
MULTIPLICATION-AVOIDING VARIANT OF POWER ITERATION WITH APPLICATIONS

Hongyi Pan Diaa Badawi Runxuan Miao Erdem Koyuncu Ahmet Enis Cetin

Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL

ABSTRACT
Power iteration is a fundamental algorithm in data analysis. It ex-
tracts the eigenvector corresponding to the largest eigenvalue of a
given matrix. Applications include ranking algorithms, recommen-
dation systems, principal component analysis (PCA), among many
others. In this paper, We introduce multiplication-avoiding power
iteration (MAPI), which replaces the standard ℓ2-inner products that
appear at the regular power iteration (RPI) with multiplication-free
vector products (MFVPs). MFVPs are Mercer-type kernel opera-
tions related with the ℓ1 norm. Precisely, for an n×n matrix, MAPI
requires n multiplications, while RPI needs n2 multiplications per
iteration. Therefore, MAPI provides a significant reduction of the
number of multiplication operations, which are known to be costly
in terms of energy consumption. We provide applications of MAPI
to PCA-based image reconstruction as well as to graph-based rank-
ing algorithms. When compared to RPI, MAPI not only typically
converges much faster, but also provides superior performance.

Index Terms— Power iteration, multiplication-free algorithms,
principal component analysis, PageRank algorithm.

1. INTRODUCTION

Let A be a diagonalizable matrix and b be some initial vector. Power
iteration is described by the update equation or recurrence relation

b← Ab

∥Ab∥ , (1)

where ∥ · ∥ represents the Euclidean norm. It is well-known that
Eq. (1) converges to the eigenvector of A corresponding to the dom-
inant eigenvalue. Note that the normalization can be omitted, i.e.,
b← Ab results in the same direction as the dominant eigenvector.

A primary application of the power iteration Eq. (1) is con-
ventional (or, L2) principal component analysis (PCA): Suppose
that we collect members of a zero-mean D-dimensional dataset
{x1, . . . ,xN} ⊂ RD to a D × N matrix X = [x1 x2 ... xN] ∈
RD×N . Consider the corresponding sample covariance matrix

C =
1

N
XXT . (2)

The first principal vector, say p1, is then the dominant eigenvector
of C. The eigenvector p1 can be extracted via the power iteration
in Eq. (1) applied with the substitution A = C. The ith princi-
pal vector can then be extracted via power iteration as the dominant
eigenvector of (I−

∑i−1
k=1 pkp

T
k)C.

This work was supported in part by Army Research Lab (ARL) un-
der Grant W911NF-21-2-0272, National Science Foundation (NSF) under
Grants 1934915 and CCF-1814717, and by an award from the University of
Illinois at Chicago Discovery Partners Institute Seed Funding Program.

In the process of computing the PCA of C through Eq. (1), one
effectively computes the Euclidean inner product of the candidate
principal vector b with the dataset elements xi, i = 1, . . . , N at
each iteration. The fundamental underlying operation for each such
Euclidean inner product is the multiplication of the components of
b with the components of xi. On the other hand, it is well-known
that multiplication operation will overamplify the effects of outliers
or noise in the dataset. To increase robustness, our idea is to replace
the Euclidean inner products that appear in Eq. (1) with Multipli-
cation Avoiding Vector Products (MAVPs), which were originally
developed in in the context of neural networks [1–6]. Two of the
MAVPs satisfy the Mercer-type kernel requirement [7, 8]. The re-
sulting multiplication-avoiding power iteration (MAPI) becomes a
power iteration in the Reproducing Kernel Hilbert Space (RKHS)
defined by the kernel.

Energy efficiency and improved computational complexity pro-
vides another major motivation for utilizing MAPIs in lieu of ordi-
nary power iteration. In fact, MAVPs rely only on minimum opera-
tions and sign changes, and avoid the energy consuming multiplica-
tion operation. Therefore, compared to an Euclidean inner product,
an MAVP can be executed in an energy efficient manner in many pro-
cessors. The same benefits transfer to MAPI, which utilize MAVPs.

