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Abstract

Mathematical and computational decision models are powerful tools for studying
choice behavior, and hundreds of distinct decision models have been proposed over the long
interdisciplinary history of decision making research. The existence of so many models has
led to theoretical fragmentation and redundancy, obscuring key insights into choice behavior,
and preventing consensus about the essential properties of preferential choice. We provide a
synthesis of formal models of risky, multiattribute, and intertemporal choice, three important
domains in decision making. We identify recurring insights discovered by scholars of
different generations and different disciplines across these three domains, and use these
insights to classify over 150 existing models as involving various combinations of eight key
mathematical and computational properties. These properties capture the main avenues of
theoretical development in decision making research and can be used to understand the
similarities and differences between decision models, aiding both theoretical analyses and

empirical tests.
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multiattribute choice; intertemporal choice
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Introduction

Decision making is a central topic in psychology, cognitive science, neuroscience,
economics, finance, marketing, health, environmental sciences, and management (Bazerman
& Moore, 2008; Barberis & Thaler, 2003; Camerer et al., 2011; Glimcher & Fehr, 2013;
Kaplan & Frosch, 2005; Oppenheimer & Kelso, 2015; Seip and Wenstop, 2006; Simonson et
al., 2001). Decision research is now also a significant driver of government policy (Halpern,
2016; Thaler & Sunstein, 2009). A major goal of decision research has been to describe,
predict, and prescribe human choice behavior. This goal is often pursued by developing
mathematical and computational decision models. These models transform the set of choice
options available to the decision maker into deterministic or probabilistic choices. Much
theoretical research has been devoted to generating new decision models, each making own
assumptions about how payoffs, attribute levels, probabilities, time delays, and other
components of choice options are transformed and combined to explain observed patterns of
choice.

There is a profusion of such models. In preparing this paper, we identified over 150
distinct mathematical and computational models published before 2018 which are aimed at
modeling choices. Typically, the choices modelled are binary (between two options) and the
options themselves have only a few payoffs or attribute values. Inevitably, when there are so
many models using so few inputs to predict a small set of choice patterns, the models overlap
in their key properties. Moreover, with so many related models, often expressed using
different terminology and notation, and interpreted using different intuitive psychological
mechanisms, it is difficult for scholars to acquire a comprehensive view of the field and to
keep up with the proliferation of new variants. This may result in redundancy and makes it
difficult for new researchers to see the wood for the trees. Indeed, despite all this model

development, unified theories of choice have not emerged, even over the relatively small set
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of behavioral regularities documented in the empirical literature.

The purpose of this paper is to synthesize seven decades of interdisciplinary
theoretical decision making research, to provide a road map of existing decision models and
to enable new and established researchers to locate their work on this map. We do this by
identifying eight core mathematical and computational properties at play in preferential
choice and using these to classify existing models. Our classification provides a way to
identify similarities and differences between models and can be used to aid both theoretical
analyses and empirical tests. It can also shed light on trends and patterns that have so far
guided theoretical developments in decision research. More importantly, current and future
researchers will be able to use our framework to increase their theoretical efficiency and

encourage them to build on, rather than re-invent, the work of previous generations.
Decision Modeling
The Structure of the Choice Problem

The great majority of ‘real-world’ decisions involve options that combine multiple
attributes with a range of costs and benefits over time and various degrees of risk and
uncertainty. In the face of such complexity, the approach adopted by decision researchers has
been to subdivide the task and develop models in three domains, each focused on one aspect
of overall choice. Typically, therefore, multiattribute choice models concern the values placed
on objects or events with several characteristics, risky choice models concern how we weigh
those values as a function of how likely they are to occur, and intertemporal choice models
concern how we weigh those values as a function of when they occur. The models we discuss
in this paper therefore form part of the constructive or “divide and conquer” approach to
decision modeling, in that researchers systematically strive to understand each aspect of

choice, before ultimately attempting to “put it all together” (Lichtenstein & Slovic, 2006).
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As a consequence of this divide and conquer approach, decision researchers have
mostly focused on simple choice tasks, rarely more complex than those shown in Table 1.
The role of simple tasks like these has been likened to that of fruit flies in genetics, since they
provide stripped-down scenarios that represent basic components of the choices people make

in their everyday lives (Kahneman, 2000).

Table 1: Structure of a typical choice problem, with two choice options X and Y. The column
labels represent events, moments in time, or attributes, and the individual cells, denoted x;
and y;, are the resolutions for these columns (e.g. payoffs contingent on different events,

payoffs obtained at different time periods, or realizations of different attributes).

CJ c2 C3
X X1 X2 X3
Y yi »2 V3

The available options (the choice set) are represented by the rows labelled X and Y.
Researchers have predominantly focused on cases where only one item can be chosen from a
choice set. The interpretation of the columns depends on the domain: in multiattribute choice,
they denote option attributes, features, or commodities; in the context of risk, they denote
either collectively exhaustive and mutually exclusive states of the world, or collectively
exhaustive and mutually exclusive probabilities; and in the context of intertemporal choice
they denote specific moments in continuous time. To refer to the characterisations
collectively, we will simply use the term col/umn, but when the column has specific
characteristics we will mention them. (Although our review will be limited to multiattribute

choice, risky choice and intertemporal choice, the Table 1 structure is in fact rather more
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general: see Wakker (2010, Appendix D) for a similar approach that extends to other fields,
including welfare theory.)

For each option, the contents of each cell are what we will call a column resolution, or
simply a resolution. This term is new, but we chose it because several terms have been
adopted to refer to similar concepts in various contexts (Wakker, 2010 appendix D), and we
sought a new term to embrace all concepts. Roughly, it is the consequence/outcome of
receiving or experiencing the option, given the column. In multiattribute choice, the column
denotes a class of attributes, features, dimensions, or commodities and the column resolution
is a qualitative or quantitative level of that column. For instance, in a choice set of cars, the
columns could denote paint colour, fuel efficiency, and so on. The column resolutions would
contain specific instantiations of the corresponding attributes, such as “Red” or “40 miles per
gallon” (depending on the column).

In the case of intertemporal choice, the column resolutions are the outcomes occurring
at that moment in time for each option in the choice set. As time is continuous, any table
(and, typically in experiments, any option description) specifies only moments when
something happens for at least one option. For instance, consider the choice between $100
now and $0 in one year, or $0 now and $150 in one year. A table representation for this
choice typically specifies two columns, corresponding to now and one year from now, but
does not explicitly represent what happens at every moment in between and beyond these
points in time.

The columns in risky choices are often described as events or states of the world (e.g.,
raining tomorrow versus not raining tomorrow), or as event probabilities with the nature of
the events unspecified but column headings adding up to 1, such as 25%, 30%, 45%. The
option “if it is sunny tomorrow, we go to the seaside” is of the first type: the column is

“sunny tomorrow”, the resolution is “go to the seaside”. An alternative presentation is “you
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have a 25% chance of going to the seaside” in which the column is “a 25% chance”. Note
that in some risky choice experiments, options are described just in terms of the probabilities
of different resolutions that may or may not be independent of one another. For example,
decision makers could be asked to choose between a 20% chance of $40 and nothing
otherwise, or a 50% chance of $15 and nothing otherwise. but may not be told how these
sums of money are positioned in various states of the world. In this case the same set of
options could be represented in different ways in table form, depending on different
assumptions about gamble independence. Although some models regard all such
representations as equivalent, there are other models where the differences in how the
resolutions across events or states of the world are juxtaposed would allow for different
patterns of choice. One strength of using a framework based on a table format is that it helps
us to identify when such considerations do or do not matter for the implications of a model.

Behavioural models of multiattribute choice, intertemporal choice and risky choice
are often contrasted against a baseline model with a functional form corresponding to a
weighted sum. Each resolution x; has a subjective value v(x;); these values are assigned a
decision weight w; based on what the column is; and the overall value of option X is given as:
V(X) = Zwiv(x;). For a given choice set, the option with the highest weighted subjective value
1s assumed to be chosen.

In risky choice, the baseline model is expected utility theory, where weights are state
probabilities and values of resolutions are represented by utility indices (von Neumann &
Morgenstern, 1944; Savage 1954). In intertemporal choice, the baseline model is discounted
utility (Samuelson 1937), according to which the present value of dated consumption utility
decreases exponentially with its delay. In the baseline model of multiattribute choice, the
weights capture the subjective importance of the attributes and values of resolutions depend

on attribute-specific utility functions (Keeney & Raiffa, 1993). These models are sometimes
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considered to be normative because their functional forms can be derived from consistency
axioms that appeal to assumed principles of rationality. However, the normative status of
baseline models (and indeed many other axiomatically-based models) is controversial, since

most axioms have been challenged not only on empirical, but also on normative grounds.

A Patchwork of Models

As predictors of choice, the baseline models have turned out to be inadequate: almost
from the moment they were first formulated, empirical patterns of behavior contradicted
them. These failures stimulated the development of descriptive models, usually by modifying
the baseline model through the addition of assumptions about the computations involved in
transforming and aggregating columns and their resolutions. The rate at which these models
were developed received a huge boost with the publication of (original) prospect theory
(Kahneman & Tversky, 1979). This watershed event led to alternative models of choice, not
limited to risky choice, being produced on an almost industrial scale. Starmer (2000)
described how there was a “hunt for a descriptive theory of choice under risk” during the last
two decades of the 20" century. He discussed more than twenty models drawn primarily from
economics (to which he might have added another twenty, primarily from psychology). Even
in 2000 it might have seemed strange that a relatively small number of choice patterns
involving a few simple options could support the production of so many differentiated
models. But far from running out of steam, the theory production process has continued
unabated. We suggest four reasons for this (recognising that there may be others).

First, the same choice patterns can be interpreted and explained by a variety of
functional forms and/or diverse psychological insights. Second, the pursuit of model
parsimony can restrict the permissible degrees of freedom so much that while each model can

account for some behavioral phenomena, none can account for all. Third, researchers often
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focus on one or a few choice phenomena, and even small changes in what the researcher
wants to explain can lead to different models. Finally, and perhaps most importantly, because
rewards in science are heavily weighted toward developing new models and demonstrating
their accuracy, the development of these models (rather than testing existing models or
consolidating “old” ones) has been the priority of most researchers.

So instead of an increasingly streamlined and consolidated and integrated set of
choice models, we are now faced with a patchwork of competing models offering seemingly
novel assumptions and generating a variety of nuanced behavioral predictions. In all three
domains of choice — risky, intertemporal and multiattribute — behavior has not been captured
by a small number of agreed core principles.

This problem already existed half a century ago. The pioneering mathematical
psychologists Krantz, Atkinson, Luce, and Suppes (1974) excluded preferential choice
research from their seminal survey of mathematical psychology arguing that while “there is
no lack of technically excellent papers in this area ... they give no sense of any real
accumulation of knowledge.” They then asked a question that has still not been answered:
“what are the established laws of preferential choice behavior?” (pg. 7). In this paper we
hope to make some progress towards establishing, if not the laws themselves, a framework

for such laws.

Model Overlap

One consequence of the abundance of decision models relating to a restricted domain
is that models overlap. Researchers draw on highly similar mechanisms to achieve highly
similar empirical predictions, often independently and often without drawing links between
the models. As an example, consider the following models which treat desirability differences

between pairs of options as being (at least over some range) convex in the differences
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between resolutions within the same Table 1 column: regret theory (Loomes & Sugden,
1982), salience theory (Bordalo et al., 2012), the importance sampling model (Lieder et al.,
2017), the similarity contrast model (Mellers & Biagini, 1994), random regret minimization
(Chorus et al., 2008), the similarity overlap model (Restle, 1961), the feature matching model
(Houston et al., 1989), the focusing model (Kdszegi & Szeidl, 2013), the tradeoff model
(Scholten & Read, 2010), the lexicographic semiorder model (Tversky, 1969), and the
generalized similarity model (Leland, 1994, 2002; Rubinstein, 1988, 2003). The first three
models focus on risky choice, the next four on multiattribute choice, the next three on
intertemporal choice, and the last two have been applied to all three domains. The risky
choice models give disproportionate importance to larger differences between resolutions
(typically payoffs) in the same state of the world; the intertemporal choice models give
greatest importance to the largest within-time-period differences in resolutions (again,
typically payoffs); and the multiattribute models give the greatest importance to the attribute
categories on which resolutions (typically attribute levels) differ most.

These models are not identical in their mathematical representation, and they may
appeal to different psychological mechanisms to justify the key idea, including emotions,
perceptual discrimination, and attention. However, despite any differing psychological
justifications, all the models share a central insight about choice behavior. The fact that so
many researchers have independently proposed models that give disproportionate importance
to larger differences between column resolutions suggests that this idea might capture if not a
law, then at least a property of preferential choice behavior.

Due to the large number of existing models, as well as the cross-disciplinary nature of
decision research and because models may diverge in their psychological interpretation while
having similar underlying mathematical assumptions (and consequently behavioral

predictions), many instances of overlap are not immediately obvious. This restricts the
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opportunity for researchers to build on each other’s insights, and scientific energy is likely to
be dispersed in repeatedly rediscovering the same set of core theoretical insights (see He et

al., in press - a, for a complementary computational investigation of model overlap).

Overview of Approach

Generating a List of Models

We offer a stylised and high-level map of the world of decision modeling. This map
characterizes the basic mathematical and computational properties from which models are
formed and suggests a metatheoretical structure whose dimensions represent the main
avenues of theoretical insights and developments in decision making research. These
dimensions are currently our best approximations to the laws of preferential choice behavior
requested by Krantz et al. (1974).

