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Robust Moving Target Handoff in GPS-Denied Environments
Skyler Tolman, Randal W. Beard Fellow, IEEE, T. Devon Morris, Cameron K. Peterson, Riten

Gupta Member, IEEE

Abstract—Unmanned aerial systems (UAS) are effective for
surveillance and monitoring, but struggle with persistent, long-
term tracking due to limited flight time. Persistent tracking
can be accomplished using multiple vehicles if one vehicle
can effectively hand off the tracking information to another
replacement vehicle. In this paper we propose a solution to
the moving-target handoff problem in the absence of GPS. The
proposed solution uses a nonlinear complimentary filter for
self-pose estimation using only an IMU, a particle filter for
relative pose estimation between UAS using a relative range
measurement, visual target tracking using a gimballed camera
when the target is close to the handoff UAS, and track correlation
logic using Procrustes analysis to perform the final target handoff
between vehicles. We present extensive simulation results that
demonstrates the effectiveness of our approach and perform
Monte-Carlo simulations that indicate a 97% successful handoff
rate using the proposed methods.

I. INTRODUCTION

Many surveillance and monitoring applications make use
of small unmanned aerial systems (sUAS) which are relatively
inexpensive, agile, and easy to deploy. These smaller vehicles,
however, often have a limited fuel or battery capacity and
cannot operate for extended periods of time. The limited flight
time makes it difficult for a single sUAS to persistently track
or monitor ground activity. This issue can be overcome by
utilizing multiple vehicles to cooperatively monitor an area,
while sharing global information between the vehicles or with
a central station, such as in [1], [2]. While these types of
multi-agent approaches are effective, they typically rely upon
GPS to coordinate locations and information. GPS signals are
not always reliable and can even be susceptible to jamming
and spoofing [3]. Accordingly, solutions that are independent
of GPS can allow for unhindered operation in a wider variety
of situations. This paper focuses on providing a robust end-to-
end solution for persistent tracking of moving ground targets
from fixed-wing UAS without GPS.

The primary difficulty in tracking ground targets for ex-
tended periods of time without GPS is the transition or “hand-
off” between two sUAS. When one vehicle that is tracking a
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target becomes low on fuel, another vehicle must be deployed
to replace the current sUAS without any loss of information.
Enabling this handoff scenario is the primary motivation for
this paper. The UAS that is currently tracking the target of
interest is referred to as the “tracking UAS” and the oncoming
replacement vehicle is referred to as the “handoff UAS.”

Fig. 1. Diagram of the target handoff problem. The numbers depict the five
main components of the handoff problem, 1) self-pose estimation, 2) relative-
pose estimation, 3) orbit insertion, 4) target tracking, and 5) the handoff logic.
The equation and related symbols depict Equation (1)

Throughout the paper we will use the following notation.
The position vector from a to b expressed in coordinate frame
c will be denoted pc

b/a
. The target will be denoted by t, the

vehicle currently tracking the target will be denoted by r, and
the handoff vehicle will be denoted by h. The body frame of
the tracking and handoff vehicles will be denoted by rb and hb

respectively, and the local level frame (unrolled and unpitched
body frame) will be denoted by r` and h`. The inertial frame
is denoted by i. The transformation from coordinates in frame
a to coordinates in frame b will be denoted R

b
a
. Using this

notation, the geometry of Figure 1 shows that the fundamental
geometric relationship for the handoff problem is given by

phb

t/h
= R

hb
h`

⇣
ph`

r/h
+R

h`
r`
R

r`
rb
prb

t/r

⌘
, (1)

where the objective is to find phb

t/h
, the position of the target

relative to the handoff vehicle, in the body frame of the handoff
UAS, given prb

t/r
, the position of the target relative to the

tracker, expressed in the body frame of the tracking UAS.
The handoff problem can be broken into the following five

main parts, as depicted in Figure 1.
1) Self-pose Estimation: Self-pose estimation refers to

the estimation of the rotation matrices R
rb
r`

and R
hb
h`

,
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which represent the transformation between the local-
level frames and the body frames of the tracker and
handoff vehicles respectively. In essence, this requires
estimating the roll and pitch angles of each vehicle using
only the IMU and pressure sensors.

2) Relative-pose Estimation: Relative pose estimation
is the problem of estimating ph`

r/h
, the position of the

tracker relative to the handoff vehicle, expressed in the
local-level frame of the handoff UAS, and R

h`
r`

the
transformation from the local-level frame of the tracker
to the local-level frame of the handoff UAS.

3) GPS-denied Orbit Control: Using the estimate of
the target’s position, the handoff vehicle then inserts
itself into a similar orbit about the target. Initially the
handoff UAS will use the relative line-of-sight (LOS)
vector phb

t/h
to the target from Equation (1) to navigate

into an orbit about the target. After the handoff process
is complete, the handoff vehicle will orbit the target
completely based on visual information, independent of
measurements from the tracking UAS.

4) Multiple-target Tracking: Once the handoff UAS is in
orbit about the target, it utilizes a gimballed camera to
track the target. There is also the possibility that there are
multiple moving objects on the ground, so the tracking
algorithm must be capable of simultaneously tracking an
arbitrary number of moving targets in real time.

5) Handoff Logic: When the handoff UAS is successfully
tracking moving targets on the ground, it must use
information from the tracking UAS to ensure it selects
the correct target. Once the handoff UAS is sufficiently
confident that it is tracking the correct target, it signals
to the tracking UAS that the handoff is complete and
transitions to using the visual LOS to orbit the target.
At that point, the tracking UAS is safe to leave the area
and the handoff is complete.