Kernel-PCA was introduced by Scholkopf et al. [8, 9]. It has
been applied to many signal and image processing problems [10–
13]. Related work includes recursive ℓ1-PCA and PCA methods us-
ing the similarity measures related with the ℓ1-norm [14–18]. How-
ever all of the above mentioned methods are computationally costly
in large covariance matrices because they either require the eigen-
decomposition of the covariance matrix or the solution of a complex
optimization problem. To the best of our knowledge, this paper is
the first paper describing power iterations in the kernel domain. This
is probably due to the fact that other kernel PCA methods require
costly kernel computations compared to the regular vector dot prod-
uct [13,19–22]. On the other hand, MAPI kernel operations are more
energy efficient than the dot product. In the context of PCA, MAPI
can not only improve robustness but provide significant improve-
ments in computational complexity. MAPI provides similar benefits
in other applications in which the power iteration is used. Examples
will be provided throughout the paper.

The rest of the paper is organized as follows: In Section 2, we
formally introduce the MAPI. In Section 3, we describe applications
of MAPI and report corresponding results. Finally, in Section 4, we
draw our main conclusions.

2. METHODOLOGY

In this section, we provide an overview of the MAVPs, and formally
introduce the MAPI method that utilizes MAVPs.

2.1. Multiplication-Avoiding Vector Products (MAVPs)

MAVPs were first studied in [1, 23] to develop a robust region co-
variance matrix. They were used in computationally efficient neural
networks. In this work, we will utilize the MAVP as

wT ⊙ x ≜
n∑

i=1

sign(wixi)min(|wi|, |xi|). (3)

We define another related dot-product as follows:

wT ⊙m x ≜
D∑
i=1

1 (sign(wi) = sign(xi))min(|wi|, |xi|) (4)

where 1(·) is the indicator function. We call Eq. (3) as min1 oper-
ation and Eq. (4) as min2 operation. In the following sessions, we
will denote the two min-operations as ⊕ = {⊙,⊙m}. Note that
unlike an ordinary Euclidean inner product, Eq. (3) and (4) do not
contain any multiplication operations. Energy efficiency of⊕ opera-
tion varies from processor to processor. For example, multiplication-
based regular dot-product operation consumes about 4 times more
energy compared to the multiplication avoiding dot product opera-
tions defined in Eq. (3) and (4) in compute-in-memory (CIM) imple-
mentation at 1 GHz operating frequency [6].

The MAVPs induce the ℓ1-norm as

xT ⊕ x =

n∑
i=1

min(|xi|, |xi|) = ∥x∥1. (5)

The MAVP in Eq. (3) and (4) can be extended to matrix multi-
plications as follows: Let W ∈ Rn×m and X ∈ Rn×p be arbitrary
matrices, then

WT⊕X ≜


wT

1 ⊕ x1 wT
1 ⊕ x2 . . . wT

1 ⊕ xp

wT
2 ⊕ x1 wT

2 ⊕ x2 . . . wT
2 ⊕ xp

...
...

. . .
...

wT
m ⊕ x1 wT

m ⊕ x2 . . . wT
m ⊕ xp

 (6)

where wi is the ith column of W for i = 1, 2, . . . , m and xj is
the jth column of X for j = 1, 2, . . . , p. In brief, the definition
is similar to the matrix multiplication WTX by only changing the
element-wise product to element-wise min-operation.

Recall from Section 1 that given a dataset X = [x1 x2 ... xN] ∈
RD×N , the eigendecomposition of C = 1

N
XXT yields the ordinary

PCA. Alternatively, one can construct the sample covariance matrix
through MAVPs. Recall from Section 1 that given a dataset X =
[x1 x2 ... xN] ∈ RD×N , the eigendecomposition of C = 1

N
XXT

yields the ordinary PCA. Alternatively, one can construct the sample
covariance matrix through MAVPs. In specie, in [18], we considered
the eigendecomposition of the “min-covariance matrix”

A =
1

N
X⊕XT (7)

We have shown in [18] that the resulting “Min-PCA” provides
better resilience against impulsive noise than regular PCA in image
reconstruction experiments.