We built this map by observing similarities across a wide set of existing models of
risky, intertemporal, and multiattribute choice. Our list of models spans seven decades of
theoretical research, and includes models from a wide array of fields, including psychology,
cognitive science, economics, management, marketing, and neuroscience. We compiled this
list using a multistage process. We began by searching Google Scholar for published models
with search queries “risky choice model”, “risky decision model”, “intertemporal choice
model”, “intertemporal decision model”, “multiattribute choice model”, and “multiattribute
decision model”. To this list we added models discussed in regular review papers published
in outlets such as the Annual Review of Psychology and the Journal of Economic Literature
(Becker & McClintock, 1967; Edwards, 1954, 1961; Einhorn & Hogarth, 1981; Frederick et
al., 2002; Hastie, 2001; Oppenheimer & Kelso, 2015; Payne et al., 1991; Pitz & Sachs, 1985;
Rapoport & Wallstern, 1972; Simonson et al., 2001; Slovic et al., 1977; Starmer, 2000;

Weber & Johnson, 2009). We then used citation chaining to obtain all papers citing our
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models or cited by our models, and from these papers, extracted additional models that were
not present in our initial list. Finally, we circulated our list of models to the email listserv of
the Society for Judgment and Decision Making, and with feedback from our colleagues, were
able to add some additional model to this list. Note that our approach is likely to exclude very
recent models, which is why we manually searched prominent psychology, economics,
management, marketing, and neuroscience journals, for decision models published from 2015

until 2018.

Scope of Analysis and Notable Omissions

Bearing in mind the breadth of the domains we consider, and the abundance of
proposed models, we made our theoretical synthesis manageable by focusing on formally
specified mathematical and computational models of multiattribute, risky, and intertemporal
preference that have specific functional representations. We only considered models designed
to describe choices (and other expressions of ordered preference) given choice sets that can
be expressed in a version of Table 1, and whose parameters can be “fit” using choice data.
These include behavioral utility-based models such as prospect theory, axiomatically derived
models which nonetheless have, or are commonly given, clear functional representations,
such as expected utility theory, and cognitive models which depict choices as the product of
processes other than utility maximization, such as heuristic models and accumulator models.

We did not include qualitative theories which do not make explicit the mathematical
structure of the computations they believe are at play in the decision process. We also
excluded very general axiomatic theories (e.g. Machina, 1982) which do not place functional
restrictions on the computations they propose. Another important omission involves
stochastic choice models that merely specify how noise influences choice, without restricting

the utility function that is perturbed by that noise. These include strong utility models
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(Fechner, 1860/1912; Luce, 1959; Thurstone, 1927), random preference models (Becker et
al., 1963), as well as other variations of this approach (see Bhatia & Loomes, 2017; Baltas &
Doyle, 2001; Hutchinson, 1986; Wilcox, 2008 for reviews).

We also excluded models whose main goal is to characterize the learning processes
involved in choice (e.g. Rieskamp & Otto, 2006), models of experience-based (rather than
description-based) choice (e.g. Hertwig & Erev, 2009; Gilboa & Schmeidler, 1995), models
that attempt to describe the influence of anchors, reference points, frames, response modes, or
other salient contextual features of the choice task (e.g. Goldstein & Einhorn, 1987; Tversky
& Kahneman, 1991), models pertaining to choice deferral, choice confidence or related
choice variables (e.g. Bhatia & Mullett, 2016; Pleskac & Busemeyer, 2010), as well as
models of social and strategic decision making (e.g. Camerer, 2003; Fehr & Schmidt, 1999),
risk perception (e.g. Slovic, 1987), and ambiguity-based choice (e.g. Trautmann & van de
Kuilen, 2015; Gilboa & Marinacci, 2016). These models often use the computations
discussed in this paper. However, they also feature additional assumptions due to the more
complex nature of the behavior they describe. We also excluded models of social judgment,
perceptual judgment, categorization, reasoning, and memory (see Holyoak & Morrison,
2012), and applications of decision models such as multi-criteria decision analysis and
conjoint analysis (see Green & Srinivasan, 1978; Triantaphyllou, 2013). Models in these and
related domains can be extended to describe multiattribute choice, but need to be excluded
for tractability and manageability.

Despite these restrictions, our synthesis involves over 150 different mathematical and
computational models of risky, intertemporal, and multiattribute decision making, and is
based on the largest and most comprehensive list of decision models in existence. Please see

the appendix for the full list of models discussed in this paper.
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Properties Examined

We limit our analysis to properties thought to be at play when evaluating the
canonical options that can be described using Table 1. Recall that baseline models such as
expected utility theory, the weighted additive model, and the discounted utility model, define
the total value of an option in terms of the sum of independent values assigned to each
resolution, weighted by some function of the column, summed over all columns. Alternative
decision models have been constructed by permitting more complex interactions,
transformations, and operations involving the rows and columns of Table 1. We divide these
computations into three categories of properties.

The first category relates to the types of interactions between the components of
choice options that are permitted by the models. Baseline models entail (a) independence of
irrelevant alternatives (IIA), and (b) independence of outcomes (or separability). In this
paper, IIA is an axiom of revealed preference, entailing that the value placed on an option is
not influenced by the other options available. Under common assumptions, it is equivalent to
transitivity. Otherwise, adding unchosen options to a choice set could potentially change
which option is chosen (see Rieskamp et al., 2006 for a detailed overview). This condition
should not be confused with Arrow’s (1951) social choice condition which has the same
name but is formally different. The independence — also referred to as the separability — of
outcomes implies, under common assumptions, that the value of an option is a weighted sum
of independent values placed on each resolution of that option. Many alternative models drop
one or both assumptions. Some allow for the resolutions of one option to influence the
transformation and aggregation of other resolutions within the same option, hence potentially
violating independence of outcomes (within-option interaction). Others allow for the
resolutions of one option to influence how resolutions of other options are treated, potentially

violating independence of irrelevant alternatives (between-option interaction).
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The second category pertains to the #ypes of transformations: that is, whether the
models modify how resolutions are transformed, or whether they modify how the columns
(probabilities, time delays, and attribute categories) are transformed and weighted.

The third and final category considers the operations used to implement the various
interactions and transformations: that is, whether models involve computations of ranks, or
similarities, or gains and losses, or transformations based on the statistical distributions (e.g.,

average, variance, or range) of resolutions or columns.

Table 2: An overview of the properties proposed as part of this synthesis.

Category 1: Types of interactions
1. Within-option interactions: Components of a choice option influence how other
components of the same option are evaluated
2. Between-option interactions: Components of a choice option influence how
components of other options are evaluated

Category 2: Types of transformations

3. Value transformations: Column resolutions (such as payoffs and attribute amounts)
are modified

4. Weight transformations: Probabilities, delays, and attribute weights are modified

Category 3: Operations

5. Ordinality: Rankings of resolutions or column weights play a role in determining
choice

6. Gains and losses: Positive and negative quantities are evaluated differently

7. Similarity and dissimilarity: Choices involve processing of resolution and weight
differences within or across options

8. Statistical distributions: The mean, variance, range and other distributional
characteristics of the options influence choice

These three categories of model properties play a fundamental role in characterizing
choice models. Models classified in the same way in all three categories will often have
similar theoretical underpinnings and entail similar behaviors. We consider a total of eight

different properties across these three categories, as summarised in Table 2. As we shall see,
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there is substantial overlap among models in the use of (subsets of) these properties,
suggesting that they capture important recurring insights into the nature of preferential

choice.

Properties

Types of Interactions

Property 1: Within-Option Interactions.

We first consider interactions between the components of a single choice option. The
interaction can be between columns (and therefore between the weights assigned to each
resolution) or between the resolutions themselves. These interactions lead to violations of
independence of outcomes conditions or axioms which entail that an option can be treated as
the sum of the independent utilities of each resolution, weighted by an independent function
of its column attributes (see the discussion in Fishburn & Wakker, 1995). The best-known
independence of outcomes condition is the sure-thing principle (Savage, 1972), which holds
that preferences over gambles should not depend on common components: that is, a shared
resolution within the same column. For instance, in Table 1, imagine that gambles X and Y
yield the same resolution for the third event: that is, x3 = y;. The condition states that
preferences between these gambles will be unaffected by this shared value, so that replacing
x3 = y3 with some other identical resolution x3” = y3” will not alter the decision maker’s
relative ranking of X and Y.

The same condition in multiattribute choice states that preferences over options do not
depend on shared attributes (Keeney & Raiffa, 1993). It is called separability in consumer
theory. Similarly, in intertemporal choice, independence implies that if a common dated

outcome is added to two options, preferences between those options will be unaltered (Read
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& Scholten, 2012). In intertemporal choice, independence axioms imply additive separability,
meaning that the present value of consumption at a given point does not depend on what is
before or after that point (e.g., Koopmans, 1960; see discussion in Loewenstein & Prelec,
1993).

In contrast to the predictions of independence axioms, many decision models assume
within-option interactions, often that the column weight depends in some way on the
resolutions within that column. The best known such model is cumulative prospect theory
(Tversky & Kahneman, 1992), which is equivalent to Luce and Fishburn’s (1991) rank and
sign-dependent model, and which holds that probability weighting depends on the within-
option rank of the resolutions corresponding to each probability for each option. For example,
in Table 1 the weight placed on column 3 for gamble X may be influenced by how x3 ranks
relative to x; and x>. Models exploring and elaborating this idea with varying assumptions
regarding how probabilities are transformed (c.f., Gonzalez & Wu, 1999; Lattimore et al.,
1992; Prelec, 1998) also share this property, as do third generation prospect theory (Schmidt
et al., 2008), anticipated utility (Quiggin, 1982), dual theory (Yaari, 1987), the security-
potential/aspiration model (Lopes, 1987) and the gains decomposition utility model (Marley
& Luce, 2001). Within-option interaction is also a core property of the rank-affected
multiplicative weights and transfer of exchange models (Birnbaum & Chavez, 1997,
Birnbaum, 2008), venture theory (Hogarth & Einhorn, 1990), the skew-symmetric bilinear
theory and the weighted utility theory (Chew, 1983; Fishburn, 1982).

Variance-based models, including risk-value models (Dyer & Jia, 1997; Markowitz,
1959), the coefficient-of-variance model (Weber et al., 2004), and variance-skewness models
(Coombs & Pruitt, 1960; Hagen, 1979), also incorporate within-option interactions. In these

models, value is partly determined by the overall dispersion of the resolutions (usually
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monetary payoffs) within a gamble. This generates interactions within the gamble payoffs
and consequent violations of independence.

Disappointment-based models of risk are those in which each resolution in a risky
option is compared to some function of the other resolutions for the same option. There is a
risk of disappointment if the realized resolution is worse than those that might have happened
but did not. In many disappointment-based models (Bell, 1985; Jia et al., 2001; Loomes &
Sugden, 1986; Mellers et al., 1999), the utility of any single payoff is evaluated relative to the
overall expected value or expected utility of the gamble. Other disappointment-based models
compare individual payoffs with the certainty equivalent of the gamble (Gul, 1991), with the
best possible payoff (Grant and Kajii, 1998), or even with every other payoff (Delquié¢ &
Cillo, 2006). A class of reference-dependent models, in which gambles serve as their own
reference points, also utilizes disappointment-like calculations to generate within-option
interactions (Kdszegi & Rabin, 2007).

Within-option interactions also enter indirectly into models of risky choice that
assume that individual outcome probabilities (the columns) are compared to what would
happen if those probabilities were uniformly distributed over all columns, so that the weight
assigned to a given probability depends on the number of states of the world. These models
include prospective reference theory (Viscusi, 1989), the dual-system model of risk
(Mukherjee, 2010), the dual-system model of affect and deliberation (Loewenstein et al.,
2015), the noisy retrieval model (Marchiori et al., 2015) and distracted decision field theory
(Bhatia, 2014). Aspiration-level models (Diecidue & Van de Ven, 2008) which add further
calculations based on the total probability of surpassing target payoffs also indirectly permit
within-option interactions. Original prospect theory (Kahneman & Tversky, 1979)

incorporates within-option interactions through its assumption that probabilities associated
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with identical payoffs in the same gamble may be combined during editing (before being
assigned a decision weight).

Finally, within-option interactions appear in heuristic models of risky choice, such as
Payne and Braunstein’s (1971) information processing model, the priority heuristic
(Brandstitter et al, 2006), several of Thorngate’s (1980) heuristics and the BEAST model
(Erev et al., 2017). These models often involve the identification of the largest or smallest
resolution in a gamble or the most likely or least likely resolutions in a gamble, so that
changing one probability or resolution can affect how other probabilities and resolutions in
the same gamble are evaluated.

In contrast to risky choice, the modeling of specific within-option interactions is
relatively rare in multiattribute choice models. This may seem remarkable because this is a
domain in which within-option interactions are ubiquitous (for example, in the form of
attribute complementarity or substitutability), and much work has been done in decision
analysis to develop ways of measuring utility over multiattribute bundles, and to analyse the
effects of known patterns of interdependence (e.g., Keeney & Raiffa, 1993). One reason for
not modeling these interactions is no doubt because it is difficult to create descriptive
behavioral models with interactions between resolutions that take the form of often
incommensurable attributes (e.g., a car with the resolution of red chassis in one column, and
40 miles per gallon in another). When interactions are modelled, it is assumed that attributes
can be mapped onto comparable scales, such as scores on different aspects of the same test,
or present/absent ratings. Interdependencies based on these conditions feature in configural
weight models, which can allow for multiplicative (Birnbaum, 1974), rank-based (Birnbaum
& Zimmermann, 1998), or range-based (Birnbaum & Stegner, 1979) interactions between
resolutions. As with the above risky choice models, these models can violate independence of

outcomes. Ganzach’s (1995) attribute scatter model assumes that people prefer a high degree
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of scatter within an option rather than options with the same mean but less scatter — which
might mean a slow but very reliable car is preferred to one that is a bit faster and a bit less
reliable. Within-option interactions are also central to neural network models such as the
parallel constraint satisfaction model of heuristic choice (Glockner & Betsch, 2008) and the
Co3/ECHO model (Holyoak & Simon, 1999) which allow for attributes to influence the
activation of other attributes. Lastly, conjunctive and disjunctive heuristics, which assume
that decision makers focus on the best or worst resolutions within a choice option (Dawes,
1964), can display these interactions, as can approximations of these heuristics that represent
the decision process with a non-linear utility function (Einhorn, 1970).