Figure 2 provides a system-level view of these five compo-
nents and how information flows between them, where the
final outward facing arrows for each UAS represent the roll
command output of the GPS-denied orbit control.

Fig. 2. Block diagram of the system components and information flow.

The primary contribution of this paper is an end-to-end
solution to the target handoff problem that addresses each of
these challenges using either an extension of previous work
or a novel solution to the problem. Self-pose estimation is

addressed in Section II, and is performed using a complemen-
tary filter on SO(3), and represents a an extension of [4] that
includes a better model resulting in better estimation results.
The estimates from the complementary filter are inputs to
a particle filter used to estimate the relative pose. A novel
relative pose particle filter is derived in Section III representing
a unique contribution of the paper. The challenge of inserting a
UAS into an orbit without GPS is solved using a controller that
produces appropriate roll commands based on an estimated
line-of-sight vector to the target, and is described in Sec-
tion IV, and represents a relatively minor extension of the orbit
control algorithm described in [5]. The tracking and handoff
UAS both utilize the Recursive-RANSAC (R-RANSAC) algo-
rithm to visually track ground objects. While R-RANSAC was
originally introduced in [6], Section V presents new results
where the algorithm is used on a fixed-wing vehicle with a
gimballed camera. Section VI describes a novel algorithm
used to perform the handoff logic, completing the moving
target handoff problem. Section VII gives simulation results
and Section VIII offers some concluding remarks.

II. SELF-POSE ESTIMATION

There is extensive literature on estimating the attitude of
a fixed-wing aircraft using both non-linear [4] and linear [7]
methods. Our approach extends the complementary filter pre-
sented in [4] by including an improved velocity-dependent
model for the angle-of-attack dynamics, and by limiting the
estimator to the roll and pitch angles.

A. Complementary Pose Estimator

In this section, we will use the notation R
`

b
to denote the

rotation from the body to the local level frame for either the
tracking or handoff UAS.

Lemma 1. Let !�
↵/�

be the angular velocity of frame ↵

with respect to frame �, expressed in frame �, and let
e3

4
= (0, 0, 1)>.
Assuming that

!
`

`/i
= e3e

>
3 !

`

b/i
, (2)

the rotational kinematics of the body in the local level frame
are given by

Ṙ
`

b
= R

`

b

j
⇧R`>

b e3
!
b

b/i

k
, (3)

where ⇧x = I�xx
> is the projection operator onto the plane

orthogonal to x, and
6664

0

@
a

b

c

1

A

7775 =

0

@
0 �c b

c 0 �a

�b a 0

1

A (4)

is the skew-symmetric matrix.
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Proof. It is straightforward to show that for any two frames
↵ and �, that Ṙ�

↵
= R

�
↵

j
!
↵

↵/�

k
. Therefore Ṙ

`

b
= R

`

b

j
!
b

b/`

k
.

However,

!
b

b/`
= !

b

b/i
� !

b

`/i
(5)

= !
b

b/i
�R

`

b
!
`

`/i
(6)

= !
b

b/i
�R

`

b
e3e

>
3 (R

`>
b
!
b

b/i
) (7)

= ⇧R`>
b e3

!
b

b/i
, (8)

which completes the proof.

In the following discussion we will use !b to mean !
b

b/i
.

Accordingly, the mechanized velocity dynamics for the UAS
are given by

v̇
b = �!b ⇥ v

b + gR
`>
b

e3 + a
b (9)

where v
b is the inertial velocity of the aircraft resolved in the

body frame, and a
b is the specific acceleration resolved in the

body frame.
We will assume that the IMU measures the specific accel-

eration am = a
b and a biased version of !b as !m = !

b + b!

where b! is a slowly varying bias. In unaccelerated flight, we
have from Equation (9) that

gR
`>
b

e3 = !
b ⇥ v

b � a
b
,

which implies that

!
b ⇥ v

b � a
b

k!b ⇥ vb � abk ⇥ (R`>
b

e3) = 0. (10)

In [4], Equation (10) is used as the innovation term in a
complementary filter as

˙̂
R
`

b
= R̂

`

b

j
⇧R`>

b e3

⇣
!m � b̂+ kp✏

⌘k
(11)

˙̂
b = �kI✏, (12)

✏ =
(!m � b̂)⇥ v̂ � am

k(!m � b̂)⇥ v̂ � amk
⇥ (R̂`>

b
e3) (13)

where kp > 0 and kI > 0 are filter gains, and where v̂ is an
estimate of vb given by

v̂ ⇡ v
b ⇡ va

�
cos ↵̂ 0 sin ↵̂

�>
, (14)

where ↵ is the angle-of-the attack and ↵̂ is the estimated angle-
of-attack, and where we have assumed that the sideslip and
flight path angles are zero.