2.2. Multiplication-Avoiding Power Iteration (MAPI)

We are now ready to introduce the MAPI. We replace the standard
products in Eq. (1) with a MAVP. To further reduce the computa-
tional complexity, we replace the normalization by ℓ2-norm by a
normalization by ℓ1-norm. Our revisions yield the iteration

w← A⊕w

||A⊕w||1
(8)

We have observed that such a change of normalization does not ef-
fect the final performance greatly. The final MAPI algorithm is sum-
marized in Algorithm 1. For applications to PCA, we can normalize
the final wt by its l2-norm for extraction of subsequent principal
vectors.

Algorithm 1 MAPI

Input: A ∈ RN×N , iteration times T .
Output: Dominant-pseudo-eigenvector wT ∈ RN×1.

1: Initialize w0 as a random vector with ||w0|| = 1;
2: for t = 0, 1, ..., T − 1 do
3: wt+1 = A⊕wt;
4: wt+1 ← wt+1/||wt+1||1;
5: end for
6: (optional) wT = wT /||wT ||2;
7: return wT .

Each step of the MAPI defined in Eq. 8 corresponds to a trans-
formation in the RKHS. As a result the convergence of MAPI de-
pends on the matrix A. Since we normalize the iterations in (8) at
each step, the iterates are bounded and they satisfy ||wt||1 = 1. We
have observed that the MAPI in Algorithm 1 converges in all ex-
periments that we have tried and the resulting vector can be used in
practical applications. Note that MAPI only requires N divisions per
iteration as opposed to the RPI, which requires N2 multiplications
and N divisions. Therefore, we expect MAPI to consume signifi-
cantly less energy compared to RPI in most processors.

3. APPLICATIONS AND NUMERICAL RESULTS
3.1. Image Reconstruction Example

We consider image reconstruction example studied in [14]. Our
experiment follows the same structure in [14, 18]. We use Regu-
lar Power Iteration (RPI) and MAPI to compare the image recon-
struction results of the MAPI. In this experiment, the image size
D ×D = 128× 128, and the pixel values are in the range of [0, 1].
Suppose that we want to reconstruct a gray-scale image (Fig. 1a)
from its N = 10 occluded versions. As Fig. 1b shows, the corrupted
images are created by partitioning the original image into sixteen
tiles of size 32 × 32 and replacing three arbitrarily selected tiles by
32×32 gray-scale noise patches. The noise patches are generated us-
ing the uniform distribution in the interval [0, 1]. The reconstruction
algorithm is described in Algorithm 2. In particular, in Step 5 and
Step 6, we obtain the first two dominant generalized eigenvectors of
the min-covariance matrix of images via MAPI. We then reconstruct
the image using these two generalized eigenvectors in Line 8.

In Table 1, we compare the peak signal-to-noise ratio (PSNR)
performances provided by different algorithms. As Fig. 1d and 1e
show, MAPI provides higher PSNRs than RPI, globally. The aver-
age PSNR of min2-PI is 1.62 dB higher than RPI. The MAPI based

Algorithm 2 Image Reconstruction via MAPI

Input: N corrupted versions of an image: I1, I2, ..., IN ∈
RD×D, pixels are in range of [0, 1].

Output: Reconstructed image Î.
1: Reshape Ii into the column vector form vi ∈ RD2×1 for

i from 1 to N ;
2: V = [v1 v2 ... vN] ∈ RD2×N ;
3: Reduce mean: m = mean(V, 2) ∈ RD2×1,V = V−m;

4: Construct the min-covariance matrix of V: C =
1

N−1V ⊕VT ∈ RD2×D2

;
5: Perform MAPI on C to get the dominant eigenvector

w1 ∈ RD2×1;
6: Perform MAPI on C − (w1 ⊕ wT

1)C to get the second
dominant eigenvector w2 ∈ RD2×1;

7: w = [w1 w2] ∈ RD2×2

8: Reconstruct image: v̂ = (w ⊕wT)(vi −m) +m;
9: Reshape v̂ back to the matrix form Î;

10: return Î.

reconstruction (24.8 dB) is also superior to Recursive L1-PCA (24.2
dB). MAPI is as robust as L1-PCA based restoration and its compu-
tational cost is much lower than the regular L1-PCA methods.

