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Abstract

We develop an approach to recover the underlying prop-
erties of fluid-dynamical processes from sparse measure-
ments. We are motivated by the task of imaging the stochas-
tically evolving environment surrounding black holes, and
demonstrate how flow parameters can be estimated from
sparse interferometric measurements used in radio astro-
nomical imaging. To model the stochastic flow we use
spatio-temporal Gaussian Random Fields (GRFs). The high
dimensionality of the underlying source video makes di-
rect representation via a GRF’s full covariance matrix in-
tractable. In contrast, stochastic partial differential equa-
tions are able to capture correlations at multiple scales by
specifying only local interaction coefficients. Our approach
estimates the coefficients of a space-time diffusion equation
that dictates the stationary statistics of the dynamical pro-
cess. We analyze our approach on realistic simulations of
black hole evolution and demonstrate its advantage over
state-of-the-art dynamic black hole imaging techniques.

1. Introduction

The first-ever black hole image was produced by the
Event Horizon Telescope (EHT) collaboration in 2019 [35].
This image, of the black hole in the center of the M87
galaxy was computationally constructed from radio mea-
surements collected over an entire night [2]. The massive
size of the M87 black hole gives rise to evolution timescales
greater than acquisition length, thus, the image could be re-
constructed assuming a static source [8]. In contrast, the
Milky Way’s galactic center hosts a smaller [18] more dy-
namic [15, 23] black hole: Sgr A*.

While black holes are not directly observable by radio
telescopes, it is their imprint on the fluid-dynamic backdrop
that can be observed. In this work, our goal is to recover
the fluid-dynamics of quickly evolving phenomena, such
as Sgr A*, from sparse remote sensing data. Recovering
these dynamic properties could reveal information about the
spin and mass of Sgr A* and pose a stronger test [11] to
General Relativity than M87 (due to the tighter mass con-

straints). While motivated by the evolving plasma surround-
ing a black hole, our approach is also applicable to other
inference problems with fluid-dynamics at their core.

Inference of dynamics from sparse measurements can be
placed on a spectrum of approaches ranging from model-
free, with many degrees of freedom (DOFs), to fully
physics-based, with only a handful of DOFs. On the model-
free end of the spectrum are approaches that first recover
an entire video sequence from the sparse observations [7].
In theory, video estimation is extremely flexible and could
capture any evolution. In practice, to estimate many DOFs
(every pixel in the video) strong inter-frame regularization
is imposed and much of the dynamic information is lost.

On the other end of the spectrum, are approaches that
seek to infer parameters of high fidelity physics-based mod-
els [36]. While advantageously characterized by a small
number of parameters, these models lack the flexibility for
novel scientific discovery. For instance, it is crucial to avoid
a model that assumes the presence of a black hole obeying
our current numerical models of physics, as this could skew
the results and interpretation. Furthermore, in many sce-
narios physics-based models are complex and non-linear,
resulting in computationally intensive simulations that are
intractable for use in an inverse problem. For instance, high-
fidelity models used for black hole require thousands of core
hours for a single simulation'.

We instead seek to find a middle ground between these
two ends of the spectrum, using a physics-motivated sur-
rogate model that is able to capture key features of the
fluid-dynamical process. In particular, we model the spatio-
temporal flow surrounding a black hole as an output of a
stochastic partial differential equation (SPDE). This model
enables the efficient drawing of video samples with spatio-
temporal correlation at multiple scales (Fig. 1), and was pre-
viously shown to capture the spatio-temporal variability of
astrophysical disks [24]. The inference task we propose is
to recover the SPDE coefficients, which characterize pixel
interactions. These coefficients are interpretable and can be
related back to the local correlations of physics-based sim-
ulations [19].