B. Angle of attack dynamics
For a fixed-wing aircraft, when the sideslip and flight path

angles are zero, the dynamic equations of motion for ↵ are
given by [8]

↵̇ =
�FT↵� FL

mva
+

g

va
+ q, (15)

where m is the mass, va the airspeed, FL the lift force, FT

the thrust force, and q the pitch rate. Following [5], thrust and
lift forces can be approximated as

FT ⇡ kM�
2
t
� kT v

2
a

FL ⇡ kLv
2
a
,

where kM , kT , and kL are constants and �t 2 [0, 1] is the
throttle control setting. The resulting equation is

↵̇ = �c0(�t, va)

va
↵+ q + ↵0(va), (16)

where

c0(�t, va) =
kM�

2
t
� kT v

2
a

m
(17)

↵0(va) =
g

va
� kL

m
va (18)

which is similar to the angle-of-attack model used in [4] but
where c0 and ↵0 are assumed to be constants. Replacing c0

and ↵0 with functions of va and �t result in an improvement
in performance, especially during take-off and landing. If �t
is not available to the observer, then it can be replaced with
a nominal trim value. The estimate of the angle-of-attack is
therefore given by

˙̂↵ = �c0(�t, va)

va
↵̂+ e

>
2 (!m � b̂) + ↵0(va). (19)

C. Results

We obtained experimental results by estimating R̂
`

b
and

extracting roll and pitch estimates on a BAT-4 fixed-wing UAS.
We commanded the UAS to loiter a moving ground target and
used IMU and airspeed data to estimate the attitude of the
vehicle. We used an on-board GPS-INS unit to estimate the
true attitude for the purposes of comparison.

The results shown in Figures 3 include a two-minute win-
dow of data from the flight test, where the estimated roll angle
is extracted from R̂

`

b
. The altitude of the vehicle remained

nearly constant but the roll angle of the vehicle ranged from
about -10 to 25 degrees, which is fairly representative of the
type of trajectories required to complete the target handoff.
Similar results are obtained for the pitch angle [9], and are
summarized in Table I.

Referring back to Equation (1), the tracking and handoff
UAS use the complementary filters given in Equations (11)–
(13) and (19) to estimate R

r`
rb

and R
h`
hb

respectively.

Fig. 3. Plot of roll estimate during a hardware flight test.
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TABLE I
SELF-POSE ATTITUDE ESTIMATION RESULTS

Roll Pitch
Mean Squared Error (deg) 3.067 1.476

Average Error (deg) 1.277 -0.655

III. RELATIVE POSE ESTIMATION

The previous section showed how to estimate R
hb
h`

and R
rb
r`

for Equation (1) in GPS denied environments. This section
addresses the problem of estimating the relative position ph`

r/h

and the relative attitude R
h`
r`

in Equation (1).
Note that if the rotation matrix R

h`
r`

is parameterized in
terms of Euler angles, then

R
h`
r`

= R
h`
i
( h)R

r`>
i

( r)

=

0

@
cos h sin h 0
� sin h cos h 0

0 0 1

1

A

0

@
cos r � sin r 0
sin r cos r 0
0 0 1

1

A

=

0

@
cos( h �  r) sin( h �  r) 0
� sin( h �  r) cos( h �  r) 0

0 0 1

1

A

= R
h`
r`
( h/r),

where  h and  r are the inertial heading of the handoff and
tracking UAS respectively, and  h/r

4
=  h� r is the relative

heading, which needs to be estimated.
Estimating the relative pose between vehicles is one of

the fundamental challenges underlying the handoff problem.
The relative pose between the two vehicles is the key link
that allows the handoff vehicle to utilize information provided
by the tracking UAS in order to locate and track the target.
With two moving vehicles and no globally shared reference
frame, the relative pose estimator is difficult to initialize and
exhibits complicated dynamics. In this paper we assume the
presence of a noisy measurement of the range between the
two vehicles, as might be provided by a time-of-flight sensor.
Time-of-flight sensors are much less complicated than a radar,
for example, and might be implemented by commercial off-
the-shelf hardware like a software defined radio. We will also
assume that each vehicle has an on-board magnetometer to
detect a noisy estimate of its inertial heading. The relative
pose estimator developed in this section is one of the primary
contributions of the paper.

A. Relative Pose Dynamics

Let ph`

r/h
represent the LOS vector from the handoff vehicle

to the tracking vehicle in the handoff vehicle’s local level
frame, given by

ph`

r/h
= R

h`
i

⇣
pi

r/i
� pi

h/i

⌘
. (20)

Differentiating with respect to time gives

ṗh`

r/h
= �

j
!h`

h`/i

k
ph`

r/h
+ vh`

r/h
. (21)

Note that because the handoff local level frame only differs
from the inertial frame by a rotation about the inertial z-axis,
that

!h`

h`/i
= e3e

>
3 R

h`
hb
!hb

hb/i
= e3 ̇h/r

which implies that

 ̇h/r = e>3 R
h`
hb
!hb

hb/i
, (22)

which can be estimated from the IMU on the handoff UAS and
its estimate of Rh`

hb
provided by the algorithm in the previous

section.

B. Filter State
Because we receive measurements of the range directly, it

is useful to write the x and y components of ph`

r/h
in terms of

magnitude and angle as

ph`

r/h

4
=

�
⇢ cos#, ⇢ sin#, zh/r

�>
, (23)

where ⇢ is the relative range,# is the relative bearing, and zh/r

is the relative altitude. Accordingly, we will define the state
of the particle filter as

x̂ =
⇣
⇢̂, #̂, ẑ

h`

r/h
,  ̂h/r

⌘>
. (24)

Differentiating Equation (23) gives

ṗh`

r/h
=

0

@
cos# �⇢ sin# 0
sin# ⇢ cos# 0
0 0 1

1

A

0

@
⇢̇

#̇

żh/r

1

A . (25)

Setting Equation (25) equal to Equation (21) gives, after some
algebra
0

@
⇢̇

#̇

żh/r

1

A =

0

@
0

� ̇h/r

0

1

A+

0

@
cos# sin# 0

� 1
⇢
sin# 1

⇢
cos# 0

0 0 1

1

Avh`

r/h
.