Table 1: Image Reconstruction PSNRs (dB)

Image Occlu-
ded

Recursive
L1-PCA

RPI Min1-
PI

Min2-
PI

Statue 1 17.67 26.86 26.67 27.12 27.08
Statue 2 16.87 25.02 24.61 25.45 25.34
Earth 14.91 21.74 22.13 20.78 25.03
Pikachu 15.29 22.71 18.86 22.70 22.58
Flower 16.40 24.41 21.22 24.59 24.44
Orange 15.77 23.69 23.59 22.50 26.27
Cat 16.91 24.82 24.80 24.28 24.52
Lenna 16.77 24.71 22.86 25.59 24.73
Food 15.94 23.85 22.72 23.68 23.70
Car 15.42 23.37 23.15 23.43 23.41
Cobra 16.81 25.10 22.31 25.02 25.57
River 17.27 25.23 24.50 25.07 25.88
Butterfly 16.66 24.91 24.40 23.93 23.92
Bridge 15.66 22.91 22.23 22.55 24.34

Average 16.31 24.24 23.15 24.05 24.77

3.2. Comparison with Stochastic PCA Method

In this section, we will compare the MAPI with the stochastic
power iteration method on a synthetic dataset as in [24]. The
synthetic dataset X ∈ R106×10 is generated using the singu-
lar value decomposition. In detail, let a diagonal matrix Σ =
diag{1,

√
0.9, ...,

√
0.9} ∈ R10×10, a random orthogonal projection

matrix U ∈ R106×10 and a random orthogonal matrix V ∈ R10×10,

then the dataset X = UΣVT guarantees that the matrix C = XTX
has an eigen-gap of 0.1.

MAPI method can be also implemented into the mini-batch
power method with momentum algorithm (Algorithm 1 in [24]). We
take the MAPI on A = XT ⊙X with the same mini-batch strategy,
as Algorithm 3 shows. The different between Algorithm 3 in this
paper and Algorithm 1 in [24] is that we change all regular multipli-
cation operations with our min1 operation Eq. (3) and normalize the
iterates using the ℓ1-norm. At the end of iterations we normalize the
final vector using the ℓ2-norm of the vector. In this experiment, we
cannot use min2-PI operation because the min2 operation Eq. (4)
cannot return negative entries. The vector u1 can have negative
entries.

In Fig. 2, we compute (1 − (wT
t u1/||wt||)2) after each itera-

tion, where u1 is the dominant eigenvector obtained from eigende-
composition as in [24]. The MAPI iteration converges to a vector
very close to the actual eigenvector because (1− (wT

t u1/||wt||)2)
is very close to zero as shown in Fig. 2a for t greater than 20. How-
ever, wT obtained using the MAPI method is not exactly the same
as the eigenvector v1 as we see from Fig. 2b whose vertical axis has
a different range from Fig. 2a. This is expected because we perform
the iterations in the Reproducing Kernel Hilbert Space (RKHS) do-
main. Nevertheless, based on our observation, ranks of the entries
of wT obtained from the min1-PI are the same as the ranks obtained
from wT of the RPI. After 100 iterations, wT =[-0.1433, 0.4171, -
0.1166, 0.3863, 0.1285, -0.1315, -0.4330, -0.2097, -0.5770, -0.2106]
from the RPI and wT =[-0.1649, 0.4166, -0.1371, 0.3887, 0.1480, -
0.1508, -0.4306, -0.2359, -0.5362, -0.2370] from the min1-PI. When
we order from the largest to the smallest, both vectors produce the
same ranks {2, 4, 5, 3, 6, 1, 8, 10, 7, 9}. Therefore, considering
that our min1-PI converges significantly faster than the conventional
power iteration and the min2-PI is identical to the min1-PI if all
values are non-negative, our MAPI can be employed in the Google
PageRank algorithm [25]. We will discuss it in Section 3.3. More-
over, if we want (1− (wT

t u1/||wt||)2) to reach 0, we can optimize
the vector via the MAPI first and then switch to the RPI for further
converging.

