

All Matches

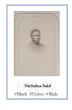


Figure 1: Results page for Civil War Twin. Showing the top 4 twins for an uploaded selfie in a reference database of Civil Warera soldiers and civilians.

Find Your Twin in History: Exploring Ethical Design Challenges in Facial Recognition

Vikram Mohanty, Marx Wang, Manisha Kusuma, Kurt Luther Virginia Tech, USA {vikrammohanty,boyuan,manishak, kluther}@vt.edu David Thames
Google, USA
davidc.thames@gmail.com

ABSTRACT

Facial recognition systems pose numerous ethical challenges, yet little guidance is available for designers. We explore these challenges in a three-step design process to create Civil War Twin, an educational web application where users can discover their lookalikes from the American Civil War era while learning more about both history and facial recognition.

KEYWORDS

Human-Al interaction, facial recognition, digital history, ethical design

INTRODUCTION

Recent advancements in AI and machine learning have opened up exciting possibilities for enabling novel, beneficial forms of human-AI interaction. However, AI's complexity, unpredictability, and over-reliance on data poses numerous challenges for designing ethical and effective AI-infused applications [9]. To address these challenges, HCI researchers have proposed multiple sets of guidelines for designing human-AI interaction [1, 15], AI fairness checklists [6, 12] and toolkits [2]. While these resources are valuable for addressing ethical issues in designing human-AI systems generally, relatively little guidance is available for designing facial recognition systems in particular.

We recently wrestled with these challenges while creating an educational web application in collaboration with the American Battlefield Trust (ABT), a Washington, DC-based non-profit organization focused on preserving battlefields in the United States. The application, Civil War Twin (CWT), would

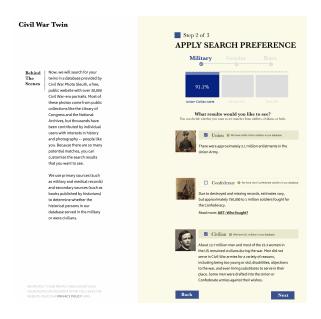


Figure 2: Military search preferences page.

allow users to upload a selfie and, using facial recognition, discover their "Civil War twins," i.e., photographs of people from the American Civil War era (1840s–1870s) who look like them. This "hook" was used to engage members of the public, who would then be presented with educational material about the historical figures, as well as information about the ABT's mission. CWT builds on Civil War Photo Sleuth (CWPS), a free website we previously launched that combines crowdsourcing and facial recognition to identify unknown Civil War photos, which has attracted over 10,000 registered users who have identified hundreds of previously unknown photos [14].

Even though the workflow of CWT may appear simple, we quickly encountered a number of underlying ethical issues that required careful attention, including data privacy and transparency, gender and racial bias, and limitations of the historical archive. For example, prior work has shown facial recognition technologies have substantial accuracy and bias problems, especially on faces of women and dark-skinned people [3, 16], and also have been used as a surveillance tool that poses risks to individual privacy [8]. Despite these findings, majorities of Americans believe that "facial recognition can effectively identify individual people, as well as classify them by gender and race" [18]. This mismatch suggested to us a second educational opportunity: using CWT to educate the public not only about history, but also about facial recognition's strengths and limitations. To accomplish these goals, we employed a three-step ethical design process: i) addressing known issues with facial recognition; ii) consulting experts in race, gender, and history; and iii) iterating on feedback from representative user groups. Below, we briefly describe the current system prototype, followed by a discussion of our design process and some key ethical challenges we have encountered and addressed.

SYSTEM DESCRIPTION: CIVIL WAR TWIN

Civil War Twin is a web-hosted Python/Django application built on the CWPS API. To begin, a user begins the matching process by uploading a selfie to Civil War Twin. We use Microsoft Azure's Face API [13] to detect whether a face is present or not. If a face is detected, the user then provides their preferences for the type of search results they would like to see. There are three categories, one on each page: *Military* (Union, Confederate, and/or Civilian, see Figure 2), *Gender* (Man or Woman, see Figure 3), and *Race* (White, African American, Native American, Hispanic, and Asian, see Figure 4). Users can select multiple choices for each of these categories. On a sidebar, a "Behind the Scenes" section explains in layperson's terms how the technology works, and a "What Could Go Wrong?" section describes potential shortcomings of the technology and/or historical records. Above the selection, a real-time interactive visualization shows how each user preference affects the search pool. Finally, facial recognition searches for the top four similar-looking candidates ("twins") in this filtered pool based on similarity confidence scores, and displays the selected twin as a "baseball card" artwork, which the user can printed or share on social media (see Figure 1). The user can also learn more about their twins by reading their biographical details and/or clicking on their CWPS profile links.

Figure 3: Gender search preferences page.