Accordingly, the dynamics of the particle filter are given by

˙̂x =

0

BBB@

⇥
cos #̂ sin #̂ 0

⇤
v̂h`

r/h

1
⇢̂

⇥
� sin #̂ cos #̂ 0

⇤
v̂h`

r/h
� e>3 R̂

h`
hb
!hb

hb/i

e>3 v̂
h`

r/h

e>3 R̂
h`
hb
!hb

hb/i

1

CCCA
, (26)

where we have used Equation (22). Noting that

vh`

r/h
= vh`

r/i
� vh`

h/i
= R

h`
r`
( h/r)R

r`
rb
vrb

r/i
�R

h`
hb
vhb

h/i
, (27)

Equation (26) can be expressed as
˙̂x = f(x̂, R̂h`

hb
, R̂

r`
rb
, v̂rb

r/i
, v̂hb

h/i
,!hb

hb/i
), (28)

where R̂
h`
hb

and R̂
r`
rb

are estimated using the self-pose estimator
in Section II, v̂rb

r/i
and v̂hb

h/i
are estimated using Equation (14),

and the airspeed measurement is from an on-board pitot tube,
and !hb

hb/i
comes from the rate gyros of the handoff vehicle.

Given direct measurements of the relative heading, relative
altitude, and range between the two vehicles, the primary
challenge of the relative pose estimator is to determine the
correct value for #̂, the relative bearing between the two
vehicles. The value of #̂ is not directly observable with a single
range measurement because we only receive the magnitude of
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the relative position vector. However, with two measurements
the change in range can be used to narrow the possible values
of #̂ to two options. As seen in Equation (26),

˙̂⇢ =
⇥
cos #̂ sin #̂ 0

⇤
v̂h`

r/h
= kv̂h`

r/h
k cos �̂, (29)

where �̂ is the estimated angle between the relative velocity
vector and the relative position vector.

Solving for �̂ gives �̂ = ± cos�1

✓
˙̂⇢

kv̂h`
r/h

k

◆
, which implies

that there are two possible values for # based on each measure-
ment. Due to this ambiguity, unimodal filters like the EKF or
UKF are not well suited to this problem. Alternatively, particle
filters can initialize and propagate a bi-modal distribution, and
are therefore a more suitable alternative.

C. Particle filter implementation

The particle filter proposed in this paper consists of N parti-
cles, each with a state and dynamics given by Equations (24)
and (26). We assume measurements of relative range using
a time-of-flight sensor, the relative altitude using barometric
sensors on-board each aircraft, and relative heading using
magnetometers on-board each aircraft, and that the altitude
and heading of the tracking vehicle can be transmitted to the
handoff vehicle with zero delay. The measurement model is
therefore given by

y = h(x)
4
=

0

B@

q
⇢2 + (zh`

r/h
)2

z
h`

r/h

 h/r

1

CA .

Let x̂(i)
k

denote the i
th particle at time k, let ỹ(i)

k
denote

the residual between the actual and predicted measurements
of the i

th particle given by

ỹ(i)
k

= yk � h(x̂(i)
k
),

and let Q be the covariance of the measurement noise. Then
the weight for the i

th particle at time k is given by

w
(i)
k

=

exp

✓
ỹ(i)>
k

Q
�1ỹ(i)

k
�max

l

n
ỹ(l)>
k

Q
�1ỹ(l)

k

o◆

NP
j=1

exp

✓
ỹ(j)>
k

Q�1ỹ(j)
k

�max
l

n
ỹ(l)>
k

Q�1ỹ(l)
k

o◆ ,

(30)
where the subtraction term enhances the numerical condition-
ing of the algorithm.

The particles are then resampled with probability propor-
tional to their weights. However, to reduce particle deprivation
and minimize the chance of throwing away good particles, we
employ low-variance resampling [10] and selective resampling
based on the number of effective particles [11], where the
number of effective particles is estimated by

Neff =
1

NP
i=1

(w(i))
2
. (31)

In order to perform selective resampling, it is important to
update the weights of the particles at each successive time
step between resamples. This is accomplished using

w
(i)
k+1 = ⌘w

(i)
k
ỹ(i)>
k+1Q

�1ỹ(i)
k+1, (32)

where ⌘ is a normalization constant. After the particles are
resampled, all weights are reset to 1

N
.

D. Results

The relative pose particle filter was tested in simulation
using simulated IMU, airspeed, altitude, magnetometer, and
range measurements, each with added Gaussian noise. In
general, the relative pose estimate converged within 30 seconds
and provided a sufficiently accurate estimate for the handoff
UAS to locate the target and insert into a similar orbit. As
expected, the particle filter displayed a bimodal distribution
before converging onto the proper bearing angle as shown in
Figure 4.

Fig. 4. Top left: particles are initialized uniformly across all bearing angles;
Top right: particles begin to split into a bimodal distribution; Bottom left:
particles are grouped in two distinct clusters, but with more particle density
around the correct bearing; Bottom right: the particles consolidate and center
around the true value

Figure 5 shows the estimate of the bearing diverging
slightly, then converging sharply as the particles consolidate
around the correct value. We observed that because the esti-
mated line of sight is parameterized using range and bearing,
and because the range between the two vehicles is often large,
small errors in the bearing angle can lead to large errors in the
xy-plane. Accordingly, the relative pose estimate is not ideal
for obtaining a fine-tuned estimate of the target’s position.
However, it does serve the intended purpose of providing
a reasonable estimate of the relative pose, facilitating orbit
insertion as described in Section IV. As seen in Figure 6,
after the relative pose estimate converges the relative position
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Fig. 5. Plot of # estimate; diverges slightly as particles split into bimodal
distribution, then converges sharply as particles consolidate around the true
value.