IGeneral relativistic magneto-hydrodynamics (GRMHD) [31]
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Figure 1. The anisotropic spatio-temporal SPDE generative forward model. The PDE transforms uncorrelated random noise samples,

W (x), into correlated Gaussian Markov Random Fields (GRFs),

o (x). Different GRF samples have different pixel values but the same

statistics. The inference problem we formulate is to infer the PDE parameters © from either a single video sample or interferometic

measurements of a source exhibiting similar dynamic properties.
source, which is dependent on the unknown random noise. Rather

2. Relevant Prior Work

Prior work on imaging dynamic black holes has focused
on the recovery of an entire video from sparse interfero-
metric measurements [7, 22, 5]. Although these video re-
construction methods do not estimate flow properties di-
rectly, subsequent analysis (e.g., optical flow) could be used
for this purpose. However, in practice, estimating an en-
tire video of unknown pixel values from very sparse data
requires strong temporal regularization that suppresses dy-
namic information within the recovered video. In contrast,
our work seeks to directly recover the flow model statistics
from measurements. As we demonstrate in Sec. 5, model-
fitting statistical flow parameters outperforms recovery via
video reconstruction when measurements are very sparse.

To model complex fluid flows surrounding a black hole,
we rely on fitting random spatio-temporal fields to observed
data. In the field of computer vision, there has been signif-
icant work dedicated to the analysis of dynamic video tex-
tures. This includes detection [4], classification [32, 17],
estimation [25], and generation [12]. More recently, gener-
ative neural nets [38, 10] have shown great promise in cap-
turing statistics of complex dynamical videos. Neverthe-
less, statistical properties captured by network weights lack
scientific interpretability. In contrast, we wish to recover
dynamic-parameters that relate to the underlying physics
and could be used in subsequent analysis. Closest in spirit
to our work are [39, 33], which also solve a related inverse
problem, recovering fluid properties from sparse data. Nev-
ertheless, these works recover fluid properties at each time
frame, whereas our approach recovers motion statistics.

In the following subsections we introduce the genera-
tion and modeling of stochastic flows as Gaussian Ran-
dom Fields (Section 2.1) that are efficiently captured by a
Stochastic Partial Differential Equation (Section 2.2).

We are not interested in recovering exact pixel values of an evolving
we wish to recover the source’s underlying stationary statistics.

2.1. Gaussian Random Fields (GRFs)

Gaussian Random Fields are commonly used to repre-
sent random spatial fields [34]. GRFs capture second or-
der statistics with a mean and continuous covariance kernel
(function). On a discrete grid (e.g. pixels), a continuous
GRF can be approximated as a multivariate Gaussian. For
small grids the full covariance matrix can be stored in mem-
ory and used to draw GRF samples.

Using a covariance matrix to model GRFs is common for
spatial data [34]. However, in this work we model spatio-
temporal fields, for which the covariance matrix can easily
reach impractical memory and computation requirements?.

2.2. Stochastic Partial Differential Equations

To efficiently model spatio-temporal random fields (i.e.,
GRFs) we employ an approach that generates a random
field as a solution to a stocastic partial differential equa-
tion (SPDE) [37, 26, 16]. Thus, instead of requiring full
rank covariance matrices to specify and sample a field, only
local interactions need to be specified. In particular, in
Sec. 2.2.1 we describe the anisotropic spatio-temporal dif-
fusion equation that is able to capture the (in-homogeneous
and non-isotropic) variability of astrophysical accretion
disks [24]. Anisotropic (directional) correlations are intro-
duced through a diffusion tensor, as detailed in Sec. 2.2.2.