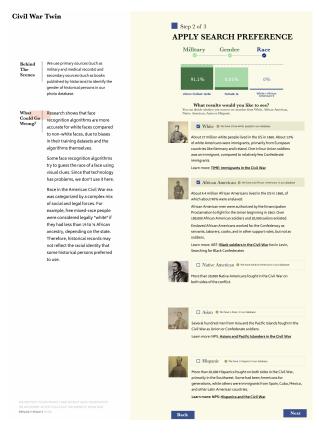


Figure 4: Race search preferences page.

DESIGN PROCESS

1. Addressing Known Issues. We began our design process with a literature of academic and popular accounts of ethical concerns with facial recognition, and designed the CWT user experience to ameliorate them as much as possible.

Data Privacy and Transparency: In recent years, facial recognition has drawn criticism as a surveillance tool for law enforcement agencies [8]. A particular concern for individual privacy is that the training database for such tools often includes face images collected from CCTV camera footage, social media profiles and posts, and driver licence databases, often without the subjects' knowledge or consent [10].

To support privacy and user control, we designed our facial recognition system so that it does not permanently store the user's selfie photo on any web server (ours or Microsoft's). Their selfie is not used for training the facial recognition model, either. We also explicitly inform the user that the photo will be deleted as soon as the session is over. This design required a trade-off between user privacy and usability, as we could not create persistent URLs for individual users to find or share their twin search results. Instead, we encourage users to download the "baseball card" graphic for saving locally, printing, or sharing; we also email the user a message with links to their twins.

To increase transparency, we added the aforementioned "Behind the Scenes" sidebar panels to describe how the facial recognition algorithm uses the uploaded selfie to detect the facial landmarks, generate a template for the face, and search the reference database for similar-looking candidates. We further emphasize the conditions that may affect the face detection process.

Determining Search Results: Another key challenge was providing appropriate search results for each user. CWT targets a demographically diverse user base in the general public. One approach might be to pick twins for a user by matching automatically inferred demographic characteristics. For example, if facial recognition determined the user's selfie showed an African American male, then CWT could show only twins who were also African American males. However, we found this approach problematic for several reasons. First, automated techniques might perform badly when trying to guess the race or gender of the selfie. Multiple studies have shown facial recognition has accuracy and bias problems, such as for dark-skinned or transgender faces [3, 16, 17]. The chances of misgendering the user or inferring the wrong race are unacceptably high. Second, even if the user's demographics could be automatically inferred with high accuracy, it is hard to generalize what types of twins users will want to see. For example, some users might prefer to see twins of a different gender, or Confederate twins, while other users might find these matches offensive.

To address these issues, CWT gives users complete control of what type of search results (twins) they want to see by specifying search preferences, instead of automatically detecting or even requesting their demographic information. Users have the option of filtering the search results to particular

- 1. How do you feel about the overall premise, motivation and goals of the project? What value (if any) do you see in this project?
- 2. How can this project address rising ethical concerns related to facial recognition?
- 3. How might African American users respond to the way this project addresses the topic of Civil War history?
- 4. How might the focus on facial recognition software be perceived by people of color?
- 5. What are some issues regarding race, in the context of the Civil War era, this project may have overlooked?
- 6. What are some ethical considerations when asking users for their search preferences related to race?
- 7. What are some concerns regarding gender identities and gender roles this project may have overlooked?
- 8. How can we use this project to encourage contribution of historical photos to the CWPS database?
- 9. How can this website potentially be misused? Should aspect(s) of the platform be modified to prevent this?
- 10. How should we address the lack of photos for certain genders and ethnic groups in the CWT database?

Table 1: Sample questions for expert feedback.

genders, races/ethnicities, and military categories. These categories reflect the historical dataset and thus, the practices of the era. For example, soldiers' races are inferred based on their segregated military units, and gender is limited to the male–female binary. Instead of trying to hide these categories by mapping them onto modern-day labels, we employ seamful design [4] by presenting the historical context behind these categories and inviting the user to consider their own relationship to them. We also selected the Microsoft Azure Face API because among commercial facial recognition services, it has shown some of the most substantial gains in reducing race and gender bias.

Limits of the Archive: Due to historical circumstances, ranging from a Union naval blockade to discrimination, some groups, especially Confederate soldiers, women, and people of color, have fewer surviving photos [5]. These historical biases were echoed in the composition of the original CWPS database, which was seeded by public collections like the US Army's MOLLUS-Mass collection, which primarily contains portraits of white Union officers. One negative consequence is that users searching for twins in the other categories run the risk of seeing the same set of twins due to fewer photos in the reference database. Another negative consequence is that extant photos in these categories lack diversity. For example, in 2017, Google Arts & Culture released an app [7] which allowed users to upload a selfie and, via facial recognition, discover matching faces in digitized artworks from museums around the world. Although the app went viral, it drew criticism from the Asian community as the search results contained a disproportionately high number of Japanese geishas [11].