Fig. 6. Plot of estimated target xy-position error.

error remains near or below 20 meters. This level of accuracy
is sufficient to locate the target and retain it in the field of
view, allowing the handoff UAS to utilize visual information
to perform the handoff task.

IV. GPS DENIED ORBIT INSERTION

Once the handoff vehicle has obtained a reasonable estimate
of the relative transformation between itself and the tracking
UAS, it is ready to insert itself into a similar orbit about the
target. Because there is no GPS data available, the orbit control
must only use estimates of the target’s relative position and
velocity. Initially, the handoff UAS will use the relative pose
estimate to compute the LOS between itself and the target
according to Equation (1), but by the time the target handoff
is complete, it will need to orbit the target based entirely on
visual data.

Another challenge of GPS-denied orbiting is that the vehicle
cannot use global waypoints or orbit centers to loiter about the
target, but must instead give heading rate or roll commands.
The implementation here assumes the ability to command

roll directly, but the derivation for commanding heading rate
would be similar. This section describes the technique used to
compute appropriate roll commands to orbit the target using
only the target’s relative position and velocity. We also discuss
in Section IV-B how the target is orbited using only visual
information after the handoff is complete.

A. Orbit Insertion

1) Target relative state: As previously noted, without GPS,
the state of the target must be represented relative to the UAS.
We represent the position of the target relative to the handoff
UAS as ph`

t/h
. This is initially given by Equation (1) as

ph`

t/h
= ph`

r/h
+R

h`
r`
R

r`
rb
prb

t/r
, (33)

where ph`

r/h
and R

h`
r`

are estimates from the particle filter, Rr`
rb

comes from the tracker’s complimentary attitude filter, and
prb

t/r
is measured by the tracker.

We assume that the handoff UAS is moving much faster
than the target and accordingly use the velocity of the handoff
vehicle to approximate the target’s relative velocity according
to

vh`

t/h
= vh`

t/i
� vh`

h/i
⇡ �vh`

h/i
. (34)

Given the relative position and velocity of the target from
Equations (33) and (34), estimates of the range to the target,
⇢̂t/h, and the angle between the relative position and relative
velocity vector, �̂t/h, are given by

⇢̂t/h = k(I � e3e
>
3 )p̂

h`

t/h
k

�̂t/h = �atan2
⇣
kv̂t/h ⇥ p̂h`

t/h
k, v̂t/h · p̂h`

t/h

⌘
.

2) Control implementation: Define ⇢
d to be the desired

orbit radius and � to be the desired direction of the orbit with
� = +1 for a clockwise orbit and � = �1 for a counter-
clockwise orbit. Following [5] the desired angle between the
relative position and velocity vectors is given by

�
d = �

h
tan�1

�
�ko

�
⇢̂t/h � ⇢

d
��

+
⇡

2

i
, (35)

where ko is a positive gain.
If the handoff UAS is following a radius of ⇢d at a speed of

v then simple kinematics implies that �̇ = �v/⇢
d. Similarly,

for a fixed wing UAS, the coordinated turn condition is given
by [5]

�̇ =
g

v
tan�,

where � is the roll angle. Equating these two expressions and
letting v = kv̂t/hk gives the feedforward roll angle in an orbit
of radius ⇢d as

�ff = � tan�1

✓kv̂t/hk
g⇢d

◆
.

Therefore, the GPS denied orbit insertion control strategy is
given by

e� = �̂t/h � �
d

�
c = �ff + kpe� + kdė�,
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where �c is the commanded roll angle of the handoff UAS,
where kp and kd are positive gains, and where ė� is computed
numerically. Convergence analysis for the kinematic equations
of motion are similar to the arguments provided in [5].

B. Vision-based Orbiting

As the handoff UAS begins tracking the proper target, it
can improve its orbit control by transitioning from using the
relative position estimate based on Equation (33) to using
direct visual tracking. As long as the handoff UAS is tracking
the target, the visual track provides a reliable measurement
of the relative position of the target. In order to estimate
the target’s position, the UAS must transform the visual line
of sight into the proper frame and recover the scale of the
LOS vector. The handoff UAS’s target tracking algorithm will
produce the target’s position in normalized image plane pixel
coordinates of the handoff UAS’s camera.

Let

✏c
t/h

=

0

@
✏x

✏y

1

1

A (36)

represent the normalized image coordinates of the target
received from the tracking algorithm. The normalized image
coordinates can be expressed in the body-level frame of the
handoff vehicle as

✏h`

t/h
= R

h`
hb
R

hb
g
R

g

c
✏c
t/h

, (37)

where

R
g

c
=

0

@
0 0 1
1 0 0
0 1 0

1

A , (38)

is the fixed rotation from the camera to the gimbal frame,

R
hb
g

=

0

@
cos↵el cos↵az � sin↵az sin↵el cos↵az
cos↵el sin↵az cos↵az sin↵el sin↵az

� sin↵el 0 cos↵el

1

A , (39)

is the rotation from the gimbal to the body frame, where
↵az and ↵el are the gimbal azimuth and elevation angles
respectively, and R

h`
hb

is determined by the method described
in Section II.