Just as in multiattribute choice, relatively few intertemporal choice models
accommodate within-option interactions between resolutions even though intertemporal
preferences seem highly likely to display interactions. One related line of modelling involves
habit formation, found in the model of rational addiction (Becker & Murphy, 1988), the
discounted utility model under habit formation Wathieu (1997). the satiation model (Baucells
& Sarin, 2007), and the satiation and habit formation model (Baucells & Sarin, 2010). A
classic claim is that improving sequences are valued over worsening ones, as if the more
proximate experience of plenty will be worsened by the anticipated experience of subsequent
poverty (e.g., Loewenstein & Sicherman, 1991). For monetary choices, preferences over
resolution sequences also display dominance violations, analogous to those observed when
applying (say) original prospect theory to gambles having more than two possible resolutions
with the same sign (see Scholten et al., 2016). Additional models that predict interactions
between resolutions include the conditional utility independence model (Bell, 1977), the
preferences over sequence model (Loewenstein & Prelec, 1993), the mental accounting
model of savings and debt (Prelec & Loewenstein, 1998), the monotone model (Blavatskyy,

2016), the extended tradeoff model (Read & Scholten, 2012) and the extended tradeoff model
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with cumulative weighting of time (Scholten et al., 2016). It should be emphasized, however,
that much empirical research into intertemporal choice has circumvented the issue of
intertemporal separability by focusing on choices where within-option interactions cannot
occur: that is, choices involving a single smaller-sooner and larger-later option, with only one

column per option associated with a non-zero resolution.

Property 2: Between-Option Interactions.

The preceding section considered models that allow for interactions between the
resolutions and columns of a single option. If these are the only interactions, then a given
option still has its ‘own’ subjective value to a decision maker, irrespective of whatever
alternative options are available. Consequently, preferences between X and Y in Table 1 will
not be affected by the presence or absence of any other option Z. Nor will the decision maker
display any cyclical or intransitive pattern of choice (such as a preference for X over Y, Y over
Z, and Z over X).

By contrast, allowing for the components of an option to interact with components of
other options generates violations of independence of irrelevant alternatives, specified earlier
as the principle whereby the preference between any two options should be independent of
any other options available in the choice set (see e.g. Keeney & Raiffa, 1993). This is
tantamount to saying that each and every option has its ‘own’ subjective value to an
individual, entailing transitivity.

Allowing between-option interactions means that the column weight(s) assigned to
the resolution(s) of a single option, or the value assigned to those resolutions, can be
influenced by the weights or resolutions of other options, either in the same or different
columns. Consequently, adding or removing otherwise irrelevant options from a choice set

can lead to reversals of preference orderings between the existing options. When the choice
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set expands to more than three options, modelling the impact of the interactions may become
very complex.

The great majority of decision models that assume interdependence between options
limit this interdependence to that between resolutions for different options within the same
column. Using the notation from Table 1, these models allow interactions between x; and y;
but not between x; and y; for i #j. Multiattribute models that assume between-option
interactions include many lexicographic and lexicographic semiorder heuristic models
(e.g., Fishburn, 1974; Tversky, 1969), heuristic models that involve comparing good and bad
attribute resolutions with weights (Huber, 1979) and without weights (Russo & Dosher,
1983), the options as information model (Sher & McKenzie, 2014), the rank-weighted leaky
accumulator (Tsetsos et al., 2012), the subjective dominance model (Ariely & Wallsten,
1995), the random dominance model (Hogarth & Karelaia, 2005), and a wide range of
heuristic models considered by Marewski and Mehlhorn (2011). In all these models, choice is
influenced by ordinal rankings of the options on different attributes, which leads to
interactions between the resolutions of different choice options. Thus, for example, the
desirability of a car with a given level of fuel efficiency may depend crucially on whether that
level of fuel efficiency is the highest out of all the cars in the choice set.

Between-option interactions are also present in multiattribute choice models that
emphasize the role of option similarity, such as the similarity overlap model (Restle, 1961),
the feature matching model (Houston et al., 1989), the focusing model (Kd&szegi & Szeidl,
2013), the similarity contrast model (Mellers & Biagini, 1994), the comparison grouping
model (Guo & Holyoak, 2002), multiattribute salience theory (Bordalo et al., 2013), the
sparse-max model (Gabaix, 2014), the multi-alternative linear ballistic accumulator
(Trueblood et al., 2014), the stochastic difference model (Gonzalez-Vallejo, 2002), the

random-regret minimization model (Chorus et al., 2008), the contextual utility model
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(Rooderkerk et al., 2011), the comparative judgment model (Bhargava et al., 2000), the
contextual concavity model (Kivetz et al., 2004), and various models that incorporate the
additive difference rule (Tversky, 1969). All these models predict that adding or removing
options from the choice set alters the perceived similarities of the remaining options, which,
in turn, may alter the choice between them.

We can also observe between-option interactions in multiattribute models based on
loss aversion, such as the componential context model (Tversky & Simonson, 1993), the
contextual loss aversion model (Kivetz et al., 2004), the loss aversion-based leaky
competitive accumulator (Usher & McClelland, 2004), and the conflict-mediated choice
model (Scholten, 2002). All these models assume that choice options are treated as gains and
losses relative to some other options in the choice set. Additionally, multiattribute models
that utilize the distribution of resolutions observed on a single attribute (e.g. the range of
values for that attribute in the choice set) to normalize the utilities of different options,
display these types of interactions. These models include range-frequency theory (Parducci,
1974; Wedell & Pettibone 1996), the neurocomputational range-normalization model (Soltani
et al., 2012), the Bayesian model of fair market value (Shenoy & Yu, 2013), the Bayesian
model of context sensitive value (Rigoli et al., 2017), and the similarity in context model
(Dhar & Glazer, 1996). In these models, the distribution of resolutions in a choice set can be
changed by adding or removing choice options.

Cognitive models that assume inhibitory interactions between different options and
attributes also display between-option interactions. These include multi-alternative decision
field theory (Roe et al., 2001), loss aversion-based leaky competitive accumulation (Usher &
McClelland, 2004), the cortical attractor network model (Wang, 2002), the hierarchical
competition model (Hunt et al., 2014), the divisive normalization model (Louie et al., 2013),

the 2n-ary choice tree model (Wollschldger & Diederich 2012), the dynamic threshold neural
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network (Usher & Zakay, 1993), and the accumulator rules model (Bhatia, 2017). Between-
option interactions can also be observed in the associative accumulation model (Bhatia,
2013), the parallel constraint satisfaction model of decision making (Gléckner & Betsch,
2008), and the Co3/ECHO model (Holyoak & Simon, 1999). These form a related class of
cognitive models, in which the attribute resolutions in the choice options dynamically
determine the weights associated with different attributes. As well as inhibitory effects
between options, some of these models predict between-option interactions due to momentary
fluctuations of attention (e.g., Bhatia, 2013; Roe et al., 2001; Usher & McClelland, 2004; also
see attentional drift diffusion models — Fisher, 2017; Krajbich et al., 2010).

A closely related class of decision models based on threshold decision making also
predict between-option interactions. These include elimination by aspects and the preference
tree model (Tversky, 1972), the matching heuristic (Dhami & Harries, 2001), the elimination
by least attractive heuristic (Montgomery & Svenson, 1976), and the satisficing heuristic
(Simon, 1955). Although threshold models do not explicitly feature interactions, by allowing
the resolutions of one option to influence the resolutions of another, they can produce
violations of independence of irrelevant alternatives. Many behavioral stochastic choice
models, such as the contextual utility model (Wilcox, 2011) and the wandering vector model
(Carroll & De Soete, 1991), similarly permit between-option interactions (typically as a
function of option similarity), and thus violate the stochastic axioms pertaining to
independence of irrelevant alternatives.

Some risky choice models allow for between-option interactions, primarily based on
computations of similarity or dissimilarity. Examples include regret theory (Bell, 1982;
Fishburn, 1982; Loomes & Sugden, 1982), the expected loss ratio model (Edwards, 1956),
the perceived relative argument model (Loomes, 2010), salience theory (Bordalo et al.,

2012), the importance sampling model (Lieder et al., 2017), decision affect theory (Mellers et
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al., 1999), and the similarity models of Leland (1994) and Rubinstein (1988). These models
utilize nonlinear transformations of differences between the payoffs and/or probabilities in
pairs of options to compute preferences.

Heuristic models often involve between-option interactions. These include the
minimax and maximax heuristics (Thorngate 1980), the minimax regret heuristic (Thorngate,
1980), as well as the low payoff and low expected payoff elimination heuristics (Thorngate,
1980), the information processing model (Payne & Braunstein, 1971), the priority heuristic
(Brandstitter et al., 2006), the consequence counting heuristic (Birnbaum, 2005), and the
most probable winner heuristic (Blavatsky, 2006). Because these heuristic models typically
involve ordinal comparisons between resolutions and probabilities across different gambles,
they can violate independence of irrelevant alternatives. The BEAST model (Erev et al.,
2017) and the decision-by-sampling model (Stewart et al., 2006), which rely on some of these
heuristics, also display such between-option interactions. The editing phase of original
prospect theory (Kahneman & Tversky, 1979), during which identical probability-payoff
combinations across gambles are cancelled out, also allows between-option interactions, as
does a reference-dependent extension of prospect theory in which different gambles can serve
as reference points for each other (Kdszegi & Rabin, 2007). Finally, the computationally
rational choice model allows for ordinal comparisons across gambles, mediated by expected
value calculation, to influence choice (Howes et al., 2016).

In intertemporal choice, attribute-based models have been proposed in which the
differences between resolutions determine preference. This is the case with the tradeoff
model (Scholten & Read, 2010) and the extended tradeoff model (Read & Scholten, 2012),
the proportional difference model (Cheng & Gonzélez-Vallejo, 2016), the absolute and
relative differences dynamic models (Dai & Busemeyer, 2014), as well as difference and

ratio similarity-based models such as those of Leland (2002 -- see also Cubitt et al.’s (2018)
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and Kdszegi & Szeidl’s (2013) models, which feature a related property for multiattribute
intertemporal choices). Likewise, both the ITCH model (Ericson et al., 2015) and the DRIFT
model (Read et al., 2013) involve between option interactions, in that preference for an
option is determined by the rate of return provided by that option compared to other options
on the table, as well as differences between the resolutions of different options. Additionally,
the various interval discounting models (Read, 2001; Scholten & Read, 2006; Scholten et al.,
2014), the ASAP model (Kable & Glimcher, 2010), and the common-aspect attention model
(Green et al., 2005) propose the discount rate for any given option depends on the delays to

all options.

Models without Interactions.

While most models assume either between-option or within-option interactions, a
small (but important) group do neither. Many of these models involve simplifications (rather
than generalizations) of expected utility theory, the weighted additive model or the
discounted utility model. For example, Dawes’ (1979) equal weights heuristic, as suggested
by the name, aggregates a subset of attributes democratically without considering which
attribute is a better predictor (unselected attributes get weights of 0). Similarly, the
equiprobable heuristic in risky choice (Thorngate, 1980), and the additive model of risky
decision making (Slovic & Lichtenstein, 1968), assume choices are made without attending
to probabilities.

This category also includes the subjective expected utility model of risky choice
(Edwards, 1955), which permits non-linear transformations of probabilities and payoffs, but
does not allow for interactions between the various components of the gamble, as well as
certainty equivalence theory (Handa, 1977) and the odds-based subjective weighted utility

model (Karmarkar, 1978). Finally, some risk-value models such as in Fishburn (1977)
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compute risk using fixed exogenous target values, rather than expected values, thus avoiding
within-option interactions.

Many intertemporal choice models predict no interactions between the components of
the choice options while assuming non-exponential discount functions, usually a variant of
declining patience. These include the hyperbolic discounting model (Mazur, 1987), the
generalized hyperbolic model (Loewenstein & Prelec, 1992), the quasi-hyperbolic model
(Laibson, 1997), the hyperbolic with value transformation model (Scholten et al., 2014), the
fixed cost model (Benhabib et al., 2010), the additive discounting model (Killeen, 2009), the
dual-systems model of affect and deliberation (Loewenstein et al., 2015), the double
exponential model (McClure et al., 2004), the constant-sensitivity model (Ebert & Prelec,
2007), the proportional discounting model (Harvey, 1994), and the exponential time model
(Roelofsma, 1996).

Finally, many dynamic decision models propose neither within- nor between-option
interactions. These include the ordinal and continuous multiattribute counter models
(Aschenbrenner et al., 1984), the descriptive multiattribute utility model (Weiss et al., 2010)
and the sequential accumulation model (Lee & Cummins, 2004).

Having discussed the classification of models according to the nature of any
interactions they allow, we now consider how models may be clustered according to which

dimensions they transform.

Types of Transformations

Property 3: Value Transformations.

Decision models often transform the resolutions of a choice option based on other

resolutions of the same option, or resolutions of different options. Many of these
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transformations apply only to the values attached to the payoffs or attributes of the various
options, that is v(x;).

Risky choice models that involve value-based transformations include models of
regret (Loomes & Sugden, 1982; Bell, 1982; Fishburn, 1982) and disappointment (Bell,
1985; Jia et al., 2001; Loomes & Sugden, 1986; Mellers et al., 1999; Delqui¢ & Cillo, 2006),
in which payoffs are evaluated relative to other payoffs in the same state of the world or other
payoffs in the same gamble, respectively. Decision affect theory (Mellers et al., 1999), which
models both regret and disappointment, also involves value-based transformations. Likewise,
value transformations are found in models that utilize the variance of a gamble to compute
the gamble’s utility (Coombs & Pruitt, 1960; Dyer & Jia, 1997; Fishburn, 1977; Markowitz,
1959; Weber et al., 2004). These models penalize payoffs that diverge strongly from the
mean, as do others which factor skewness into the evaluation (Hagen, 1979).