2.2.1 Anisotropic Spatio-Temporal Diffusion

o) o) O N\T
Let x=(zq,21,22) and V=(gz.-, 5.+ 5,;) denote a

space-time grid point and derivative. Subscript 0 denotes
the temporal axis whereas 1 and 2 denote spatial axes. For
notational compactness we denote only the spatial coor-

2Drawing samples from an N x N covariance matrix typically involves
computing its Cholskey decomposition which scales as O(N?)



dinates as @=(x1,x2) (note that x=£x). The anisotropic
spatio-temporal diffusion equation is given by [24]

(1-V-A@) V) p(x) = ydet(A @)W (x). 1)

Here WV is an input emission source modeled by a Gaussian
white noise process [37], p(x) is the spatio-temporal out-
put GRF, and A () is a spatially dependent diffusion tensor
that encodes local interactions. The heterogeneity of A ()
across the image produces GRFs with spatially varying tem-
poral variance. The normalization factor det(A (x))'/* on
the right hand side of Eq. (1) ensures constant (flat) tem-
poral variance across image pixels. The scaling factor vy
determines the magnitude of variations.

In practice, Eq. (1) is solved by discretization in space
and time; the output GRF, p, is obtained as a solution to a
linear set of equations:

Dp — Bw, (2)
P = (p(xl)a "'ap(XN))Ta W= (W(Xl)a "'aW(XN))Ta

where D is a sparse matrix that approximates the differen-
tial operators via finite differences,

D~(1-V -A(x)V), (3)
and B is a diagonal normalization matrix,
B — diag [det (A(x}))") ..., vdet (AGM) ] @)
The SPDE formulation reduces the problem of sampling
a correlated Gaussian distribution, with a large dense co-
variance matrix, to that of sampling i.i.d. Gaussian vari-
ables, w, and solving a sparse linear set of equations. The
latter can be done very efficiently?.

2.2.2 Diffusion Tensor

The correlations in the output GRF are completely deter-
mined by the diffusion tensor A («). In contrast to a scalar
coefficient, the tensor captures non-isotropic local interac-
tions. The diffusion tensor is a symmetric 3 X 3 matrix with
positive coefficients specifying correlations in each of the
axes and their combinations. Locally A can be described
by three directional axes

A = \jbo&g +AT6E) + A6ty (5)
where A\, A1, A2 denote correlation time and lengths along
axes specified by &g, &1, and &3, respectfully*. The corre-
lation time A\ describes a characteristic timescale in which
features persist in the flow and the correlation lengths Aq, A»
describe the spatial direction and extent of the features.

3Efficient sparse numerical algorithms have memory requirements
which scale as O(N) and computations as O(N3/2)
“#Here the spatial coordinates dependence was omitted for brevity
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Figure 2. The bottom row shows four sequential frames of a clock-
wise (CW) rotating GRE, dictated by v (blue in the top figure). The
spiral spatial correlations are dictated by &1 (green in the top fig-
ure). The correlation lengths Ao, A1, A2 are azimuthally symmetric
and are a function of radius only (top left).

We define a parameterization of the correlation axis as
Temporal axis: & = (1, vr,vy)T, (6)
Major spatial axis: &; = (0, cos ¢, sin ¢) ', )
Minor spatial axis: & = (0, —sing,cos¢)'.  (8)

Here v=(v,, v,) is a velocity field that dictates the motion
of the GRF and ¢ defines the spatial direction of correla-
tion at each position x (Fig. 2). Note that the normalization
factor defined in Eq. (1) is given by det(A) = AZAIN3.

3. Forward Video Generation Model

In Sec. 2.2 we described a computationally tractable
method for sampling spatio-temporal GRFs, p(x), via an
SPDE. While these GRFs capture flow dynamics, they are
not suitable for modeling static image features, such as the
photon ring in a black hole shadow [30]. Thus, we define
a video formation model where the GRF is a multiplicative
perturbation to a static “envelope” image, /. The formation
of a video sample, V' (x), is modeled by

V(x) = I (z)e’t™, 9)

Here, negative and positive values of p describe a fractional
deviation from the envelope’s local intensity.