Algorithm 3 Mini-batch MAPI with Momentum

Input: Data X ∈ RN×D, iteration times T , batch size s,
momentum parameter β.

Output: Dominant-pseudo-eigenvector wT ∈ RN×1.
1: Initialize w0 as a random vector with ||w0|| = 1;
2: for t = 0, 1, ..., T − 1 do
3: Generate a mini batch of independent and identically

distributed samples B = {Ãt1 , ..., Ãts}
4: wt+1 = (1s

∑s
i=1 Ãti)⊙wt − βwt−1;

5: wt = wt/||wt+1||1,wt+1 = wt+1/||wt+1||1;
6: end for
7: (optional) wT = wT /||wT ||;
8: return wT .

3.3. PageRank Algorithm Using MAPI

PageRank algorithm uses the hyperlink structure of the web to view
inlinks into a page as a recommendation of that page from the author
of the inlinking page [26]. More specifically, it runs power iteration

(a) (b) (c) (d) (e) (f)
Fig. 1: Image reconstruction examples: (a) original images; (b) occluded images; (c) recursive ℓ1-PCA [14] results; (d) PCA
using RPI results; (e) min1-PI results; (f) min2-PI results. MAPI is as robust as L1-PCA based restoration.

(a) (b)
Fig. 2: RPI versus MAPI on a synthetic dataset X ∈ R106×10

where the covariance matrix has eigen-gap ∆ = 0.1.

algorithm on the Google Matrix

G = αH+ (1− α)1
1

N
(9)

where H is the network adjacent matrix, 1 is an all-ones matrix, and
α = 0.85 is known as a damping factor.

We first run the PageRank algorithm with RPI and with our
MAPI on a network graph as Fig. 3a, respectively. Then, we com-
pute ||wt −wt−1|| after each iteration to compare the convergence.

(a) Network Graph (b) Convergence Curve
Fig. 3: A PageRank example.

We apply one ℓ2-normalization after the final iteration for
easier comparison. After 20 iterations, from the RPI, wT =
[0.6335, 0.3452, 0.4399, 0.5348], and from the MAPI, wT =
[0.5675, 0.3486, 0.5201, 0.5347]. Consequently, though the weights
are different, both index ranks are {1, 4, 3, 2}.

We further try the PageRank algorithm with the RPI and with the
MAPI on Gnutella peer-to-peer network datasets (Gnutella08 [27],
Gnutella09 [28]). Gnutella08 contains 6,301 nodes with 20,777
edges, and Gnutella09 contains 8,114 nodes with 26,013 edges. The
convergence curves are shown in Fig. 4. The MAPI still converges
remarkably faster than the RPI on these large network datasets.
However, because the size of the network is very large, the ranks
of the two methods are not the same. After 10 iterations, from

Gnutella08, the top-10 ranks of the indices from the RPI are {367,
249, 145, 264, 266, 123, 127, 122, 1317, 5}, while the MAPI {266,
123, 367, 127, 424, 249, 145, 264, 427, 251}. On the other hand,
from Gnutella09, the top-10 ranks of the indices from the RPI are
{351, 563, 822, 534, 565, 825, 1389, 1126, 356, 530}, while the
MAPI returns {351, 822, 51, 1389, 563, 565, 530, 825, 356, 1074}.
Therefore, there are 7 common top-10 ranks of indices {367, 249,
145, 265, 226, 123, 127} from the 6,301-node dataset Gnutella08
and 8 common top-10 ranks of indices {351, 563, 822, 565, 825,
1389, 356, 530} from the 8,114-node dataset Gnutella09. There-
fore, if we implement the MAPI in the page-rank-based web search
system, what links displayed on the first page is very close to the
conventional page-rank based system, but the search time can be
reduced efficiently.