We also find value transformations in models of intertemporal choice, including the
tradeoff and extended tradeoff models (Scholten & Read, 2010; Read & Scholten, 2012), the
DRIFT model (Read et al., 2013), the proportional difference model (Cheng & Gonzalez-
Vallejo, 2016), the absolute and relative differences dynamic models (Dai & Busemeyer,
2014), and the ITCH model (Ericson et al., 2015). These particular models apply
transformations to differences or ratios between resolution amounts across options. Value
transformations are also a feature of sequence models of intertemporal choice (Loewenstein
& Prelec, 1993), in which people have preferences for increasing, decreasing, and dispersed
sequences of consumption. Relatedly, the mental accounting model of savings and debt
(Prelec & Loewenstein, 1998) assumes that resolutions in certain time periods can influence
the value of resolutions in other periods, which generates various implicit value-based

transformations (see also Baucells & Sarin, 2007, 2010).
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Multiattribute models that feature value transformations include the componential
context model (Tversky & Simonson, 1993), the loss-averse leaky competitive accumulator
model (Usher & McClelland, 2004), and the contextual loss aversion model (Kivetz et al.,
2004). Here the attribute resolutions for one option are evaluated based on whether they are
gains or losses relative to the (same column) resolutions for other options. Many other
multiattribute models also involve transformations of attributes based on pairwise
comparisons with other attributes in the choice set. These include the additive difference rule
(Tversky, 1969), the similarity contrast model (Mellers & Biagini, 1994), the random regret
minimization model (Chorus et al., 2008), the contextual concavity model (Kivetz et al.,
2004), the multi-alternative linear ballistic accumulator (Trueblood et al., 2014), the
comparative judgment model (Bhargava et al., 2000), the stochastic difference model
(Gonzalez-Vallejo, 2002), the nonlinear model (Einhorn, 1970), the options as information
model (Sher & McKenzie, 2014), and the decision by sampling model (Stewart et al., 2006).
Range-based multiattribute models include the range-frequency theory (Parducci, 1974;
Wedell & Pettibone 1996), the neurocomputational range-normalization model (Soltani et al.
2012), and the similarity in context model (Dhar & Glazer, 1996). Variation-based models
such as the attribute scatter model (Ganzach, 1995), also often apply transformations to value
rather than decision weights.

It is possible for payoffs and attributes to be transformed, such as through a utility
function, even if this transformation does not involve any within or between-option
interaction. For example, expected utility theory imposes a (typically concave) transformation
on monetary payoffs, whereas prospect theory assumes that this transformation is concave in
the gain domain, convex in the loss domain, and that the disutility from losses is greater than
the utility from equivalent gains. Other utility functions include those of Savage and

Friedman (1948) and Markowitz (1952). Virtually all decision models incorporate some such
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basic transformations. For expositional simplicity we do not provide a complete list of these

models.

Property 4: Weight Transformations.

Decision models that assume weight-based transformations modify the weights put on
each column based on the other columns of the same option, or the resolutions of other
options. Thus, the weight put on a single payoff or attribute — that is, w; — can be transformed
based both on the weights on other payoffs and attributes, w;, and the specific payoffs and
attribute levels, x;.

Risky choice models that involve weight-based transformations incorporate the many
variants of cumulative prospect theory (Gonzalez & Wu, 1999; Lattimore et al., 1992;
Prelec, 1998; Tversky & Kahneman, 1992; Wakker & Tversky, 1993) and the rank and sign-
dependent utility model (Luce & Fishburn, 1991), third generation prospect theory (Schmidt
et al., 2008), the gains decomposition utility model (Marley & Luce, 2001), dual theory
(Yaari, 1987), the security-potential/aspiration model (Lopes, 1987), and rank-dependent
probability weighting theory (Quiggin, 1982). Probability weighting in these models often
depends on the rank of the payoff that they correspond to, compared to the other payoffs in
the same gamble. Many such weight transformations do not involve only the probability
itself, but rather differences in weighted cumulative probabilities.

Other risky choice models with weight-based transformations are salience theory
(Bordalo et al., 2012) and the importance sampling model (Lieder et al., 2017), in which
probability weights depend on the differences between the resolutions in the corresponding
state of the world. Likewise, models such as weighted utility theory (Chew, 1983), the rank-

affected multiplicative weights and transfer of exchange models (Birnbaum 1997, 2008), and
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venture theory (Hogarth & Einhorn, 1990) transform probability weights, based on the
structure of payoffs and probabilities in the gamble in consideration.

Finally, as with value-based transformations, some models of risky choice transform
the weights on a payoff independently of the payoffs of the choice options. Prominent
examples include the subjective expected utility model (Edwards, 1955), and various
derivatives such as the odds-based subjective weighted utility model (Karmarkar, 1978),
original prospect theory applied to more than two outcomes (Kahneman & Tversky, 1979),
and certainty equivalence theory (Handa, 1977). Models such as prospective reference theory
(Viscusi, 1989), the dual-systems model of risk (Mukherjee, 2010), the dual-systems model
of affect and deliberation (Loewenstein et al., 2015), the noisy retrieval model (Marchiori et
al., 2015) and distracted decision field theory (Bhatia, 2014), which modify probabilities by
combining them with a uniform distribution, can also be seen as applying a probability-based
transformation.

Many multiattribute choice models also feature weight transformations. For example,
the associative accumulation model weighs attributes based on the presence or absence of
these attributes in other choice options (Bhatia, 2013). This is also a feature of recurrent
neural network models of multiattribute choice, in which this type of relationship is dynamic,
and depends on the preferences for the options in consideration (Glockner & Betsch, 2008;
Holyoak & Simon, 1999). Other models of multiattribute choice that involve weight
transformations include the feature matching model (Houston et al., 1989), the sparse-max
model (Gabaix, 2014). and multiattribute salience theory (Bordalo et al., 2013), which
assume that attributes that involve large differences are more salient and subsequently given
higher weights. Finally, configural weight theories with multiplicative (Birnbaum, 1974),
rank-based (Birnbaum & Zimmermann, 1998), or range-based interactions (Birnbaum &

Stegner, 1979) across attributes apply these interactions to attribute weights.
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Intertemporal choice theories that utilize weight-based transformations include
models which compare time delays of the options with each other, such as the tradeoff and
extended tradeoff models (Read & Scholten, 2012; Scholten & Read, 2010), the proportional
difference model (Cheng & Gonzalez-Vallejo, 2016), the ITCH model (Ericson et al., 2015),
the focusing model (K6szegi & Szeidl, 2013), the interval discounting model (Read, 2001),
the weighted multiattribute intertemporal choice model (Cubitt et al., 2018), the ASAP model
(Kable & Glimcher, 2010), and the common-aspect attention model (Green et al., 2005).
These models all transform delay weights based on the other delays (or columns) in the
choice set. Many other intertemporal choice models also apply weight transformations in the
form of time discounting without assuming any type of within or between-option interactions.

To maintain our focus we do not discuss these theories in this section.

Models without Value or Weight Transformations.

There are also some models that do not involve any value or weight transformations.
These are usually highly simplified baseline models, such as the net present value model of
intertemporal choice for money, and the expected value model of risky choice. Certain
multiattribute and risky choice heuristics also involve the simple aggregation of resolutions,
without transforming weights or values (such as payoffs or attribute levels) (Dawes, 1979;
Thorngate, 1980). Note that many other heuristics do involve transformations of the available
choice options, but these transformations cannot be easily categorized as involving values
and weights. These heuristics do often cause certain payoffs or attribute levels to play a
disproportionately more important role in the choice but whether this importance stems from
increased value or an increased weight depends on subjective interpretations of the

algorithms implemented by the models.
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Now we will examine four specific types of operations that decision modellers have
utilized to perform these interactions and transformations. Although different models may
instantiate each operation in different ways, these four operations capture the most general
types of assumptions regarding the influence of attribute levels, payoffs, importance weights,
time delays, or probabilities, on the choice process. Each type of operation can apply to
within- and between-option comparisons, and to value and weight-based transformations, and
there is considerable overlap between risky, multiattribute, and intertemporal models in their

use of these different operations.

Operations

Property 5: Ordinality.

Perhaps the simplest type of operation involves replacing cardinal with ordinal
information. Recall that baseline models assume the weighted aggregation of cardinal
utilities. Models that utilize ordinal operations instead specify choice as the product of “best”
or “worst” (or more generally, ranked) comparisons between resolutions both within and
between options. Rational choice models based on ordinal information have a long history in
economics (e.g., Arrow, 1951; Hicks, 1939).

The lexicographic heuristic (e.g., Fishburn, 1974) is among the most studied of
heuristics. It assumes that decision makers consider only a single column attribute and then
select the option with the most preferred resolution in that column. Similar ordinal
comparisons are also at play with weighted and non-weighted variants of the tallying
heuristic that assume decision makers rank resolutions in every column and then select the
option that is the best on the largest number of these attributes (Huber, 1979; Russo &

Dosher, 1983). Likewise, there is the elimination by least attractive heuristic (Montgomery &
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Svenson, 1976) which assumes that decision makers consider columns sequentially but then
successively weed out options that are the worst in each column. The dominance heuristic
(Ariely & Wallsten, 1995; Hogarth & Karelaia, 2005) selects options only if they outperform
at least one option in every column. The heuristics outlined by Marewski and Mehlhorn
(2011) also feature ordinal comparisons, as do conjunctive and disjunctive heuristics (Dawes,
1964), which apply ordinal comparisons within the attributes of an option.

Ordinal rules are also found in risky choice. The minimax, maximax and minimax
regret rules (Thorngate 1980), for example, choose options by comparing their absolute worst
or absolute best resolutions. Likewise, the information processing model (Payne &
Braunstein, 1971), the BEAST model (Erev et al., 2017), and the priority heuristic
(Brandstitter et al, 2006) feature a sequence of these ordinal comparisons, involving, for
example, comparisons of minimum gain. The most probable winner heuristic (Blavatsky,
2006) applies ordinal comparisions to probabilities. Thorngate (1980) outlines several other
heuristic rules that draw on ordinal rather than cardinal comparisons. These include the low
payoff elimination heuristic, the better than average heuristic, the most likely heuristic, the
least likely heuristic, the probable heuristic, and the low expected payoff elimination
heuristic.

Many non-heuristic models also rely on ordinal comparisons. For example, in
multiattribute choice, the options as information model (Sher & McKenzie, 2014) uses ranks
in pairwise comparisons between columns to determine the desirability of options, and the
rank-based configural weight models (Birnbaum & Zimmermann, 1998) use the ranks of
resolutions within an option to determine attribute weights (e.g., assigning higher or lower
weights to attributes if they are the best or worst attributes of an option). Ordinal processing
is also found in range-frequency models (Parducci, 1974; Wedell & Pettibone 1996) where

the rank of a resolution within a column affects how that resolution is evaluated.
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In risky choice, decision by sampling (Stewart et al. 2006) determines a given
resolution’s desirability based on its rank amongst all resolutions experienced previously.
Likewise, expected value calculations in the computationally rational choice model allows for
ordinal comparisons across gambles (Howes et al., 2016). Other similar examples include the
rank-affected multiplicative weights and transfer of exchange models (Birnbaum 1997,
2008), which rely on resolution ranks within a gamble to determine column weights. The
rank-weighted leaky accumulator aggregates resolutions weighted by their ranks in the
decision sample (Tsetsos et al., 2012). Aspiration-level models (Diecidue & Van de Ven,
2008) also use ordinal comparisons to evaluate the total probability of surpassing target
payoffs. Finally, rank-dependent utility and related approaches, such as cumulative prospect
theory, assign probability weights based on the relative rank of payoffs within a gamble
(Lopes, 1987; Luce & Fishburn, 1991; Quiggin, 1982; Schmidt et al., 2008; Tversky &
Kahneman, 1992; Yaari, 1987).

Intertemporal choice models have not considered the importance of ranks within
columns. But some models have considered ranking between columns, on the time
dimension. They assume that discounting begins when the earliest outcome is received (even
if the earliest outcome is delayed). These include two subadditive discounting models (Read,
2001), the interval discounting model (Scholten & Read, 2006) and the ASAP model (Kable
& Glimcher, 2010). Likewise, the proportional difference model (Cheng & Gonzalez-Vallejo,

2016) uses the highest payoffs and delays to normalize payoff and delay differences.

Property 6: Gains and Losses.

Many models assume that negative and positive quantities are processed differently.
This is a key assumption of both original and cumulative prospect theory (Kahneman &

Tversky, 1979; Tversky & Kahneman, 1992), according to which decision makers evaluate
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resolutions as gains and losses relative to some reference point, with losses of a given size
having more impact than gains of the same magnitude (an assumption known as loss
aversion). The idea of loss aversion is ubiquitous. It has been applied to between-option
comparisons, both in risky choice, as with the reference-dependent model (Kdszegi & Rabin,
2007) and third generation prospect theory (Schmidt et al., 2008), and in multiattribute
choice, as with the riskless reference dependence model and its extensions (Bleichrodt et al.,
2009; Tversky & Kahneman, 1991; Weingarten et al., 2019), the componential context model
(Tversky & Simonson, 1993) and the loss-averse leaky competitive accumulation model
(Usher & McClelland, 2004). In these models, decision makers perform pairwise
comparisons between the resolutions of pairs of options and place a greater emphasis on the
differences between negative options than between positive options. The disappointment
model without expectation also features pairwise comparisons between gamble resolutions,
with higher weights on negative comparisons relative to positive comparisons (Delquié¢ &
Cillo, 2006). In intertemporal choice, loss aversion is found in the tradeoff and extended
tradeoff models (Scholten & Read, 2010; Read & Scholten, 2012) and in the reference-
dependent intertemporal choice model (Loewenstein & Prelec, 1992).

Cumulative prospect theory also differentiates between gains and losses in terms of
probability weighting. Particularly, the rank-dependent probability weighting function is
applied separately for gains and for losses, so that payoffs of identical magnitude can be
weighted differently based on whether they are positive or negative (Tversky & Kahneman,
1992). The same idea is found in the rank and sign-dependent utility model (Luce &
Fishburn, 1991) and in third generation prospect theory (Schmidt et al., 2008).

Other models assume that the evaluations of positive vs. negative quantities differ but
apply this assumption not to differences between pairs of resolutions but rather differences

between one resolution and the average of all. In risky choice, for instance, disappointment
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theory assumes that decision makers evaluate negative deviations from expectations
differently from positive ones (Bell, 1985; Jia et al., 2001; Loomes & Sugden, 1986; Mellers
et al., 1999). A similar assumption underlies the contextual loss aversion model for between-
option multiattribute comparisons (Kivetz et al., 2004).

