input-output relation

is established without an explicit matrix representation.

Randomized subspace iteration (RSI)6 [27, 21] is a ro-

bust approach that builds a low-rank approximation of the

forward operator, A, through sequential applications to a

set of K random (typically i.i.d. Gaussian) vectors. The

block-size K is (roughly) the desired dimension of the com-

puted subspace. While the “application” of A is symboli-

cally written as an input-output relation (Eq. 11), in practice

it means solving a linear set of equations (Eq. 2). In the con-

text of the SPDE model, we iteratively compute an output

GRF by replacing the input source with the previous output.

Algorithm 1 outlines RSI where the key outputs are

U = (u0, ...,uK−1) , Σ = diag (σ0, ..., σK−1) . (13)

Here uk, σk are the top singular vectors and values of A.

The orthonormal vectors uk are aligned with the axes of

most variability, where σk is the variance along each axis.

6RSI typically computes a good approximation of the leading singular

subspaces of A after a modest number of iterations. For our purposes, RSI

is simple and highly effective. In cases where very precise estimates of the

leading singular values and vectors are needed, more sophisticated algo-

rithms could be considered (e.g. randomized block Krylov methods [27]).
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Figure 3. The measurement y = ρ was generated with Θtrue = (0◦, 70◦). Here ϕ0 = 0◦ defines CCW rotation and ϕ1 = 70◦ defines the

opening angle of the spiral. The top and bottom rows show projections of y onto the (K=60) modes generated with Θ1 = (10◦, 71◦) and

Θ2 = (−28◦,−17◦), respectively. Since Θ1 is closer to Θtrue, the projection P(y,Θ1) retains more of the measurement flow features.

Algorithm 1 Random Subspace Iteration

1: b0 ← qr economic (randn (N,K)) ⊲ Draw N×K

orthonormal block
2: for t=1,2,3...,q do

3: bt ← Abt−1 ⊲ Solve Eq. 2 for each vector in bt−1

4: bt ← qr economic (bt) ⊲ Orthogonalize

5: end for

6: U,Σ,Q← svd (Abq)

Once U and Σ have been identified, the low-dimensional

random field representation, ρ̂, is given by

ρ̂ = Âw = UΣQ⊤w = UΣc =

K−1
∑

k=0

ckσkuk, (14)

where

ck = q⊤

k w ∼ N (0, 1) (15)

Note that the series given by the de-correlated coefficients

ck is in fact a truncated Karhunen–Loève expansion [6].

4.2. Measurement Models

Denote a measurement operation by M, which takes as

input a video source, ρ or V (x), and outputs measurements

y. In the following sections we explore three measurement

models with an increasing level of complexity and realism.

4.2.1 Direct GRF Measurement

We first analyze the inverse problem in a setting where the

static envelope has no effect on the measurements. In partic-

ular, we define a simplistic measurement process with direct

access to GRF pixel values:

y = M [ρ (x)] + n = ρ+ n. (16)

Here ρ is the discretized GRF and n ∼ N (0,Σy) is mea-

surement noise. Since the measurements do not depend on

I, Eq. (10) can be written as

Θ∗ = argmin
Θ

Dρ(Θ|y). (17)

Using ρ̂ (Eq. 14) as the forward model yields

Dρ(Θ|y) = min
c

‖y −UΘΣΘc‖2Σy
+ ‖c‖2. (18)

Note that Eq. (18) is equivalent to the maximum a poste-

riori (MAP) estimation of c, where the prior comes from

Eq. (15). Based on Eq. (18) we define a projection operator

P(y,Θ) = UΘΣΘc∗, (19)

c∗ = argmin
c

‖y −UΘΣΘc‖2Σy
+ ‖c‖2.

For a fixed Θ, this is a projection of the measurements onto

a subspace spanned by the top modes of the SPDE system.

Although gradients can be derived, in practice, we evaluate

Dρ for each proposed parameter Θ (which includes solving

for UΘ and ΣΘ), and identify the Θ∗ that minimizes Dρ.

For the accretion disk model (Sec. 3.1) we define the

unknown parameters as Θ={ϕ0, ϕ1} and assume measure-

ment noise Σy=1. Figure 3 shows the top modes, and pro-

jections for two different parameter settings Θ1, Θ2. When

Θ is closer to Θtrue the projection retains more flow fea-

tures. We analyze the two-dimensional (2D) data-fit mani-

fold defined by Eq. (18) in Figure 4. This figure shows the

manifold for four cases where measurements are simulated

with different Θtrue. Note that Dρ is periodic with respect

to ϕ0 and ϕ1 with 2π and π periods, respectively. Addi-

tional loss manifolds are shown in the Supp. material.

4.2.2 Direct Video Measurement

We now analyze the inverse problem in a setting with direct

access to the modulated envelope pixel values. In this model

(defined in Eq. 9), measurements are affected by both static

and dynamic parameters:

ỹ = M [V (x)]+ñ = M
[

I (x) eρ(x)
]

+ñ = V+ñ. (20)

Here V is the discretized video. Taking into account both

static and dynamic parameters, Eq. (10) is given by

I∗,Θ∗ = argmin
I,Θ

DV(I,Θ|ỹ), (21)
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