(a) Gnutella08 (b) Gnutella09
Fig. 4: PageRank convergence curves on Gnutella.

4. CONCLUSION

In this paper, we proposed two types of MAPI algorithms which
replace the standard vector product operations in regular power it-
eration (RPI) with multiplication-free vector products performed in
RKHS defined by the kernel. The MAPI is energy efficient because it
reduces the number of multiplication operations significantly, which
are known to be costly in terms of energy consumption in many pro-
cessors. The MAPI reduces the number of multiplications from n2

multiplications to n multiplications per iteration for an n×n matrix.
The MAPI also produces as robust results as the ℓ1-PCA algorithm
because MAPI kernels are related with the ℓ1-norm. Compared to
the RPI, the min2-PI reaches an average PSNR 1.62 dB higher in
our image reconstruction experiment. According to our graph-based
ranking experiment, the MAPI is superior to the RPI in terms of con-
vergence speed and energy efficiency. Though the final ranking ob-
tained from the MAPI is not always exactly identical to the ranking
obtained from the RPI but they are very close to each other.

5. REFERENCES

[1] Hakan Tuna, Ibrahim Onaran, and A Enis Cetin. Image de-
scription using a multiplier-less operator. IEEE Signal Pro-
cessing Letters, 16(9):751–753, 2009.

[2] Arman Afrasiyabi, Baris Nasir, Ozan Yildiz, Fatos T Yarman
Vural, and A Enis Cetin. An energy efficient additive neural
network. In SIU, 2017.

[3] Arman Afrasiyabi, Diaa Badawi, Baris Nasir, Ozan Yildi,
Fatos T Yarman Vural, and A Enis Çetin. Non-euclidean vector
product for neural networks. In ICASSP, 2018.

[4] Hongyi Pan, Diaa Badawi, Xi Zhang, and Ahmet Enis Cetin.
Additive neural network for forest fire detection. Signal, Image
and Video Processing, pages 1–8, 2019.

[5] Tolga Ergen, Ali H Mirza, and Suleyman Serdar Kozat.
Energy-efficient lstm networks for online learning. IEEE
Trans. Neural Nets. Learning Sys., 31(8):3114–3126, 2019.

[6] Shamma Nasrin, Diaa Badawi, Ahmet Enis Cetin, Wilfred
Gomes, and Amit Ranjan Trivedi. Mf-net: Compute-in-
memory sram for multibit precision inference using memory-
immersed data conversion and multiplication-free operators.
IEEE Trans. Circuits and Systems, 2021.

[7] Hongyi Pan, D Badawi, E Koyuncu, and AE Cetin. Robust
principal component analysis using a novel kernel related with
the l1-norm. In to appear in Proceedings of EUSIPCO - Euro-
pean Signal Processing Conference; a longer version is avail-
able at arxiv.org/abs/2105.11634, 2021.

[8] B. Schölkopf, A. Smola, and K. Müller. Kernel principal com-
ponent analysis. In Artificial Neural Networks — ICANN’97,
Lecture Notes in Computer Science, vol 1327, Heidelberg,
Berlin, Germany, 1997.

[9] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert
Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural computation, 10(5):1299–1319, 1998.

[10] H Goldberg, Heesung Kwon, and Nasser M Nasrabadi. Kernel
eigenspace separation transform for subspace anomaly detec-
tion in hyperspectral imagery. IEEE Geoscience and Remote
Sensing Letters, 4(4):581–585, 2007.

[11] Nasser M Nasrabadi. Hyperspectral target detection: An
overview of current and future challenges. IEEE Signal Pro-
cessing Magazine, 31(1):34–44, 2013.