Other models that permit differences between gains and losses includes the expected
loss ratio model (Edwards, 1956) and the expected loss minimization model (Sheng et al,
2005) which assume that decision makers use only expected losses (that is, negative
differences in resolutions) while making choices. The additive model of risky decision
making (Slovic & Lichtenstein, 1968) also permits different weights for winning and losing
resolutions in gambles. Dominance-based models are also in this class. These models assume
that options superior to others on every column (i.e., dominant options) are evaluated
differently to options inferior to others on every column (i.e., dominated options), which in
turn are evaluated differently to options without any consistent dominance relationship
(Ariely & Wallsten, 1995; Hogarth & Karelaia, 2005). The multi-alternative linear ballistic
accumulation model, in which dominance dimensions are given higher weights than

indifference dimensions, can also be seen as possessing this property (Trueblood et al., 2014).

Property 7: Similarity and Dissimilarity.

Models that specify similarity-based operations within or between options magnify or
diminish the differences between columns or resolutions based on the differences between
them. To illustrate, the editing phase of original prospect theory (Kahneman & Tversky,
1979) allows differences between payoffs or probabilities to be ignored if they are very small.
Similarity operations are an important feature of risky choice models that account for
violations of outcome independence using between-option interactions. Regret theory

(Loomes & Sugden, 1982) generalizes the minimax regret rule (Thorngate, 1980) by allowing
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the psychological differences between pairs of resolutions in a single state of the world to
grow with objective differences in an accelerating manner. The same idea is found in salience
theory (Bordalo et al., 2012) and the importance sampling model (Lieder et al., 2017), except
that these models amplify differences between resolutions by assigning disproportionately
larger weights to those states of the world with larger resolution differences.

An amplification of between-option differences is also a feature of numerous
multiattribute choice theories. For example, the similarity contrast model (Mellers & Biagini,
1994) assumes that the weight on a given column increases with differences between options
in that column. The same basic idea appears in multiattribute salience theory (Bordalo et al.,
2013) the sparse-max model (Gabaix, 2014), and the random regret minimization model
(Chorus et al., 2008). Likewise, the feature matching model (Houston et al., 1989) and the
similarity overlap model (Restle, 1961) assume that attributes that are common across pairs
of options are ignored. This leads to higher relative importance for attributes that are uniquely
present in the two options. In intertemporal choice, we observe similar assumptions in the
focusing model (Kdszegi & Szeidl, 2013), in which attention is determined by attribute
differences within time periods, and related models (Cubitt et al., 2018).

Interestingly, some multiattribute models assume the opposite effect of similarity.
Instead of increasing the weight on columns when options differ greatly, these models
increase the importance of columns in which options differ least. The multiattribute linear
ballistic accumulator (Trueblood et al., 2014) is one such model. This type of pattern is also
often generated by the stochastic difference model (Gonzélez-Vallejo, 2002), which
normalizes attribute differences by the maximum attribute amount compared. Likewise, the
contextual concavity model (Kivetz et al., 2004) assumes that decision makers apply a

concave function to the difference between the attribute level of a given option and the
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minimum level on that attribute in the choice set. This leads to an emphasis on similarity
rather than dissimilarity, as concave functions have a higher slope at lower values.

Similarity can also influence processing in other ways. The similarity in context
model (Dhar & Glazer, 1996), for example, suggests that the similarity between pairs of
options in a given column can affect how other options are evaluated within the same
column. The comparison grouping model, in contrast, first examines options that are similar
to each other, before considering other options in the choice space (Guo & Holyoak, 2002).
Multi-alternative decision field theory also uses global measures of similarity through its
assumption of similarity-based lateral inhibition in the connections between the preferences
for choice options (Roe et al., 2001). Likewise, the contextual utility model assumes that
options that are globally similar to others are less desirable compared to relatively unique
options (Rooderkerk et al., 2011). It is also useful to note that models that sample attributes
sequentially such as decision field theory and its variants (Busemeyer & Townsend, 1993;
Bhatia, 2013; Roe et al., 2001; Usher & McClelland, 2004) indirectly emphasize attribute
dimensions with a large dispersion in resolutions, even though attribute weighting and
attention probabilities are independent of attribute similarities. Additionally, stochastic
models such as the contextual utility model (Wilcox, 2011) and the wandering vector model
(Carroll & De Soete, 1991) allow for similarity-based noise effects.

Finally, lexicographic semiorders, which only consider attributes on which the
available options are different enough, also emphasize dissimilarity on attributes. This is the
case for such models in multiattribute choice (Tversky, 1969), risky choice (Leland, 1994;
Rubinstein, 1988), and variants of these models in intertemporal choice (Leland, 2002,
Rubinstein, 2003). The more general additive difference model is also based on this
assumption (Tversky, 1969). The PRAM model (Loomes, 2010) allows for ‘smoother’

similarity/dissimilarity effects on both the probability and the payoff dimensions.
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Property 8: Statistical Distributions.

Models often draw on distributional information about columns and resolutions,
especially when these are expressed in quantitative form such as probabilities or monetary
payoffs. One important class of models uses payoff averages to normalize payoff values. In
disappointment based models (Bell, 1985; Jia et al., 2001; Loomes & Sugden, 1986; Mellers
et al., 1999), for example, decision makers compare each gamble payoff with the expected
value of the gamble, and evaluate payoffs worse than the expected value differently than
payoffs better than the expected value. In multiattribute choice, the contextual loss aversion
model assumes that decision makers compute the average attribute levels of the options in a
choice set and, like other loss aversion models, give greater importance to negative deviations
from the average compared to positive deviations within attribute columns (Kivetz et al.,
2004). The Bayesian model of context sensitive value (Rigoli et al., 2017) also uses
sequentially computed averages to normalize attribute values prior to aggregation.

Intertemporal choice models of sequences have used normalization (Loewenstein &
Prelec, 1993). These theories compare the payoff in a time period with the average payoffs
provided by the choice option. Relatedly, normalization comes into play in the ITCH model
(Ericson et al., 2015) which assumes that differences between choice components (either
payoffs or time delays) are divided by the average component offered in the choice set. The
DRIFT model (Read et al., 2013), makes the same assumption, as does the proportional
difference model (Cheng & Gonzalez-Vallejo, 2016).

Many models use averages for purposes other than normalization. These assume that
the average resolution for a column influences the weight assigned to that column. These
operations are commonly at play in theories of multiattribute choices which assume a

bidirectional relationship between the choice options available to the decision maker and the
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attributes. These theories include the ECHO model (Holyoak & Simon, 1999), the parallel
constraint satisfaction model for decision making (Glockner & Betsch, 2008; Glockner et al.,
2014), as well as the associative accumulation model (Bhatia, 2013). A related use of
attribute averages is adopted by the contextual utility model to study the compromise effect
(Rooderkerk et al., 2011). In intertemporal choice, the endogenous determination of time
preference model (Becker & Mulligan, 1997) also assumes the discount rate for an option is
inversely related to the average of the resolutions of that option.

Other models utilize the variance of the distribution of payoffs to judge the total value
of options. Indeed, models in this class are some of the oldest in the area of risky choice
(Coombs & Pruitt, 1960; Dyer & Jia, 1997; Markowitz, 1959), due in large part to the
importance of outcome variance as a driver of the famous Allais paradox (Allais, 1953).
These models assume that decision makers dislike gambles with high variance payoffs.
Models utilizing the coefficient of variation (Weber et al., 2004) combine this idea with
normalization, by dividing the standard deviation by the expected value. The use of variance
is also involved in multiattribute choice theories, such as the attribute scatter model
(Ganzach, 1995) which proposes people like options having more dispersed resolutions —
showing a preference for variance rather than an aversion to it.

Many models hold that the perceptions, weights and evaluations of columns and
resolutions can be affected by their range. Models that apply range-based operations
generally assume that increasing the range of values reduces the perceived difference
between any pair of values. This type of operation is perhaps best known as the range
principle of range-frequency theory, which states that utilities and desirability ratings are
spaced out in equal segments of the attribute range (Parducci, 1974; Wedell & Pettibone,
1996). A range-based operation is a key feature of the range-normalization model, which is

inspired by the neurocomputational processes known to be at play in perception and other
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psychological domains (Soltani et al., 2012). The range of probabilities and payoffs within a
gamble is also used in some configural weight models (Birnbaum & Stegner, 1979). Finally,
a closely related type of normalization is performed by the stochastic difference model
(Gonzalez-Vallejo, 2002), which uses the maximum (but not the minimum) of the range of
values in calculating values. Range also plays a similar role in the normalized contextual
concavity model, which assumes that an attribute is evaluated by taking the ratio of its
difference with the smallest level on that attribute, to the range of levels on that attribute

(Kivetz et al., 2004).

Other Types of Operations.

The four operations identified above do not capture all of the diverse ways in which
decision models transform, compare, and aggregate the various components of the choice
options. There are some other operations that we haven’t considered that are specific to one
of the three domains. For example, some intertemporal choice models allow decision makers
to evaluate increasing vs. decreasing payoff sequences across time periods differently (e.g.
Loewenstein & Prelec, 1993); such operations do not play a role in risky or multiattribute
choice because they, unlike time, usually have no natural ordering of the columns.
Additionally, there are types of operations that only exist within certain disciplines or
modeling frameworks. For example, a large class of models in psychology involve the
sequential sampling and aggregation of resolutions over time (e.g. Busemeyer & Townsend,
1993); these models are relatively uncommon in other fields (though their popularity is
growing). Despite these omissions, our taxonomy is a valuable starting point for
understanding the elemental computational operations involved in preferential decision
making, as it identifies a core set of recurring insights and assumptions shared by models

across the domains of risk, time, and multiattribute choice, and across diverse disciplines.
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General Discussion

“Establishing the Laws of Preferential Choice Behavior”

When Krantz et al. (1974) explained why they excluded preferential choice research
from their seminal survey of mathematical psychology, they argued that while the field had
many excellent papers and ideas, these neither built on one another, nor yielded cohesive
theoretical insights, nor gave any sense of an accumulation of knowledge.

Five years later, Kahneman and Tversky (1979) published prospect theory. This paper
had a profound multidisciplinary impact, influencing psychology, economics, marketing,
management, finance, cognitive science, and neuroscience. It is usually taken as the birth of
the behavioral approach in decision theory. It triggered the development of a large number
competing models of preferential choice behavior, each based on a seemingly unique set of
assumptions and each yielding a seemingly differentiated set of behavioral predictions. The
net result is that now there may be even less of a sense of refinement and unification than
when Krantz et al. commented upon it almost half a century ago.

A single unified decision theory may not be feasible but we have attempted to provide
a framework for characterising models by means of a set of core properties that can be argued
to be at play in preferential choice (see also He et al., in press - a, for a complementary
computational investigation of this problem). At an early stage in the evolution of this paper,
we had thought that this approach may be able to yield something akin to a decision-theory
analogue of Barlow and Morgenstern’s (1948) Dictionary of Musical Themes. That dictionary
proposed a notation scheme that allowed someone, hearing a tune that is unfamiliar to them,
to check for its prior existence and to locate it with respect to other tunes that are similar to it.
We had initially hoped to find some system that would, by identifying core model properties,

enable us to assign the equivalent of a ‘barcode’ to any model in the domains we have
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considered. The idea was that two models sharing the same barcode would, in effect, be
identical in terms of underlying assumptions and behavioral predictions.

However, it became clear that such an approach would not take us very far. For
example, it transpired that two models could appear to be quite closely aligned on many core
properties (sharing much of the barcode) and yet have substantially different implications,
depending on the particular way a certain property is specified (e.g. whether similarity
attracts greater weight or whether similar features are ignored), and the way it is interpreted
(e.g. whether it is seen to be a product of attention or emotion or a neurocognitive
mechanism). So, we adopted a less digital and more qualitative approach involving more
general properties, as summarised in Table 2 (also see He et al. 2021 — a, for computational
approach for addressing this problem). While these properties may be less precise and more
open to interpretation than a tight codification, we believe they form the blocks with which
decision models of choice are most often built. Importantly, as these properties are drawn
from recurring insights in decision modeling (insights shared by a large number of different
models), they can be assumed to capture a theoretical consensus regarding where the “laws of

preferential choice” are likely to reside.

Core Implications

It is useful to briefly revisit what these properties imply about choice behavior,
starting with Category 1 in Table 2. “Violations” of independence axioms or assumptions,
some of which entail preference reversals and intransitive choice cycles, are perhaps the most
striking and most widely discussed decision biases. These include the Allais-type paradoxes,
various context effects in multiattribute choice, and sequence effects in intertemporal choice.
All attempts to model these phenomena do so by assuming interactions within or between the

components of the choice options. The ubiquity of these choice patterns, and the difficulty of
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seeing how they could be produced without some kind of interactions, suggest that those laws
of choice behavior we eventually settle on will include such interactions.

The laws of choice behavior are also likely to make room for transformations of both
the values of the resolutions of the choice options (e.g., attributes or payoffs), and of the
probabilities, weights, and time delays associated with these resolutions. These two types of
transformations reflect different intuitions regarding the determinants of behavior.

Transformations of values often involve an affective component. Indeed, the values
ascribed to resolutions are often assumed to reflect the pleasure or displeasure they are
expected to generate, and decision models that involve transformations of these values, such
as models of disappointment, regret, aspiration, and loss aversion, often emphasize this
affective (or utilitarian) underpinning. For instance, if people are likely to experience regret,
or disappointment, then it is arguably rational to act on those anticipations in risky choice. Or,
if they will savour the prospect of positive future experiences and dread negative ones, then
again, these sources of utility or disutility should rationally be taken into account when
making intertemporal choices.

By contrast, many operations modifying decision weights involve a perceptual or
cognitive component — underweighting and/or overweighting probabilities and redistributing
attention and judgments of relative importance to different time horizons or different
attributes. Arguably these may (in some cases at least) be regarded as errors since they may
lead to dynamic inconsistency and to choices of options that may, on reflection, be regarded
as suboptimal.

Category 3 identifies four broad types of operations frequently involved in
transforming and aggregating the components of choice options. These types of operation
each have something to tell us about how decision makers process the choice problem.