3.1. Astrophysical Accretion Disks as GRFs

Equations (5)—(8) define a diffusion tensor field where
the correlation length and direction can, in principle, vary
arbitrarily in space. Nevertheless, for the purpose of black
hole imaging, it is constructive to examine the special case
of astrophysical accretion disks. Accretion disks are struc-
tures formed by diffuse material orbiting around a massive
central body. To capture the structural variability of a face-
on accretion disk we define a simple, azimuthally symmet-
ric, parameterization of the evolution. Derived from Kep-
lerian orbital motion [24], we define the correlation lengths
Ao, A1, A2 (Eq. 5) and velocity magnitude (Eq. 6) as a func-



tion of radius r from the origin (Fig. 2). We define a con-
stant ratio Ao=e\; for e€[0, 1] that dictates the direction-
ality of spatial correlations (e=1.0 yields isotropic correla-
tions). In our experimental results (Sec. 5) we fix e = 0.1.

Moreover, we parameterize the directions of flow veloc-
ity, v, and spatial correlation, ¢, with two angles ¢y and
1, respectfully. These angles dictate the flow direction’
and spiral opening angle (Fig. 2). For the accrection disk
model, the inverse problem we formulate seeks to recover
the unknown angles (o, 1). Recovering (g, 1) reveals
disk rotation that could shed light on important questions
in fundamental physics [3, 19]. Refer to the supplemental
material [1] for mathematical definitions of this parameter-
ization.

4. Inverse Problem Formulation

Let ® denote the unknown dynamic parameters (e.g.,
© = {0, p1}) of p(x). We seek to estimate ® from mea-
surements y (yet to be defined). Recall that ® only dic-
tates the statistics of evolution seen in p (x), not the indi-
vidual pixel values. In fact, as is shown in Figure 1, mul-
tiple p’s sampled from the same PDE parameters, ®, re-
sult in movies with very different pixel values over time.
Therefore, in order to naively solve for parameters, O,
that lead to movies that directly match p (e.g., via an £,-
norm), we would also have to recover the unknown random
noise source, w. Unfortunately, jointly estimating ® and
w is impractical, as w is i.i.d. random noise and as high-
dimensional as the video itself. Thus we seek a metric D,
that is invariant to w when solving for the statistical param-
eters of p’s evolution, ©:

I", 0" = arngnng(I,@|y). (10)

Our key insight to designing D is recognizing that the
underlying dynamic video, p, will be best captured by a
low-dimensional subspace describing videos drawn from
the true parameters, ®y,. The challenge is to compute the
low-dimensional subspace for every possible ®, and then
identify which subspace best captures p.

Since we model p as a (zero-mean) GRF (Sec. 2.1),
its statistics are fully captured by a covariance matrix
parametrized by ©. If we had access to this covariance ma-
trix we could simply compute an eigenvalue decomposition
to reduce the dimensionality — selecting the top eigenvec-
tors, which explain most of the variability seen in videos
drawn with parameters ®. However, recall that a spatio-
temporal covariance matrix describing the video p would
be intractably large to store in memory; thus, we cannot
use standard eigenvalue decompositions to recover the low-
dimensional subspace. An alternative, but inefficient, ap-

SDirection with respect to counter-clockwise (CCW) rotation. For ex-
ample, oo = {0°,90°,180°,270°} describe counter-clockwise (CCW)
flow, radial outflow, clockwise (CW) flow, and radial inflow

proach to reduce the dimensionality is by sampling multiple
GRFs with parameters ® (via the SPDE in Sec. 2.2) and
applying Principle Component Analysis (PCA) [29]. For a
large number of GRF samples, PCA vectors should coincide
with the eigenvectors of the covariance. However, this PCA
approach is either very computationally intensive or inaccu-
rate (see further analysis in the supplemental material [1]).
Alternatively, in Section 4.1 we describe a tractable ap-
proach for dimensionality reduction without explicit access
to the covariance matrix.