Using a flat-earth approximation, we can recover the ap-
propriate scale of the LOS vector using the measured altitude
above ground level h of the vehicle as

✏h`

t/h

e>3 ✏
h`

t/h

=
ph`

t/h

h
,

which implies that

ph`

t/h
= h

✏h`

t/h

e>3 ✏
h`

t/h

. (40)

This visually-derived estimate of the target’s position can
then be used to improve or replace the estimate given by
Equation (33).

C. Results
We implemented this control scheme in the full handoff

simulation with noise on all sensors and using the estimated
target LOS as the input to the control. The orbit control
converges to the desired orbit and allows the handoff vehicle
to keep the target in the field of view to begin tracking and
perform the handoff. Initially the handoff UAS uses the outputs
of the relative- and self-pose filters to estimate the target’s
position and, despite the noise in both estimators, the orbit
control accomplishes the desired task of following a moving
target without GPS. Figures 7 shows a top-down view of the
target and handoff vehicle positions over time.

Fig. 7. Plot of the handoff UAS orbiting the target.

V. MULTIPLE TARGET TRACKING

In our implementation, the tracking UAS and the handoff
UAS both visually track the ground targets using the R-
RANSAC-based visual multiple target tracking (VMTT) algo-
rithm, originally presented in [12], and extended in [13], [14],
[15], [16] to tracking from multi-rotor aircraft. In this paper
we extend the algorithm to fixed-wing aircraft. Fixed-wing
aircraft operate under different conditions and constraints than
multirotor aircraft. They must maintain forward velocity with
nonholonomic coordinated turn constraints, and they often
fly at higher altitudes and faster speeds. These differences
require some unique integration and adaptation of the original
algorithm into our particular system. This section will provide
a brief overview of the visual front-end and the R-RANSAC
algorithm, along with an explanation of both our implementa-
tion and results of using R-RANSAC on a fixed-wing vehicle.

A. Visual Front-end
The visual front-end pipeline consists of three main steps.

First, the video frame at the previous time step is processed
to find good features to track. Our implementation uses the
OpenCV function goodFeaturesToTrack (https://opencv.org/).
The features that are found using this method are then prop-
agated to the current video frame using optical flow. Our
implementation uses the pyramidal Lucas-Kanade method in
the OpenCV function calcOpticalFlowPyrLK. The second step
in the visual front end uses the features in the previous and
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current image frames to find the homography transformation
between frames. Our implementation uses the OpenCV func-
tion findHomography. The homography transformation is then
used to warp the previous image to the current image. Our
implementation uses the OpenCV function warpPerspective.
Assuming that most of the features in the image are not
moving, the homography transformation will correspond to
the motion in the scene that is due to the motion of the UAS.
Therefore, the third step in the visual front end is to find
all features in the previous image that do not warp correctly
to the current image through the homography transformation.
Assuming a relatively flat scene, these features will correspond
to moving objects in the environment. These features are then
passed as measurements to the R-RANSAC tracking algorithm
described below.

B. R-RANSAC Tracker
The Recursive RANSAC tracking algorithm is based

upon the original Random Sample Consensus Algorithm
(RANSAC) algorithm, which was first introduced in [17]
as an efficient method to reject outliers and estimate model
parameters. R-RANSAC uses RANSAC to find and initialize
good model tracks that are “recursively” propagated through
time using a linear Kalman filter. The R-RANSAC algorithm
maintains a bank of the best M tracks, and scores each track
based on consistency with the visual measurements to prune
low probability tracks and add new potential tracks. Tracks
with persistently high scores are marked as moving objects in
the environment.

C. Adaptations for Fixed-wing vehicles
1) Two-axis gimbal: One of the main differences between

tracking from a fixed-wing vehicle as opposed to a multirotor
aircraft, is that the vehicle must remain in constant motion.
Accordingly, a gimbal is necessary to maximize the aircraft’s
ability to keep the target in the field of view. In this project we
use a two-axis gimbal to control both the azimuth and elevation
angles of the camera. The appropriate azimuth and elevation
angles are ↵az = atan2(`y, `x), and ↵el = � sin�1(`z), where
` = (`x, `y, `z)> is the normalized line of sight vector from
the UAS to the target in the vehicle body frame.

2) Parameter Tuning: Some of the other challenges of
implementing the R-RANSAC tracker on a fixed-wing vehicle
include higher operating altitudes, faster velocities, and con-
tinuously varying viewpoints of the target. These conditions
can make it more difficult for the vehicle to pick up on good,
consistent features of the target and can also lead to high
variation in the apparent motion of the target. The apparent
motion of the target in the camera frame is minimized when
the line of sight to the target and the target’s velocity are
closely aligned. In a constant orbit about a ground target
with nearly constant velocity, this alignment happens twice
per revolution. R-RANSAC assumes that targets of interest
are moving and therefore uses motion in the image plane to
track targets, which makes it more difficult for the algorithm
to continue tracking the target when the apparent motion is
low.

To overcome these challenges, we tuned the algorithm
parameters to help the tracker be better suited to having fewer
good features and periodically low apparent motion. See [9]
for a summary of parameters used and [14] for a detailed
description and analysis of each parameter.

D. Results
Using the R-RANSAC tracker and a two-axis gimbal setup,

we were able to achieve reasonable tracking results for moving
ground targets. We tested the tracking algorithm on a fixed-
wing aircraft flying approximately 300 meters above a moving
vehicle on the ground. With proper tuning, the UAS was able
to track the ground target despite significant jitter in the image.
Figure 8 shows a snapshot of tracking a moving ground target.