Computations of ordinality, for example, are often seen as reflecting the use of cognitive
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shortcuts and most of the models that we classify as involving ordinal computations are
heuristics. Even ordinality-based models that are not heuristics often rely on comparisons that
ignore magnitude-based information and simplify the choice problem.

Likewise, the differential evaluation of gains and losses has been incorporated into
decision theory most prominently via its role in prospect theory (Kahneman & Tversky,
1979), and many of the models we classify as involving these operations are extensions of
prospect theory. There are also models in this category that are not directly related to prospect
theory. However, in their use of gain- and loss-based information, these models share
important computational similarities with prospect theory models and could even be seen as
utilizing some of the same cognitive and affective mechanisms as prospect theory.

The use of similarity-based operations stems from the importance of differences
between resolutions, the perception of these differences, and the effect of these differences on
attention and emotion. Arguably, being able to identify the elements that require little or no
attention and focus mental effort on those involving the greatest relative gains and losses, is a
more efficient use of finite cognitive resources. This is closely related to our fourth type of
operation, which involves transforming values or weights based on the statistical properties
of the choice problem. The use of these statistical properties — mean, variance, skewness,
range — reflects the fact that perceptions and evaluations are sensitive to the distributions of
the variables in consideration. Similarity and distribution-based operations reflect
fundamental psychological insights about cognition, which extend beyond decision making
research, and it is common to see these types of computations in formal models of social
judgment, perception, categorization, and memory.

Although the baseline model in the three domains we have considered essentially
proposes no within-option interactions (other than the combination of values and weights

required to produce a weighted average) and no between-option interactions (at all), we have
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seen that a wide variety of interactions have been proposed; and that these can be defended
either on normative grounds (mostly where second-order preferences, involving regret,
disappointment, aspiration, and other affective states, are involved) or on descriptive grounds
(especially where particular comparisons or operations may reflect the finite cognitive
resources deployed by non-specialist decision makers participating in experiments).

Once we allow that any and all of these operations may have at least some part to play
in at least some choice scenarios, it becomes easy to understand why no single model
provides a comprehensive account of the whole gamut of observed behavioral regularities.
The value placed on conciseness and elegance in modeling, and the objective of keeping
down the degrees of freedom permitted by a model in the interests of refutability, may be
laudable tenets for theoretical development; but when a process is as multifaceted and
organic as human decision making, some balance needs to be struck between parsimony and
realism, and it may be that this balance needs to be adjusted in favour of more degrees of

freedom and greater realism.

Trends in Decision Modeling

We are the first to collect and synthesize such large number of distinct decision
models, and consequently we are able to provide a unique perspective on trends in decision
modeling research. The easiest trend to identify involves the distribution of decision models
over time, displayed in Figure 1. This figure summarizes the publication decades of the
modeling papers cited in our synthesis (with each paper included only if it presents what we
consider to be a model that can be distinguished from any extant model, and if it is the first
publication of such a model). Of course, there is some ambiguity regarding the precise
numbers in this figure. Firstly, they pertain only to the publication dates of individual papers.

It some cases, papers may contain several distinctive features, whereas other papers may be
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largely seen as refining or extending existing models. Moreover, our synthesis has
undoubtedly excluded relevant models, leading to an inadvertent but potentially systematic
bias in the precise numbers involved (we expect that most of these exclusions involve older
models, which are often difficult to find, but some of the excluded models may also be very
recent — i.e. models that have not yet come to our attention). Despite these caveats, Figure 1
indicates there has been a heavy growth in the total number of decision models, and that the
number of such models is still growing. Additionally, risky and multiattribute choice models
are the earliest and the most popular models. Intertemporal choice models, in contrast, are
relatively fewer and much more recent. In total there are more than 100 papers that have
published novel or unique risky, multiattribute, and intertemporal decision models, according

to our estimates.
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Figure 1: The number of papers publishing unique decision models discussed in our

synthesis, based on decade of publication.

Figure 2 presents a breakdown of papers publishing decision models by field. Here we

have considered four categories, based on the primary focus of the journal the paper is
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published in: psychology (which includes neuroscience and cognitive science), economics
(which includes decision theory and decision analysis), business (which includes
management and marketing), and general (which includes books, as well as general interest
journals publishing papers from multiple scientific disciplines). We again include a paper
only if it presents what we consider to be a unique model, and if it is the first publication of
the model. Additionally, the numbers pertain to the published papers, and some papers may
have multiple models, which we do not count as separate instances. Thus, as with Figure 1,
the numbers in this figure are imprecise. That said, we can note some systematic patterns in
this figure. Firstly, the field with the most publications is psychology, followed by economics
and business. Additionally, different fields focus on different decision domains. Although all
three of the core fields have decision models for all three decision domains, economics
involves a much higher proportion of risky decision models (likely due to the central role of
risk in finance and economics), and a much smaller proportion of multiattribute decision
models. This pattern is reversed for business (likely due to the central role of multiattribute
considerations in consumer choice). Psychology also tends to have more multiattribute than
risky choice papers, though the distribution is more balanced. Overall, the journal with the
most published papers in our synthesis is Psychological Review which has published more
than 20 papers with unique decision models over the past seven decades.

More interesting than the distribution of models over time, disciplines, and domains,
is the distribution of properties across models. It is here that we have noticed some odd
patterns. Consider, for example, the fact that models of risky choice largely satisfy between-
option independence but not within-option independence, whereas the opposite is the case for
models of multiattribute and intertemporal choice. However, it seems that violations of
within-option independence are more reasonable in multiattribute and intertemporal tasks.

Attributes quite naturally influence each other’s evaluation, and consumption in one time
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period strongly affects preferences over consumption in future time periods. The same is not
so plausibly the case for state-contingent outcomes, in which events are disjoint —certainly
von Neumann and Morgenstern’s independence axiom may appear quite compelling for risky
choice, but not for its multiattribute and intertemporal counterparts. Thus, if there are
differences in behaviors across the tasks, we should expect them to pertain to the increased
number of violations of within-option independence in multiattribute and intertemporal tasks.
Consequently, we should expect multiattribute and intertemporal models to feature more

violations of within-option independence compared to their risky counterparts.
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Figure 2: The number of papers publishing unique decision models discussed in our

synthesis, based on field.

The fact that we observe precisely the opposite pattern points to a somewhat ironic
aspect of decision making research. The generation of decision models has been strongly
driven by counter-intuitive violations of normative rationality. Within-option dependence is a

particularly counter-intuitive violation in risky choice, and thus most decision models of risky
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choice explicitly feature this dependence. It is not a counter-intuitive violation in
multiattribute and intertemporal choice, and is therefore omitted from nearly all
corresponding decision models. In trying to explain surprising paradoxes, it seems that

decision models may have failed to explain the obvious.

A Way Forward

With a large number of models already in existence, and new ones still being
proposed, our classification system will enable researchers to understand better the
similarities and distinctions between different models and perhaps judge more easily the
added value offered by would-be entrants into this already crowded field. Additionally, by
providing an easily accessible list of previous models, we hope to encourage more
comprehensive model evaluations that compare new models against the full set of previous
choice models proposed in a given domain. Such comparisons could be either based on
quantitative model fits to choice datasets (Glockner & Pachur, 2012; He et al., in press — b),
or on qualitative choice properties that are revealed in experimental tests (see e.g. Birnbaum,
2008). New models may provide a good post hoc explanation for certain findings, but in
order to understand their contribution to the field, they need to be evaluated holistically, that
is, in combination with all theories that have been proposed for the choice task under
consideration.

We would even go so far as to recommend that we avoid building new models with
narrow assumptions, and instead concentrate on understanding the general properties (such as
those that we have outlined above) that have been previously proposed for preferential
choice. Most of these properties are at play in all the three domains that we consider, and it is

likely that any model that omits even one of these properties will fail in particular ways or
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contexts. For example, independence of alternatives (and in turn transitivity) is violated in
various risky, multiattribute, and intertemporal decision scenarios so that any model which
does not allow for between-option interactions will be descriptively incomplete in those
circumstances.

Refocusing scholarly attention on the broader properties that characterize choice
behavior, rather than specific functional instantiations of these properties in individual
models, would involve performing experimental tests comparing not two specific models, but
two sets of properties or two different instantiations of a given property. For example, it
would be more reasonable to ask whether the range or variance of resolutions play a bigger
role in the evaluation of options, than it would be to directly compare a specific range-based
model with a specific variance-based model. On a theoretical level, research could attempt to
examine how the above properties are instantiated in the mind and in the brain, or investigate
the general behavioral properties implied by these properties. It would not be unreasonable to
claim that models that apply the same properties also require the same cognitive and neural
processes to be implemented, and additionally, help achieve similar computational and
statistical goals.

Of course, we recognize that science has many goals, and that descriptive adequacy
and theoretical novelty may not be the only guiding principles for decision modelers (e.g.,
Glockner & Betsch, 2011; Oberauer & Lewandowsky, 2019; Roberts & Pashler, 2000 for
alternative perspectives). Additionally, scholars in different disciplines may wish to continue
developing and refining models that address their particular research problem. Decision
theorists, for example, might want to keep exploring the representational implications of
various axiomatic restrictions on choice, whereas cognitive psychologists might want to keep
exploring new ways to predict attention, memory, response time and other psychological

variables. The development of several new theories may also be beneficial for a completely
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new choice task or behavioral domain. However, it is also clear that continuing to create new
models of risky, intertemporal and multiattribute choice, with a narrow set of slightly
different assumptions, tweaked to predict a rather specific set of choice patterns, is inefficient
and, to the extent that it adds traffic to an already crowded thoroughfare, counterproductive.
After many decades of decision modeling, and particularly since the late 1970s, it is perhaps
time to pause, reflect on what has been done, and think critically of the ways in which
existing models can inform future research. By examining the underlying similarities between
a very large group of these models, and using these similarities to uncover the key properties,
or laws, of preferential choice behavior, this paper provides a set of organizing principles for

such an endeavour.



LAWS OF CHOICE BEHAVIOR 54

References

Allais, M. (1953). L'extension des théories de 1'équilibre économique général et du rendement
social au cas du risque. Econometrica, 21(4), 269-290.

Ariely, D., & Wallsten, T. S. (1995). Seeking subjective dominance in multidimensional
space: An explanation of the asymmetric dominance effect. Organizational Behavior and
Human Decision Processes, 63(3), 223-232.

Arrow, K. J. (1951). Alternative approaches to the theory of choice in risk-taking situations.
Econometrica, 19(4), 404-437.

Aschenbrenner, K. M., Albert, D., & Schmalhofer, F. (1984). Stochastic choice heuristics.
Acta Psychologica, 56(1), 153-166.

Baltas, G., & Doyle, P. (2001). Random utility models in marketing research: a survey.
Journal of Business Research, 51(2), 115-125.

Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. Handbook of the
Economics of Finance, 1, 1053-1128.

Barlow, H., Morgenstern, S., & Erskine, J. (1948). A dictionary of musical themes. Crown.

Baucells, M., & Sarin, R. K. (2007). Satiation in discounted utility. Operations Research,
55(1), 170-181.

Baucells, M., & Sarin, R. K. (2010). Predicting utility under satiation and habit formation.
Management Science, 56(2), 286-301.

Bazerman, M. H. and Moore, D. A. (2008), Judgment in Managerial Decision Making, 7th
ed. Wiley.

Becker, G. M., DeGroot, M. H., & Marschak, J. (1963). Stochastic models of choice
behavior. Behavioral science, 8(1), 41-55.

Becker, G. M., & McClintock, C. G. (1967). Value: Behavioral decision theory. Annual
Review of Psychology, 18(1), 239-286.

Becker, G. S., & Mulligan, C. B. (1997). The endogenous determination of time preference.
The Quarterly Journal of Economics, 112(3), 729-758.

Bell, D. E. (1977). A utility function for time streams having inter-period dependencies.
Operations Research, 25(3), 448-458.

Bell, D. E. (1982). Regret in decision making under uncertainty. Operations Research, 30(5),
961-981.



LAWS OF CHOICE BEHAVIOR 55

Bell, D. E. (1985). Disappointment in decision making under uncertainty. Operations
Research, 33(1), 1-27.

Benhabib, J., Bisin, A., & Schotter, A. (2010). Present-bias, quasi-hyperbolic discounting,
and fixed costs. Games and Economic Behavior, 69(2), 205-223.

Bhargava, M., Kim, J., & Srivastava, R. K. (2000). Explaining context effects on choice
using a model of comparative judgment. Journal of Consumer Psychology, 9(3), 167-177.

Bhatia, S. (2013). Associations and the accumulation of preference. Psychological Review,
120(3), 522.

Bhatia, S. (2014). Sequential sampling and paradoxes of risky choice. Psychonomic Bulletin
and Review, 21(5), 1095-1111.

Bhatia, S. (2017). Choice rules and accumulator networks. Decision, 4(3), 146

Bhatia, S., & Loomes, G. (2017). Noisy preferences in risky choice: A cautionary note.
Psychological Review, 124(5), 678.

Bhatia, S., & Mullett, T. L. (2016). The dynamics of deferred decision. Cognitive
Psychology, 86, 112-151.

Birnbaum, M. H. (1974). The nonadditivity of personality impressions. Journal of
Experimental Psychology Monograph. 102, 543-561.

Birnbaum, M. H. (1997). Violations of monotonicity in judgment and decision making. In A.
A.J. Marley (Ed.), Choice, decision, and measurement: Essays in honor of R. Duncan Luce
(pp. 73—-100). Erlbaum.

Birnbaum, M. H. (2005). A comparison of five models that predict violations of first-order
stochastic dominance in risky decision making. Journal of Risk and Uncertainty, 31(3), 263-
287.

Birnbaum, M. H. (2008). New paradoxes of risky decision making. Psychological Review,
115(2), 463-501.

Birnbaum, M. H., & Chavez, A. (1997). Tests of theories of decision making: Violations of
branch independence and distribution independence. Organizational Behavior and human
decision Processes, 71(2), 161-194.

Birnbaum, M. H., & Stegner, S. E. (1979). Source credibility in social judgment: Bias,
expertise, and the judge's point of view. Journal of Personality and Social Psychology, 37(1),
48-74.