4.1. Dimensionality Reduction

In this section we describe a matrix-free approach to re-
duce the dimensioanlity of an SPDE system parameterized
by ©. It is convenient to symbolically re-write Eq. (2) as

p—Aw, (1)

where A=D~!B. The dependency on © is omitted
throughout for clarity (i.e. A < Ag). We seek to find
a low-rank approximation for the forward operator

A~A=UxQ", (12)

where U and QT are of size NxK, ¥ is a K x K diago-
nal matrix, and K< N. The challenge is that A is a large,
dense matrix that we do not have access to; thus, we must
rely on methods to recover a low-dimensional decomposi-
tion without having access to A.

We employ randomized matrix-free computations [28]
to solve for U and ¥. A matrix-free approach is advan-
tageous for both high-dimensional spaces in which matrix
operations (i.e. direct SVD or QR) are too costly, as well as
for numerical simulations in which an input-output relation
is established without an explicit matrix representation.

Randomized subspace iteration (RSI)® [27, 21] is a ro-
bust approach that builds a low-rank approximation of the
forward operator, A, through sequential applications to a
set of K random (typically i.i.d. Gaussian) vectors. The
block-size K is (roughly) the desired dimension of the com-
puted subspace. While the “application” of A is symboli-
cally written as an input-output relation (Eq. 11), in practice
it means solving a linear set of equations (Eq. 2). In the con-
text of the SPDE model, we iteratively compute an output
GREF by replacing the input source with the previous output.

Algorithm 1 outlines RSI where the key outputs are

U= (u07"'7uK—1)a Ezdiag(O—Oa"'aO—K—l)' (13)

Here uyg, o are the top singular vectors and values of A.
The orthonormal vectors uy are aligned with the axes of
most variability, where oy, is the variance along each axis.

ORSI typically computes a good approximation of the leading singular
subspaces of A after a modest number of iterations. For our purposes, RSI
is simple and highly effective. In cases where very precise estimates of the
leading singular values and vectors are needed, more sophisticated algo-
rithms could be considered (e.g. randomized block Krylov methods [27]).
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Algorithm 1 Random Subspace Iteration

> Draw N x K
orthonormal block

1: bg + gr_economic (randn (N, K))

2: for t=1,2,3...,q do

3: b: <+ Ab:_; > Solve Eq. 2 for each vector in b;—1
4: b: < qr_economic (by) > Orthogonalize
5: end for

6:

U,,Q < svd(Ab,)

Once U and X have been identified, the low-dimensional
random field representation, p, is given by

K—1
p=Aw=UXQ 'w=UXc = Z cropug, (14

where w0
o =aqpw~N(0,1) (15)

Note that the series given by the de-correlated coefficients
¢ 1s in fact a truncated Karhunen—Logve expansion [6].

4.2. Measurement Models

Denote a measurement operation by M, which takes as
input a video source, p or V' (x), and outputs measurements
y. In the following sections we explore three measurement
models with an increasing level of complexity and realism.

4.2.1 Direct GRF Measurement

We first analyze the inverse problem in a setting where the
static envelope has no effect on the measurements. In partic-
ular, we define a simplistic measurement process with direct
access to GRF pixel values:

y=Mlpx)]+n=p+n. (16)

Here p is the discretized GRF and n ~ N (0, X)) is mea-
surement noise. Since the measurements do not depend on
I, Eq. (10) can be written as

e = argrrgnDp(@|y). 17

Using p (Eq. 14) as the forward model yields
Dy(®ly) =min ||y — UeZecl|s, +lc/®.  (18)

Note that Eq. (18) is equivalent to the maximum a poste-
riori (MAP) estimation of ¢, where the prior comes from
Eq. (15). Based on Eq. (18) we define a projection operator

P(y,®) =UeXec’, (19)
¢’ = argmin ||y — UeZec|s, + llc/*.