Fig. 8. Snapshot of tracking a moving ground target from a fixed-wing aircraft

VI. HANDOFF LOGIC

After the handoff vehicle points its gimbal in the direction of
the target and visually tracks all moving objects in its field of
view, it must then determine which object correlates with the
target being tracked by the tracking UAS. In order to estimate
the correlation between two tracks, the handoff UAS must
first align the tracks. For tracks that have a low residual after
alignment, the UAS can compare the resulting transformation
with the estimated relative pose to see if the two estimates
coincide. If a track both aligns well with the information from
the tracking UAS and also coincides with the relative pose
estimate, it is considered a good match. This section introduces
a novel method used for track alignment and also the logic
used to determine if the track is a sufficiently good match to
complete the handoff.

A. Track Alignment
The result of the previous two sections is an estimate of

potential target tracks from the vision systems of both the
tracking and handoff UAS. At time step n, the visual tracking
system on the tracking and handoff UAS produces estimates
of pr`[n]

t[n]/r[n] p
h`[n]
t[n]/h[n], respectively, where we have explicitly

noted the target t[n] at time n and the frames r`[n] and h`[n] at
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time n. In order to compare the two tracks, we must transform
the past N estimates of the target into the current time k.

The position of the target relative to the tracking vehicle at
time n is defined as

pr`[n]
t[n]/r[n] = R

r`[n]
i

⇣
pi

t[n]/i � pi

r[n]/i

⌘
. (41)

Transforming to the current time gives

pr`[k]
t[n]/r[k] = R

r`[k]
r`[n]

R
r`[n]
i

⇣
pi

t[n]/i � pi

r[k]/r[n] � pi

r[n]/i

⌘

= R
r`[k]
r`[n]

⇣
pr`[n]
t[n]/r[n] � pr`[n]

r[k]/r[n]

⌘
.

This equation is used to propagate the LOS from time n

into time k, where R
r`[k]
r`[n]

and pr`[n]
r[k]/r[n] are determined by

integrating the vehicle’s estimated angular and linear veloci-
ties, respectively. This same propagation process applies to the
handoff vehicle’s tracks as well.

The tracking and handoff estimates of the target at time n

are related by the expression

ph`[k]
t[n]/h[n] = R̄

h`[k]
r`[k]

pr`[k]
t[n]/r[n] + ⇠h`[k]

r`[k]/h`[k]
.

Summing over the past N estimates and solving for the
translation vector between frames gives

⇠h`[k]
r`[k]/h`[k]

= p̄h � R̄
h`[k]
r`[k]

p̄r,

where

p̄⇤ =
1

N

kX

n=k�N+1

p⇤`[k]
t[n]/⇤[k], ⇤ = h, r.

Defining the matrices

P⇤ =
⇣
p⇤`[k]
t[k]/⇤[k] � p̄⇤, . . . ,p

⇤`[k�N+1]
t[k�N+1]/⇤[k] � p̄⇤

⌘
, ⇤ = h, r,

gives Ph = R̄
h`[k]
r`[k]

Pr. Since R̄
h`[k]
r`[k]

corresponds to a rotation
about the inertial z-axis, it has the form

R̄
h`[k]
r`[k]

=

✓
R 02⇥1

01⇥2 1

◆
,

where R 2 SO(2). We can estimate R by solving the least
squares problem

R = arg min
R2SO(2)

kPh,1:2 �RPr,1:2k2F , (42)

where k·kF represents the matrix Frobenius norm, and where
P⇤,1:2 is the first two rows of P⇤.

The solution to Equation (42) can be found in closed form
using singular value decomposition (SVD), according to the
result from the orthogonal Procrustes problem [18]. In our
case, we constrain the problem to only include rotation matri-
ces (det(R) = 1) about the z-axis, which is a modification of
the Kabsch algorithm [19].

First, we compute the cross covariance between Ph,1:2 and
Pr,1:2, given by M = Ph,1:2P

>
r,1:2. Using SVD, M can be

decomposed as M = U⌃V >
. The optimal rotation is given

by
R = U⌃0

V
T
, (43)

where ⌃0 = diag(1, d) and d is the sign (±1) of det(UV
T),

ensuring that R is a valid rotation matrix.

B. Track Comparison
After computing the estimate for R that aligns the tracks,

the residual error from Equation (42) can be used as a measure
of how well the two tracks are aligned. We choose a threshold
Tr for the residual and say that any track which produces a
residual less than the threshold is a potential match with the
target.

Equation (43) gives the rotation that minimizes the Frobe-
nius norm of the error between the two sets of points, but it is
possible that two similarly shaped tracks could produce a low
residual, but not be true matches. To increase our confidence
that an object corresponds with the target, we also compare the
result of the Procrustes analysis with the relative pose estimate
between the two vehicles.

For any object that has a residual below the threshold, we
also compare the computed rotation, R̄

h`
r`

, with the rotation
estimated by the relative pose filter denoted as R̂

h`
r`

. The error
between the two rotations is given by

e✓ = cos�1
⇣
eT1 R̄

h`
r`
R̂

h`T
r`

e1
⌘

, (44)

where e1 =
�
1 0 0

�>.
Using the two tracks, we can also estimate the relative

translation between the two UAS that can be compared with
the relative LOS estimate to further verify that the tracks
match.

If both the angle and translation errors between the Pro-
crustes result and the relative pose estimate are below their
respective thresholds, then we declare the two tracks to be a
match.