Birnbaum, M. H., & Zimmermann, J. M. (1998). Buying and selling prices of investments:
Configural weight model of interactions predicts violations of joint independence.
Organizational Behavior and Human Decision Processes, 74(2), 145-187.



LAWS OF CHOICE BEHAVIOR 56

Blavatskyy, P. R. (2006). Axiomatization of a preference for most probable winner. Theory
and Decision, 60(1), 17-33.

Blavatskyy, P. R. (2016) A Monotone Model of Intertemporal Choice. Economic Theory, 62,
785-812.

Bleichrodt, H., Schmidt, U., & Zank, H. (2009). Additive utility in prospect theory.
Management Science, 55(5), 863-873.

Bordalo, P., Gennaioli, N., & Shleifer, A. (2012). Salience Theory of Choice Under Risk. The
Quarterly Journal of Economics, 127(3), 1243-1285.

Bordalo, P., Gennaioli, N., & Shleifer, A. (2013). Salience and Consumer Choice. Journal of
Political Economy, 121(5), 803-843.

Brandstitter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: making choices
without trade-offs. Psychological Review, 113(2), 409.

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: a dynamic-cognitive
approach to decision making in an uncertain environment. Psychological Review, 100(3), 32.

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton
University Press.

Camerer, C. F., Loewenstein, G., & Rabin, M. (Eds.). (2011). Advances in behavioral
economics. Princeton University Press.

Camerer, C., & Weber, M. (1992). Recent developments in modeling preferences:
Uncertainty and ambiguity. Journal of Risk and Uncertainty, 5(4), 325-370.

Carroll, J. D., & De Soete, G. (1991). Toward a new paradigm for the study of multiattribute
choice behavior: Spatial and discrete modeling of pairwise preferences. American
Psychologist, 46(4), 342.

Cheng, J., & Gonzélez-Vallejo, C. (2016). Attribute-wise vs. alternative-wise mechanism in
intertemporal choice: Testing the proportional difference, trade-off, and hyperbolic
models. Decision, 3(3), 190.

Chew, S. (1983). A generalization of the quasilinear mean with applications to the
measurement of income inequality and decision theory resolving the Allais paradox.
Econometrica 51, 1065-1092.

Chorus, C. G., Arentze, T. A., & Timmermans, H. J. (2008). A random regret-minimization
model of travel choice. Transportation Research Part B: Methodological, 42(1), 1-18.

Coombs, C. H., & Pruitt, D. G. (1960). Components of risk in decision making: Probability
and variance preferences. Journal of Experimental Psychology, 60(5), 265.



LAWS OF CHOICE BEHAVIOR 57

Cubitt, R., McDonald, R., & Read, D. (2018). Time Matters Less When Outcomes Differ:
Unimodal vs. Cross-Modal Comparisons in Intertemporal Choice. Management Science,
64(2), 873-887.

Dai, J., & Busemeyer, J. R. (2014). A probabilistic, dynamic, and attribute-wise model of
intertemporal choice. Journal of Experimental Psychology: General, 143(4), 1489.

Dawes, R. M. (1964). Social selection based on multidimensional criteria. The Journal of
Abnormal and Social Psychology, 68(1), 104.

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making.
American Psychologist, 34(7), 571.

Delquié, P., & Cillo, A. (2006). Disappointment without prior expectation: a unifying
perspective on decision under risk. Journal of Risk and Uncertainty, 33(3), 197-215.

Dhami, M. K., & Harries, C. (2001). Fast and frugal versus regression models of human
judgement. Thinking & Reasoning, 7(1), 5-27.

Dhar, R., & Glazer, R. (1996). Similarity in context: Cognitive representation and violation
of preference and perceptual invariance in consumer choice. Organizational Behavior and
Human Decision Processes, 67(3), 280-293.

Diecidue, E., & Van De Ven, J. (2008). Aspiration level, probability of success and failure,
and expected utility. International Economic Review, 49(2), 683-700

Dyer, J. S., & Jia, J. (1997). Relative risk—value models. European Journal of Operational
Research, 103(1), 170-185.

Ebert, J. E., & Prelec, D. (2007). The fragility of time: Time-insensitivity and valuation of the
near and far future. Management Science, 53(9), 1423-1438.

Edwards, W. (1954). The theory of decision making. Psychological bulletin, 51(4), 380.

Edwards, W. (1955). The prediction of decisions among bets. Journal of Experimental
Psychology, 50(3), 201-214.

Edwards, W. (1961). Behavioral decision theory. Annual Review of Psychology, 12(1), 473-
498.

Edwards, W. (1956). Reward probability, amount, and information as determiners of
sequential two-alternative decisions. Journal of Experimental Psychology, 52(3), 177-188.

Einhorn, H. J. (1970). The use of nonlinear, noncompensatory models in decision
making. Psychological Bulletin, 73(3), 221-230.

Einhorn, H. J., & Hogarth, R. M. (1981). Behavioral decision theory: Processes of judgement
and choice. Annual Review of Psychology, 32(1), 53-88.



LAWS OF CHOICE BEHAVIOR 58

Erev, L., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017). From anomalies to forecasts:
Toward a descriptive model of decisions under risk, under ambiguity, and from experience.
Psychological Review, 124(4), 369-410.

Ericson, K. M., White, J. M., Laibson, D., & Cohen, J. D. (2015). Money earlier or later?
Simple heuristics explain intertemporal choices better than delay discounting
does. Psychological Science, 26(6), 826-833.

Fechner, G. T. (1860/1912). Elements of psychophysics. In Rand, Benjamin (Ed.), The
Classical Psychologists (pp. 562-572). Boston: Houghton Mifflin

Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation.
Quarterly Journal of Economics, 817-868.

Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: A
survey. Management Science, 20(11), 1442-1471.

Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The
American Economic Review, 67(2), 116-126.

Fishburn, P. C. (1982). Nontransitive measurable utility. Journal of Mathematical
Psychology, 26(1), 31-67.

Fishburn, P., & Wakker, P. (1995). The invention of the independence condition for
preferences. Management Science, 41(7), 1130-1144.

Fisher, G. (2017). An attentional drift diffusion model over binary-attribute
choice. Cognition, 168, 34-45.

Frederick, S., Loewenstein, G., & O'donoghue, T. (2002). Time discounting and time
preference: A critical review. Journal of Economic Literature, 40(2), 351-401.

Friedman, M. & Savage, L. J. (1948). Utility analysis of choices involving risk. Journal of
Political Economy. 56 (4), 279-304

Gabaix, X. (2014). A sparsity-based model of bounded rationality. The Quarterly Journal of
Economics, 129(4), 1661-1710.

Ganzach, Y. (1995). Attribute scatter and decision outcome: Judgment versus
choice. Organizational Behavior and Human Decision Processes, 62(1), 113-122.

Gilboa, I. & Marinacci, M. (2016). Ambiguity and the Bayesian paradigm. In: Arl6-Costa
H., Hendricks V., van Benthem J. (eds) Readings in Formal Epistemology. Springer
Graduate Texts in Philosophy, vol 1. Springer.

Gilboa, 1., & Schmeidler, D. (1995). Case-based decision theory. The Quarterly Journal of
Economics, 110(3), 605-639.



LAWS OF CHOICE BEHAVIOR 59

Glimcher, P. W., & Fehr, E. (Eds.). (2013). Neuroeconomics: Decision making and the brain.
Academic Press.

Glockner, A., & Betsch, T. (2008). Modeling option and strategy choices with connectionist
networks: Towards an integrative model of automatic and deliberate decision making.
Judgment and Decision Making, 3, 215-228.

Glockner, A., & Betsch, T. (2011). The empirical content of theories in judgment and
decision making: Shortcomings and remedies. Judgment & Decision Making, 6(8).

Glockner, A., Hilbig, B. E., & Jekel, M. (2014). What is adaptive about adaptive decision
making? A Parallel Constraint Satisfaction Account. Cognition, 133, 641-666.

Goldstein, W. M., & Einhorn, H. J. (1987). Expression theory and the preference reversal
phenomena. Psychological Review, 94(2), 236-254.

Gonzalez, R., & Wu, G. (1999). On the shape of the probability weighting function.
Cognitive Psychology, 38(1), 129-166.

Gonzalez-Vallejo, C. (2002). Making trade-offs: A probabilistic and context-sensitive model
of choice behavior. Psychological Review, 109(1), 137-155.

Grant, S. & Kajii, A. (1998). AUSI expected utility: an anticipated utility theory of relative
disappointment aversion. Journal of Economic Behavior and Organization, 37, 277-290.

Green, L., Myerson, J., & Macaux, E. W. (2005). Temporal discounting when the choice is
between two delayed rewards. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 31(5), 1121-1133.

Green, P. E., & Srinivasan, V. (1978). Conjoint analysis in consumer research: issues and
outlook. Journal of Consumer Research, 103-123.

Gul, F. (1991). A theory of disappointment aversion. Econometrica: Journal of the
Econometric Society, 667-686.

Guo, F. Y., & Holyoak, K. J. (2002). Understanding similarity in choice behavior: A
connectionist model. In Proceedings of the twenty-fourth annual conference of the cognitive
science society (pp. 393-398).

Hagen, O. (1979). Towards a positive theory of preferences under risk. In Allais, M. and
Hagen, O. (editors), Expected Utility Hypotheses and the Allais Paradox (pp. 271-302).
Reidel Dordrecht.

Halpern, D. (2016). Inside the nudge unit: how small changes can make a big difference.
Ebury Publishing, Penguin Random House.

Handa, J. (1977). Risk, probabilities, and a new theory of cardinal utility. The Journal of
Political Economy, 97-122.



LAWS OF CHOICE BEHAVIOR 60

Harvey, C. M. (1994). The reasonableness of non-constant discounting. Journal of Public
Economics, 53(1), 31-51.

Hastie, R. (2001). Problems for judgment and decision making. Annual Review of
Psychology, 52(1), 653-683.

He, L., Zhao, W.J. & Bhatia, S. (in press - a). An ontology of decision models. Psychological
Review.

He, L., Pantelis, P. P., & Bhatia, S. (in press - b). The wisdom of model crowds. Management
Science.

Hertwig, R., & Erev, L. (2009). The description—experience gap in risky choice. Trends in
Cognitive Sciences, 13(12), 517-523.

Hicks, J.R. (1939). Value and Capital: An Inquiry into Some Fundamental Principles of
Economic Theory. Clarendon Press.

Hogarth, R. M., & Einhorn, H. J. (1990). Venture theory: A model of decision weights.
Management Science, 36(7), 780-803.

Hogarth, R. M., & Karelaia, N. (2005). Simple models for multiattribute choice with many
alternatives: When it does and does not pay to face trade-offs with binary
attributes. Management Science, 51(12), 1860-1872.

Holyoak, K. J., & Morrison, R. G. (Eds.). (2012). The Oxford handbook of thinking and
reasoning. Oxford University Press.

Holyoak, K. J., & Simon, D. (1999). Bidirectional reasoning in decision making by constraint
satisfaction. Journal of Experimental Psychology: General, 128(1), 3-31.

Houston, D. A., Sherman, S. J., & Baker, S. M. (1989). The influence of unique features and
direction of comparison of preferences. Journal of Experimental Social Psychology, 25(2),
121-141.

Howes, A., Warren, P. A., Farmer, G., El-Deredy, W., & Lewis, R. L. (2016). Why
contextual preference reversals maximize expected value. Psychological Review, 123(4),
368-391.

Huber, O. (1979). Nontransitive multidimensional preferences: Theoretical analysis of a
model. Theory and Decision, 10, 147-165.

Hunt, L. T., Dolan, R. J., & Behrens, T. E. (2014). Hierarchical competitions subserving
multiattribute choice. Nature Neuroscience, 17(11), 1613-1622.

Hutchinson, J. W. (1986). Discrete attribute models of brand switching. Marketing
Science, 5(4), 350-371.



LAWS OF CHOICE BEHAVIOR 61

Jia, J., Dyer, J. S., & Butler, J. C. (2001). Generalized disappointment models. Journal of
Risk and Uncertainty, 22(1), 59-78.

Kable, J. W., & Glimcher, P. W. (2010). An “as soon as possible” effect in human
intertemporal decision making: behavioral evidence and neural mechanisms. Journal of
Neurophysiology, 103(5), 2513-2531.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
Econometrica: Journal of the Econometric Society, 263-291.

Kahneman, D. (2000) Preface. In Choices, Values and Frames. D. Kahneman, A. Tversky,
(eds). Cambridge University Press.

Kaplan, R. and Frosch, D. (2005). Decision making in medicine and health care. Annual
Review of Clinical Psychology, 1, 525-56.

Karmarkar, U. S. (1978). Subjectively weighted utility: A descriptive extension of the
expected utility model. Organizational Behavior and Human Performance, 21(1), 61-72.

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value
trade-offs. Cambridge university press.

Killeen, P. R. (2009). An additive-utility model of delay discounting. Psychological
Review, 116(3), 602-619.

Kivetz, R., Netzer, O., & Srinivasan, V. (2004). Alternative models for capturing the
compromise effect. Journal of Marketing Research, 41(3), 237-257.

Kdszegi, B., & Rabin, M. (2007). Reference-dependent risk attitudes. The American
Economic Review, 1047-1073.

Kdszegi, B., & Szeidl, A. (2013). A model of focusing in economic choice. The Quarterly
Journal of Economics, 128(1), 53-104.

Krajbich, 1., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and
comparison of value in simple choice. Nature Neuroscience, 13(10), 1292-1298.

Krantz, D. H., Atkinson, R. C., Luce, R. D., & Suppes, P. (1974), Contemporary
developments in mathematical psychology. W. H. Freeman.

Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of
Economics, 112(2), 443-478.

Lattimore, P. K., Baker, J. R., & Witte, A. D. (1992). The influence of probability on risky
choice: A parametric examination. Journal of Economic Behavior & Organization, 17(3),
377-400.



LAWS OF CHOICE BEHAVIOR 62

Lee, M. D., & Cummins, T. D. (2004). Evidence accumulation in decision making: Unifying
the “take the best” and the “rational” models. Psychonomic Bulletin & Review, 11(2), 343-
352.