For a fixed @, this is a projection of the measurements onto
a subspace spanned by the top modes of the SPDE system.
Although gradients can be derived, in practice, we evaluate
D,, for each proposed parameter © (which includes solving
for Ug and ¥ e), and identify the ®* that minimizes D,,.
For the accretion disk model (Sec. 3.1) we define the
unknown parameters as @={(y, 1 } and assume measure-
ment noise 3, =1. Figure 3 shows the top modes, and pro-
jections for two different parameter settings @1, ®. When
O is closer to Oy, the projection retains more flow fea-
tures. We analyze the two-dimensional (2D) data-fit mani-
fold defined by Eq. (18) in Figure 4. This figure shows the
manifold for four cases where measurements are simulated
with different ®¢,,c. Note that D,, is periodic with respect
to o and ¢ with 27 and 7 periods, respectively. Addi-
tional loss manifolds are shown in the Supp. material.

4.2.2 Direct Video Measurement

We now analyze the inverse problem in a setting with direct
access to the modulated envelope pixel values. In this model
(defined in Eq. 9), measurements are affected by both static
and dynamic parameters:

5= MV (x)]+i = M [1 () ep<x>] +h=V+a. (20)

Here V is the discretized video. Taking into account both
static and dynamic parameters, Eq. (10) is given by

I',©" = argmin Dy (L, ©[y), 1)
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To estimate the dynamic parameters we define a non-
linear pre-processing operation. Let log(-) denote an
element-wise logarithm, then

log(y) ~ log(I) + p + n. (22)
Here the noise is approximated as additive Gaussian

n ~ N (0,1). Since the temporal mean over the GRF and
measurement noise converges to zero,

Ee, [log(y)] = log (). (23)
Thus, by subtracting the temporal mean from Eq. (22), we
can isolate the dynamic video component

y =log(y) — B, [log(y)] =~ p + n. 24)
Overall the measurement model of Eq. (24) is approxi-

mately equivalent to Eq. (16) and identical expressions to
Eqs. (17)—(18) can be derived to solve for ©*.

4.2.3 Interferometric Measurements
In radio astronomy, interferometery is an imaging approach
that can achieve high angular resolution. This is done by
correlating signals captured at multiple telescopes simul-
taneously observing a radio source. The EHT array is an
extreme example of Very Long Baseline Intereferometry
(VLBI), where telescopes across the globe are synchronized
to image the emission around a single black hole.
Interferometric measurements, known as visibilities de-
note by v, are related to the source video via a sparse set
spatial frequencies, k1, k5. We decompose M into a dense
Fourier transform and a sparse sampling operator:

y=M[V(x)] + n=SoF [I (z) ef’<x)} tn (25

Here F is the 2D spatial Fourier transform as a function of
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Figure 5. EHT synthetic measurement locations of a ~12 hour ob-
servation period (color-coded by time) observing the black hole
Sgr A*. The EHT2017 array is comprised of the eight radio
telescopes that were observing during the 2017 campaign. The
EHT++ array contains an additional 13 prospected telescopes.

time xg. The operator S samples the 2D Fourier transform
at specific times, and spatial frequencies. For VLBI arrays,
sampled frequencies are dictated by the projected baselines
of the observing telescopes. Thus, as the Earth rotates with
respect to the source, EHT measurements carve out ellip-
tical trajectories through the Fourier plane (Fig. 5). The
challenge of imaging a dynamic source is that the source
is evolving as measurements are being acquired.

Similarly to Eq. (21), estimation takes into account both
the unknown static image and dynamic parameters. The
data-fit for visibility measurements is given by

D, (1, 8ly) = min||y—SoF I (2) "] |3, +lle| 26)

In practice, we solve Eq. (21) using block-coordinate de-
scent, alternating between two minimization problems:

I' = argminD,(LO"y) +R(D), @7

e = argngn’DV(I*,@|y). (28)

We discuss optimization of I* in detail in the supplemental
material [1]. To efficiently optimize Eq. (28) for recovery
of ®*, we linearize the measurement model:

,So]-"[] (z) eﬁ<m>} ~ SoF[I (2)] + SoF[I (z) j (x)]. (29)