C. Handoff Transition
To complete the handoff process, the handoff UAS will

switch from using the relative pose estimate for determining
the target’s position to using the visual LOS. To avoid a
discontinuous jump in the LOS input to the orbit control, we
introduce a blending parameter, �b, used to transition from one
source of the LOS to the other according to

`b = �b`v + (1� �b) `r , (45)

where `b is the blended LOS and `v and `r are the visual and
relative-estimate-based LOS vectors respectively. The blending
parameter is initialized to zero (`b = `r) and evolves according
to

�
+
b
= ⇣m+ (1� ⇣)�b , (46)

where ⇣ is a tunable parameter that determines the blending
transition rate and m is a binary value representing whether
or not the tracks match, given by

m =

(
1, kPh � R̄

h`
r`
PrkF < Tr, e✓ < T✓, and et < Tt

0, otherwise
.

(47)
The blending parameter �b can also help to ensure that the

handoff only occurs after the errors remain below the desired
thresholds for multiple consecutive time steps. We consider
the handoff to be officially complete when �b rises above the
threshold T� which we set to 0.95.
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VII. SIMULATION STUDY

A. Simulation Setup
To test the full system, we simulated the handoff scenario

using Gazebo 7 and ROS. While we have hardware results
for several components individually, an end-to-end hardware
demonstration was not feasible given the scope of the project.
However, the simulation environment, which includes hard-
ware emulation in the loop, demonstrates a fully working
system with simulated noise in software, suggesting that the
methods described here could provide a strong basis for a
successful hardware implementation.

The aircraft dynamics are simulated according to the frame-
work presented in [5], with parameters for a small fixed-wing
UAS. The ground targets are represented by pedestrian objects
that wander randomly within a 140m by 270m area. In order
to provide visual features, a satellite image of a rural area is
used as the ground plane for the simulated world.

Each UAS is equipped with IMU and magnetometer sensor
plugins and the range sensor used in Section III is simulated
by computing the norm of the distance between the two
UAS, with zero-mean Gaussian noise. Each vehicle also has a
simulated camera with a two-axis gimbal, where the simulated
camera returns a color pixel array at 30 Hz.

For simplicity, both UAS are deployed simultaneously, but
the tracking UAS uses absolute position to navigate directly
to the target, while the handoff UAS begins estimating the
relative pose between aircraft to determine the target’s loca-
tion. The handoff UAS is able to successfully determine the
relative pose between the aircraft and insert into a similar orbit,
but opposite in direction to help maximize the observability
of the relative pose between the aircraft. As the targets enter
the handoff vehicle’s field of view, the handoff UAS begins
tracking each target and, over time, gains sufficient confidence
to complete the handoff. The handoff vehicle continues to track
and orbit the target using only visual information.

B. Results
We ran the simulation 500 times with different initial

conditions and noise sequences and measured the time it took
for the handoff vehicle to complete the handoff and whether or
not it selected the correct target among 5 different randomly
moving targets. The standard deviations for the simulated
range and magnetometer measurements was 3 meters and 0.01
radians, respectively. A failure is when the handoff UAS could
not determine the correct target within 15 minutes. The UAS
was able to accurately determine the correct target in 97.2% of
the simulation runs, with an average handoff time of 5 minutes
and 14 seconds.

We also conducted Monte Carlo simulations to test the
limitations of our approach and to evaluate some of the trade-
offs of certain parameters. The main trade-off we identified
was the time it took the handoff vehicle to make a deci-
sion versus the accuracy of that decision. The handoff logic
thresholds and the track comparison window size seemed to
be the primary determining factors for this trade-off. As the
requirements for the handoff logic become more difficult to
meet, namely lower thresholds and larger comparison window

sizes, the accuracy of the handoff increases, but it also takes
increasingly long to make a decision. To characterize this
trade-off between the speed of the decision and the accuracy,
we varied both the window size and the residual threshold.
We ran 100 iterations of each parameter configuration and
averaged the results. Figure 9 shows the trade-off between time
and accuracy observed for various window size and threshold
parameters.

Fig. 9. Relationship between the time to handoff and handoff accuracy for
various window size and threshold values.

If the window size was too small or the threshold too high,
then the accuracy suffered. The handoff vehicle would make a
decision sooner, but it was less likely to make the correct
decision. As the window size increased and the threshold
lowered, the conditions for handoff were more stringent and
accordingly, accuracy increased. However, as the accuracy
exceeded 97%, the time it took the handoff vehicle to make
a decision increased significantly. Using a window size of
100 samples and residual threshold of 15 meters seemed to
provide a reasonable balance, giving 97.2% accuracy and a
handoff time of 314 seconds, as described above.

VIII. CONCLUSION

This paper has described a complete architecture for visual
handoff between two fixed-wing UAS of a moving ground
target in a GPS-denied environment. The complete solution
requires that each UAS estimates its own roll and pitch angles,
as well as the relative position and heading between the two
vehicles. Self pose for each vehicle was estimated using a
complementary filter, and the relative pose was estimated using
a novel particle filter. After estimating the relative pose, the
handoff vehicle is inserted in an orbit that is similar, but in
the opposite direction, to the tracking vehicle. The paper then
described novel handoff logic that enables the target handoff.

The solution presented in this paper is shown to facilitate
target handoff with high reliability, even with significant sensor
noise. While there is a trade-off between the time it takes the
system to make a decision and the accuracy of that decision,
we found that the handoff vehicle was able to locate the correct
target with 97% accuracy within a reasonable time frame.
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