[12] Hien Van Nguyen, Vishal M Patel, Nasser M Nasrabadi, and
Rama Chellappa. Kernel dictionary learning. In 2012 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 2021–2024. IEEE, 2012.

[13] Heiko Hoffmann. Kernel pca for novelty detection. Pattern
recognition, 40(3):863–874, 2007.

[14] Panos P Markopoulos, George N Karystinos, and Dimitris A
Pados. Optimal algorithms for l1-subspace signal processing.
IEEE Trans. Signal Process., 62(19):5046–5058, 2014.

[15] Panos P Markopoulos, Sandipan Kundu, Shubham Chama-
dia, and Dimitris A Pados. Efficient l1-norm principal-
component analysis via bit flipping. IEEE Trans. Signal Pro-
cess., 65(16):4252–4264, 2017.

[16] Panos P Markopoulos and Fauzia Ahmad. Indoor human mo-
tion classification by l1-norm subspaces of micro-doppler sig-
natures. In 2017 IEEE Radar Conference (RadarConf), pages
1807–1810. IEEE, 2017.

[17] Panos P Markopoulos, Mayur Dhanaraj, and Andreas Savakis.
Adaptive l1-norm principal-component analysis with online
outlier rejection. IEEE Journal of Selected Topics in Signal
Processing, 12(6):1131–1143, 2018.

[18] Hongyi Pan, Diaa Badawi, Erdem Koyuncu, and A Enis Cetin.
Robust principal component analysis using a novel kernel re-
lated with the l1-norm. In EUSIPCO, 2021.

[19] Y Xiao, Huangang Wang, and Wenli Xu. Model selection of
gaussian kernel pca for novelty detection. Chemometrics and
Intelligent Laboratory Systems, 136:164–172, 2014.

[20] Cheolmin Kim and Diego Klabjan. L1-norm kernel pca. arXiv
preprint arXiv: 1709.10152, 2017.

[21] Carolina Varon, Carlos Alzate, and Johan AK Suykens. Noise
level estimation for model selection in kernel pca denoising.
IEEE TNNLS, 26(11):2650–2663, 2015.

[22] Samuele Battaglino and Erdem Koyuncu. A generalization of
principal component analysis. In ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 3607–3611. IEEE, 2020.

[23] Cem Emre Akbas, Alican Bozkurt, Musa Tunc Arslan Tunc,
Huseyin Aslanoglu, and Ahmet Enis Cetin. L1 norm based
multiplication-free cosine similarity measures for big data
analysis. In IWCIM, 2014.

[24] Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas,
and Chris Re. Accelerated stochastic power iteration. In In-
ternational Conference on Artificial Intelligence and Statistics,
pages 58–67. PMLR, 2018.

[25] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing order to
the web. Technical report, Stanford InfoLab, 1999.

[26] Catherine Benincasa, Adena Calden, Emily Hanlon, Matthew
Kindzerske, Kody Law, Eddery Lam, John Rhoades, Ishani
Roy, Michael Satz, Eric Valentine, et al. Page rank algorithm.
Department of Mathematics and Statics, University of Mas-
sachusetts, Amherst, Research, 2006.

[27] Gnutella peer-to-peer network. https://snap.
stanford.edu/data/p2p-Gnutella08.html
Accessed: 2021-10-03.

[28] Gnutella peer-to-peer network. https://snap.
stanford.edu/data/p2p-Gnutella09.html
Accessed: 2021-10-03.

https://snap.stanford.edu/data/p2p-Gnutella08.html
https://snap.stanford.edu/data/p2p-Gnutella08.html
https://snap.stanford.edu/data/p2p-Gnutella09.html
https://snap.stanford.edu/data/p2p-Gnutella09.html

	 Introduction
	 Methodology
	 Multiplication-Avoiding Vector Products (MAVPs)
	 Multiplication-Avoiding Power Iteration (MAPI)

	 Applications and Numerical Results
	 Image Reconstruction Example
	 Comparison with Stochastic PCA Method
	 PageRank Algorithm Using MAPI

	 Conclusion
	 References