This linearization enables approximation of Eq. (26) as a
linear convex minimization (see Supp. for more details)

~

Dy(y,1*,©) = min ||y - Ze 1 Vec|y, + el (30)
for y=y— SoF[I"(x)],

where y can be intuitively interpreted as the current es-
timate (since it depends on I*) of the dynamic portion
of the visibility measurements. Here the k’th column
of Zg 1 is the sampled Fourier transform of mode uy:
SoF[I (x)u (x)]. Note that Zeg 1 depends on both the
static envelope and dynamic parameters.
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5. Numerical Simulations

We analyze the performance of our proposed method on
recovering the static envelope I and dynamic parameters
® = (¢g, 1) of simulated astronomical accretion disks.
In Section 5.1 we demonstrate recovery when the underly-
ing video obeys the assumed GRF forward model. In Sec-
tion 5.2 we show that our method is able to generalize to re-
alistic complex black hole simulations that are nor derived
from our assumed GRF fluid-flow model.

Synthetic Data Generation For each specified source
video, we generate synthetic visibility measurements corre-
sponding to 12 hours of observation. Visibilities are sam-
pled from two telescope arrays: EHT2017 and EHT++.
The spatial frequency coverage sampled by the two arrays
is shown in Fig. 5. EHT2017 contains only existing tele-
scopes that were used during the 2017 campaign. EHT++ is
a future projection that has 13 additional radio telescopes.
Thus, recovery with EHT2017 data is more challenging due
to severe measurement sparsity. VLBI measurements are
synthesized using the eht-imaging [9] library, with a
field-of-view (FOV) of 160uas and no additional noise.

Stochastic Parameter Representation For stochastic pa-
rameter estimation (Eq. 28) we grid ® = (g, ¢1) with
20x20 grid points. For each angle-pair we compute K =60
modes of the SPDE using RSI with ¢=10 iterations (see
Alg. 1). The values of K and g were chosen empirically.
During each iteration of RSI we solve Eq. (1) on a discrete
spatio-temporal grid of size Ny x Ny x Ny = 643, using the
HYPRE [13] computing library.

Envelope Estimation For the static envelope recon-
struction (Eq. 27) we use Maximum Entropy Method

(MEM) [20] regularization as R(I). The MEM regulariza-
tion uses a prior image of 2D Gaussian with a standard de-
viation of 50pas [35] (see Supp. material for more details).

5.1. SPDE Sampled Videos

To validate our approach, with access to ground-truth
parameters ©, we generate videos that mimic black hole
emission using the SPDE forward model (Sec. 3). The true
envelope 1'*%¢ contains a ring structure [30] with a radius of
~ 30pas that resembles a black hole shadow (Fig. 6 left).

Figure 6 shows estimation results obtained from
EHT2017 and EHT++ measurements for two different evo-
lution parameters (©%"¢, ©5°) with the same envelope,
1*™9¢. For both EHT arrays, we recover an envelope with
a ring shape. The 2D loss manifolds (Eq. 28) are also
shown for the two parameter settings. The true parame-
ters ©%9¢ are indicated by a white triangle on the plots;
the global minimum, ®*, obtained by our proposed method
is indicated by the red circle. We find that ©* is able to
roughly track @9, even with very sparse EHT2017 mea-
surements. In particular, note that the envelope recovery
with EHT2017 is degraded compared to EHT++; neverthe-
less, we find that the dynamic parameter estimation is some-
what robust to these errors.