Leland, J. W. (1994). Generalized similarity judgments: An alternative explanation for choice
anomalies. Journal of Risk and Uncertainty, 9(2), 151-172.

Leland, J. W. (2002). Similarity judgments and anomalies in intertemporal choice. Economic
Inquiry, 40(4), 574-581.

Lieder, F., Griffiths, T. L., & Hsu, M. (2017). Overrepresentation of Extreme Events in
Decision Making Reflects Rational Use of Cognitive Resources. Psychological Review,
125(1), 1-32.

Lichtenstein, S., & Slovic, P. (Eds.). (2006). The construction of preference. Cambridge
University Press.

Loewenstein, G. F., & Prelec, D. (1993). Preferences for sequences of
outcomes. Psychological Review, 100(1), 91-108.

Loewenstein, G., & Prelec, D. (1992). Anomalies in intertemporal choice: Evidence and an
interpretation. The Quarterly Journal of Economics, 107(2), 573-597.

Loewenstein, G. & Sicherman, N. (1991). Do Workers Prefer Increasing Wage Profiles?
Journal of Labor Economics, 9(1) 67— 84.

Loewenstein, G., O'Donoghue, T., & Bhatia, S. (2015). Modeling the interplay between
affect and deliberation. Decision, 2(2), 55-62.

Loomes, G. (2010). Modeling choice and valuation in decision experiments. Psychological
Review, 117(3), 902-924.

Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of rational choice
under uncertainty. The Economic Journal, 92(368), 805-824.

Loomes, G., & Sugden, R. (1986). Disappointment and dynamic consistency in choice under
uncertainty. The Review of Economic Studies, 53(2), 271-282.

Lopes, L. L. (1987). Between hope and fear: The psychology of risk. Advances in
Experimental Social Psychology, 20, 255-295.

Louie, K., Khaw, M. W., & Glimcher, P. W. (2013). Normalization is a general neural
mechanism for context-dependent decision making. Proceedings of the National Academy of
Sciences, 110(15), 6139-6144.

Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica, Journal
of the Econometric Society, 24(2), 178-191.

Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. New York: Wiley.



LAWS OF CHOICE BEHAVIOR 63

Luce, R. D., & Fishburn, P. C. (1991). Rank-and sign-dependent linear utility models for
finite first-order gambles. Journal of Risk and Uncertainty, 4(1), 29-59.

Machina, M. J. (1982). " Expected Utility" Analysis without the Independence Axiom.
Econometrica: Journal of the Econometric Society, 50(2), 277-323.

Marchiori, D., Di Guida, S., & Erev, 1. (2015). Noisy retrieval models of over-and
undersensitivity to rare events. Decision, 2(2), 82-106.

Marewski, J. N., & Mehlhorn, K. (2011). Using the ACT-R architecture to specify 39
quantitative process models of decision making. Judgment and Decision Making, 6(6), 439-
519.

Markowitz, Harry (1952). The utility of wealth. Journal of Political Economy. 60 (2), 151—
158.

Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. Wiley.

Marley, A. A., & Luce, R. D. (2001). Ranked-weighted utilities and qualitative
convolution. Journal of Risk and Uncertainty, 23(2), 135-163.

Mazur J.E. (1987). An adjusting procedure for studying delayed reinforcement. In: Commons
M.L, Mazur J.E, Nevin J.A, Rachlin H, editors. Quantitative analysis of behavior: Vol. 5. The
effect of delay and of intervening events of reinforcement value. Hillsdale, NJ: Erlbaum;
1987. pp. 55-73.

McClure, S. M., Laibson, D. 1., Loewenstein, G., & Cohen, J. D. (2004). Separate neural
systems value immediate and delayed monetary rewards. Science, 306(5695), 503-507.

Mellers, B. A., & Biagini, K. (1994). Similarity and choice. Psychological Review, 101(3),
505-518.

Mellers, B., Schwartz, A., & Ritov, 1. (1999). Emotion-based choice. Journal of Experimental
Psychology: General, 128(3), 332-345.

Montgomery, H., & Svenson, O. (1976). On decision rules and information processing
strategies for choices among multiattribute alternatives. Scandinavian Journal of Psychology,
17(1), 283-291.

Mukherjee, K. (2010). A dual system model of preferences under risk. Psychological
Review, 117(1), 243-255.

Oberauer, K., & Lewandowsky, S. (2019). Addressing the theory crisis in psychology.
Psychonomic bulletin & review, 26(5), 1596-1618.

Oppenheimer, D. M., & Kelso, E. (2015). Information processing as a paradigm for decision
making. Annual Review of Psychology, 66, 277-294.



LAWS OF CHOICE BEHAVIOR 64

Parducci, A. (1974). Contextual effects: A range-frequency analysis. Handbook of
Perception, 2, 127-141.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1992). Behavioral decision research: A
constructive processing perspective. Annual Review of Psychology, 43(1), 87-131.

Payne, J. W., & Braunstein, M. L. (1971). Preferences among gambles with equal underlying
distributions. Journal of Experimental Psychology, 87(1), 13-18.

Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal detection: a theory of
choice, decision time, and confidence. Psychological Review, 117(3), 864-901.

Pitz, G. F., & Sachs, N. J. (1984). Judgment and decision: Theory and application. Annual
Review of Psychology, 35(1), 139-164.

Prelec, D. (1998). The probability weighting function. Econometrica, 497-527.

Prelec, D., & Loewenstein, G. (1998). The red and the black: Mental accounting of savings
and debt. Marketing Science, 17(1), 4-28.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and
Organization 3, 323-343.

Rapoport, A., & Wallsten, T. S. (1972). Individual decision behavior. Annual Review of
Psychology, 23(1), 131-176.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-
choice decision tasks. Neural computation, 20(4), 873-922.

Read, D. (2001). Is time-discounting hyperbolic or subadditive? Journal of Risk and
Uncertainty, 23(1), 5-32.

Read, D., & Scholten, M. (2012). Tradeoffs between sequences: weighing accumulated
outcomes against outcome-adjusted delays. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 38(6), 1675-1688.

Read, D., Frederick, S., & Scholten, M. (2013). DRIFT: An analysis of outcome framing in
intertemporal choice. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 39(2), 573-588.

Restle, F. (1961). Psychology of judgment and choice: A theoretical essay. Wiley.

Rieskamp, J., Busemeyer, J. R., & Mellers, B. A. (2006). Extending the bounds of rationality:
Evidence and theories of preferential choice. Journal of Economic Literature, 44(3), 631-661.

Rieskamp, J., & Otto, P. E. (2006). SSL: a theory of how people learn to select strategies.
Journal of Experimental Psychology: General, 135(2), 207-236.

Rigoli, F., Mathys, C., Friston, K. J., & Dolan, R. J. (2017). A unifying Bayesian account of
contextual effects in value-based choice. PLOS Computational Biology, 13(10), e1005769.



LAWS OF CHOICE BEHAVIOR 65

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory
testing. Psychological review, 107(2), 358-367.

Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative decision field
theory: A dynamic connectionst model of decision making. Psychological Review, 108(2),
370-392.

Roelofsma, P. H. (1996). Modeling intertemporal choices: An anomaly approach. Acta
Psychologica, 93(1), 5-22.

Ronayne, D. & Brown, G. (2017). Multiattribute Decision by Sampling: An account of the
attraction, compromise and similarity effects. Journal of Mathematical Psychology, 81, 11-
27.

Rooderkerk, R. P., Van Heerde, H. J., & Bijmolt, T. H. (2011). Incorporating context effects
into a choice model. Journal of Marketing Research, 48(4), 767-780.

Rubinstein, A. (1988). Similarity and decision-making under risk (Is there a utility theory
resolution to the Allais paradox?). Journal of Economic Theory, 46(1), 145-153.

Rubinstein, A. (2003). “Economics and Psychology”? The Case of Hyperbolic
Discounting. International Economic Review, 44(4), 1207-1216.

Russo, J. E., & Dosher, B. A. (1983). Strategies for multiattribute binary choice. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 9(4), 676-696.

Samuelson, P. A. (1937). A note on measurement of utility. The Review of Economic
Studies, 4(2), 155-161.

Scholten, M. (2002). Conflict-mediated choice. Organizational Behavior and Human
Decision Processes, 88, 683-718.

Scholten, M., & Read, D. (2006). Discounting by intervals: A generalized model of
intertemporal choice. Management Science, 52(9), 1424-1436.

Scholten, M., & Read, D. (2010). The psychology of intertemporal tradeoffs. Psychological
Review, 117(3), 925-944.

Scholten, M., Read, D., & Sanborn, A. (2014). Weighing outcomes by time or against time?
Evaluation rules in intertemporal choice. Cognitive Science, 38(3), 399-438.

Scholten, M., Read, D., & Sanborn, A. (2016). Cumulative weighing of time in intertemporal
tradeoffs. Journal of Experimental Psychology: General, 145, 1177-1205.

Seip, K. L. and Wenstop, F. (2006). A Primer on Environmental Decision Making. Springer.
Shafer, G. (1986). Savage revisited. Statistical Science, 1, 463—85.

Sheng, S., Parker, A. M., & Nakamoto, K. (2005). Understanding the mechanism and
determinants of compromise effects. Psychology & Marketing, 22(7), 591-609.



LAWS OF CHOICE BEHAVIOR 66

Shenoy, P & Yu, A J (2013). A rational account of contextual effects in preference choice:
What makes for a bargain? Proceedings of the 35" Annual Cognitive Science Society
Conference.

Sher, S., & McKenzie, C. R. (2014). Options as information: Rational reversals of evaluation
and preference. Journal of Experimental Psychology: General,143(3), 1127-1143.

Schmidt, U., Starmer, C., & Sugden, R. (2008). Third-generation prospect theory. Journal of
Risk and Uncertainty, 36(3), 203-223.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of
Economics, 69 (1), 99-118.

Simonson, I., Carmon, Z., Dhar, R., Drolet, A., & Nowlis, S. M. (2001). Consumer research:
In search of identity. Annual Review of Psychology, 52(1), 249-275.

Slovic, P. (1987). Perception of risk. Science, 236(4799), 280-285.

Slovic, P., & Lichtenstein, S. (1968). Relative importance of probabilities and payoffs in risk
taking. Journal of Experimental Psychology, 78(3p2), 1-18.

Slovic, P., Fischhoff, B., & Lichtenstein, S. (1977). Behavioral decision theory. Annual
Review of Psychology, 28(1), 1-39.

Soltani, A., De Martino, B., & Camerer, C. (2012). A range-normalization model of context-
dependent choice: a new model and evidence. PLoS Computational Biology ,8(7), €1002607.

Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a descriptive
theory of choice under risk. Journal of Economic Literature, 38(2), 332-382.

Stewart, N., Chater, N., & Brown, G. D. (2006). Decision by sampling. Cognitive
psychology, 53(1), 1-26.

Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving Decisions About Health, Wealth,
and Happiness. Penguin.

Thorngate, W. (1980). Efficient decision heuristics. Behavioral Science, 25(3), 219-225.

Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273-
286.

Trautmann, S. & van de Kuilen, G. (2015). Ambiguity Attitudes. Chapter 3, The Wiley
Blackwell Handbook of Judgment and Decision Making, G. Keren, G. Wu (Eds.), Blackwell.

Triantaphyllou, E. (2013). Multi-criteria decision making methods: a comparative study (Vol.
44). Springer Science & Business Media.

Trueblood, J. S., Brown, S. D., & Heathcote, A. (2014). The multiattribute linear ballistic
accumulator model of context effects in multialternative choice. Psychological
Review, 121(2), 179-205.



LAWS OF CHOICE BEHAVIOR 67

Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven value integration explains
decision biases and preference reversal. Proceedings of the National Academy of
Sciences, 109(24), 9659-9664.

Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76(1), 31-48.

Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4),
281-289.

Tversky, A., & Kahneman, D. (1991). Loss aversion in riskless choice: A reference-
dependent model. The Quarterly Journal of Economics, 104(4), 1039-1061.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative
representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323.

Tversky, A., & Simonson, 1. (1993). Context-dependent preferences. Management
Science, 39(10), 1179-1189.

Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition in dynamical models of
multialternative choice. Psychological Review, 111(3), 757-769.

Usher, M., & Zakay, D. (1993). A Neural Network Model for Attribute-Based Decision
Processes. Cognitive Science, 17(3), 349-396.

Viscusi, W. K. (1989). Prospective reference theory: Toward an explanation of the
paradoxes. Journal of Risk and Uncertainty, 2(3), 235-263.

Von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior.
Princeton University Press.

Wakker, P. (2010). Prospect Theory: For Risk and Ambiguity. Cambridge University Press.

Wakker, P. & Tversky, A. (1993). An axiomitization of cumulative prospect theory. Journal
of Risk and Uncertainty, 7, 147-175.

Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36(5), 955-968.

Weber, E. U., Shafir, S., & Blais, A. R. (2004). Predicting risk sensitivity in humans and
lower animals: risk as variance or coefficient of variation. Psychological Review, 111(2),
430-445.

Wedell, D. H., & Pettibone, J. C. (1996). Using judgments to understand decoy effects in
choice. Organizational Behavior and Human Decision Processes, 67(3), 326-344.

Weingarten, E., Bhatia, S. & Mellers, B. (2019). Multiple goals as reference points: One
failure makes everything else feel worse. Management Science, 65(7), 2947-3448.

Weiss, J. W., Weiss, D. J., & Edwards, W. (2010). A descriptive multiattribute utility model
for everyday decisions. Theory and Decision, 68(1-2), 101-114.



LAWS OF CHOICE BEHAVIOR 68

Wilcox, N. T. (2008). Stochastic models for binary discrete choice under risk: A critical
primer and econometric comparison. In James C. Cox & Glenn W. Harrison (Eds). Risk
Aversion in Experiments (pp. 197-292). Emerald Group Publishing Limited.

Wilcox, N. T. (2011). ‘Stochastically more risk averse:’A contextual theory of stochastic
discrete choice under risk. Journal of Econometrics, 162(1), 89-104.

Wollschldger, L. M., & Diederich, A. (2012). The 2N-ary choice tree model for N-alternative
preferential choice. Frontiers in Psychology, 3:189.

Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55(1). 95-115.