We attempt to mitigate these problems in several ways. First, we completed two targeted database enrichment projects to increase the number of photos of two underrepresented categories: African Americans and women. Consequently, our collection of African American Union soldier portraits, although small, is believed to be the largest digital collection in existence. Second, we took this opportunity to educate users about how the composition of reference databases affects the performance of facial recognition algorithms in CWT's sidebar paragraphs. Third, on CWT's twin results page, we invite users to contribute additional photos (e.g., from their personal collections or new sources) to further enrich underrepresented categories in the CWPS database.

- 2. Consulting Experts. After the initial design, we plan on consulting experts in gender studies, race studies, and Civil War history to critique our design decisions, specifically on how our design engages with some of the sensitive issues discussed above, and to have a better understanding of the societal implications of our proposed tool (see Table 1). Based on their feedback, we plan to iterate on our design and develop a high-fidelity prototype.
- 3. Collecting Prospective User Feedback. We also plan on getting feedback on the prototype through focus groups conducted with participants from a diverse range of demographics who are interested in history and may have little or no knowledge about facial recognition. After incorporating their feedback, we will plan for a public launch of Civil War Twin.

ACKNOWLEDGEMENTS

This research is supported by NSF IIS-1651969 and a Virginia Tech ICTAS Junior Faculty Award.

REFERENCES

- [1] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, et al. 2019. Guidelines for human-Al interaction. In *Proceedings of the 2019 chi conference on human factors in computing systems.* 1–13.
- [2] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino, S. Mehta, A. Mojsilović, S. Nagar, K. N. Ramamurthy, J. Richards, D. Saha, P. Sattigeri, M. Singh, K. R. Varshney, and Y. Zhang. 2019. Al Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. *IBM Journal of Research and Development* 63, 4/5, 4:1–4:15.
- [3] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accuracy disparities in commercial gender classification. In *Conference on fairness, accountability and transparency*. 77–91.
- [4] Matthew Chalmers, Ian MacColl, and Marek Bell. 2003. Seamful design: Showing the seams in wearable computing. (2003).
- [5] Ronald S. Coddington. 2008. Faces of the Confederacy an album of Southern soldiers and their stories. Johns Hopkins University Press.
- [6] Henriette Cramer, Jean Garcia-Gathright, Sravana Reddy, Aaron Springer, and Romain Takeo Bouyer. 2019. Translation, tracks & data: an algorithmic bias effort in practice. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. 1–8.
- [7] Google Arts Culture. 2017. Art Selfie https://artsandculture.google.com/camera/selfie.
- [8] Clare Garvie, Alvaro Bedoya, and Jonathan Frankle. 2016. The Perpetual Line-Up | Unregulated Police Face Recognition in America https://www.perpetuallineup.org/.
- [9] Kelly A. Gates. 2011. Our Biometric Future: Facial Recognition Technology and the Culture of Surveillance. NYU Press, New York.
- [10] Kashmir Hill. 2020. The Secretive Company That Might End Privacy as We Know It https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html. The New York Times (2020).
- [11] Rachael Krishna. 2018. Asian People Are Not Impressed With Their Matches On Google's Museum Selfie Feature https://www.buzzfeednews.com/article/krishrach/asian-people-are-not-impressed-with-their-matches-googles. BuzzFeed News (2018).
- [12] Michael A Madaio, Luke Stark, Jennifer Wortman Vaughan, and Hanna Wallach. 2020. Co-Designing Checklists to Understand Organizational Challenges and Opportunities around Fairness in Al. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*. 1–14.
- [13] Microsoft. 2018. Face API Facial Recognition Software | Microsoft Azure https://azure.microsoft.com/en-us/services/cognitive-services/face/.
- [14] Vikram Mohanty, David Thames, Sneha Mehta, and Kurt Luther. 2019. Photo sleuth: Combining human expertise and face recognition to identify historical portraits. In *Proceedings of the 24th International Conference on Intelligent User Interfaces.* 547–557.
- [15] Google PAIR. 2019. People + Al Guidebook https://pair.withgoogle.com/guidebook/.
- [16] Inioluwa Deborah Raji and Joy Buolamwini. 2019. Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial ai products. In *Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society*. 429–435.

- [17] Morgan Klaus Scheuerman, Jacob M Paul, and Jed R Brubaker. 2019. How computers see gender: An evaluation of gender classification in commercial facial analysis services. *Proceedings of the ACM on Human-Computer Interaction* 3, CSCW (2019), 1–33.
- [18] Aaron Smith. 2019. More Than Half of U.S. Adults Trust Law Enforcement to Use Facial Recognition Responsibly https://www.pewresearch.org/internet/2019/09/05/more-than-half-of-u-s-adults-trust-law-enforcement-to-use-facial-recognition-responsibly/. Pew Research Center Internet Technology (2019).