We compare our results to a state-of-the-art VLBI imag-
ing approach, StarWarps (SW) [7], which was developed
to handle time-varying interferometric datasets. The output
of SW is an estimated full length video, VS8W_ from which
we extract the mean OpticalFlow (OF) field [14] to approx-
imate the velocity field. Figure 7 highlights the advantage
of having a model for the dynamic evolution in the setting
of very sparse measurements made by EHT2017. In par-
ticular, for the EHT2017 array, V5W’s low-fidelity prevents
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Figure 7. Comparison of the proposed (model-based) approach
with StarWarps (SW) [7] for EHT2017 measurements. The top
row shows the true velocity field (captured in @g) [left], the esti-
mated velocity field [center], and the mean OpticalFlow (OF) field
recovered from VW [right]. The bottom row shows a frame from
the true movie sequence [right], a synthetic frame generated with
the recovered parameters and envelope V* = I*e” " [center], and
a frame from V5W [left]. Green ticks represent the true and re-
covered spatial correlations (captured in 7). Our model fitting
approach is better able to recover the stochastic evolution of the
flow field from sparse data (see animations in the Supp. clip).

accurate recovery of dynamic properties using subsequent
video analysis. Additional comparisons are provided in the
supplemental material [1].

5.2. GRMHD Black Hole Videos

We test our approach in a more realistic setting, us-
ing physics-based video simulations of black hole accre-
tion. These movies are generated with General Relativistic
Magneto Hydrodynamics (GRMHD) [31]. Each simulation
takes around 50K core hours to compute.

While we do not have access to ground-truth parameters
for GRMHD movies, we can compare the recovery obtained
from VLBI measurements to the recovery obtained directly
from the GRMHD video, as formulated in Sec. 4.2.2. Recall
that we expect the pre-processing step of Eq. (24) to yield
a video with similar statistics to the sampled GRFs. More-
over, the 2D loss manifold recovered directly from the pre-
processed video is an upper bound of what we can expect
to achieve from sparse EHT measurements. Figure 8 shows
the recovered envelope and loss manifolds for video data,
as well as EHT++ and EHT2017 measurements. In all three
cases we are able to estimate the clockwise (CW) rotational
field. The loss manifolds for the EHT based recoveries re-
semble the loss from the video data, with global minima
(red dot) around ¢; = —60°. Note that the local minima
at ¢~0.0 correspond to an opposite rotation (CCW) with
the same @7 = —60°. While in this work we consider the
entire 2D parameter space, these local minima could be reg-
ularized or suppressed as an unlikely (non-physical) flow.

Data-fit GRF Frame
300 *
Dy, 1) e P(O7)

295
~((D
-~
D, (0, 1) ¢ o - p(8%)
20 -
18 A
e
16 ~—
u \ &‘/

g [deg]
Figure 8. Recovery of the envelope and dynamic parameters of a
realistic black hole simulation from video data [top], EHT++ mea-
surements [center], and EHT2017 measurements [bottom]. Left
column: a frame from the GRMHD video and its preprocessed
dynamic component (Eq. 24). Right column: a frame from a GRF
sampled with the estimated parameters ®*. The correlations in
p(©*) resemble those in the preprocessed GRMHD.

GRMHD frame

Video Data

Eq.(24)

Pre-processed
= A

EHT2017

6. Discussion and Conclusion

Motivated by imaging black hole evolution, we formu-
late an approach to infer fluid-dynamics from interferomet-
ric measurements. The sparsity of the measurements makes
direct imaging challenging and highly ill-posed. In con-
trast, our approach relies on a stochastic surrogate model
that captures key features of the flow. We analyze our ap-
proach through simulations and demonstrate its advantage
over state-of-the-art interferometric imaging.

The primary limitation of our approach is the assump-
tion of stationarity; however, in Sec. 5.2 we demonstrate
recovery on non-stationary GRMHD flows. In the future,
we plan to extend the flow parameterization (Sec. 3.1) to
capture black holes observed at high inclination angles, and
infer parameters from noisy measurements [9].

Finally, we believe key insights from this work are
valuable for other scientific domains with complex fluid-
dynamics at their core. Potential applications include, for
example, remote sensing of atmospheric patterns (storms,
clouds, dust) from geo-stationary satellites.
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