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Abstract

We investigate the distributions of Conjugate Ker-
nel (CK) and Neural Tangent Kernel (NTK) for
ReLU networks with random initialization. We
derive the precise distributions and moments of
the diagonal elements of these kernels. For a feed-
forward network, these values converge in law to
a log-normal distribution when the network depth
d and width n simultaneously tend to infinity and
the variance of log diagonal elements is propor-
tional to d/n. For the residual network, in the
limit that number of branches m increases to in-
finity and the width n remains fixed, the diagonal
elements of Conjugate Kernel converge in law to
a log-normal distribution where the variance of
log value is proportional to 1/n, and the diagonal
elements of NTK converge in law to a log-normal
distributed variable times the conjugate kernel of
one feedforward network. Our new theoretical
analysis results suggest that residual network re-
mains trainable in the limit of infinite branches
and fixed network width. The numerical experi-
ments are conducted and all results validate the
soundness of our theoretical analysis.

1. Introduction
Deep Neural Networks (DNNs) have been successfully
applied to numerous applications such as computer vi-
sion (Krizhevsky et al., 2017; He et al., 2016), natural lan-
guage processing (Bahdanau et al., 2014) and speech recog-
nition (Graves et al., 2013), where DNNs often achieved
superior performance compared to conventional machine
learning algorithms and can also be used as a feature extrac-
tor (representation learning) for other methods.
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Despite the extensive success, the DNN training process
and mechanism of generalization are not fully understood
due to the difficulties raised by the non-convexity of the loss
function and the complication of optimization methods.

One way to simplify the DNNs analysis is to only train
parameter in one layer while keep the parameters of other
layers as fixed. Jarrett et al. (2009) demonstrated that only
training last layer of a neural network can achieve compet-
itive performance. Since all parameters of previous layers
are fixed, the outputs at the last hidden layer F (x, θ) of
non-linear DNNs are considered as a random feature vector
whose inner product is known as Conjugate Kernel (CK)
(Cho & Saul, 2009; Daniely et al., 2016; Poole et al., 2016;
Schoenholz et al., 2016): Σ(x, y) = F (x, θ)>F (y, θ).

The other way to simplify the DNNs analysis is using in-
finitesimal step size to conduct continuous time analysis
(Arora et al., 2018; Du et al., 2019b; Su et al., 2014). The
training process of parameters θ and neural network out-
put F (x, θ) turns into two first order ordinary differential
equations (ODE):

dθi
dt

= − ∂L

∂F (x, θ)

∂F (x, θ)

∂θi
(1)

dF (y, θ)

dt
=
∑
i

∂F (y, θ)

∂θi

∂F (x, θ)

∂θi

>
∂L

∂F (x, θ)
. (2)

The first ODE shows that the dynamics of parameters θ
follows the gradient descent of a highly non-convex loss
function L(F (x, θ)). However, the dynamics of the output
F (y, θ) enjoys the form of kernel gradient descent where
the loss L is usually convex. The neural tangent kernel
(NTK) is therefore defined as follows (Jacot et al., 2018):

K(x, y) =
∑
i

∂F (y, θ)

∂θi

∂F (x, θ)

∂θi

>
. (3)

Both CK and NTK depend on the inputs and parameters of
the neural network. They are potentially complicated due
to the randomness of parameters at initialization and the
changing of parameters during the training process.

One line of research bypass this complexity by conducting
the analysis in the infinite-width limit with fixed depth. Neal
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(2012); Williams (1997); Lee et al. (2018); de G. Matthews
et al. (2018) showed that with proper scaling, a neural net-
work with random initialization converges to a Gaussian
process at infinite-width limit. Therefore all elements of
conjugate kernel converge to a fixed value and CK is usually
called as Neural Network Gaussian Process (NNGP) kernel.

The training dynamics under this regime also simplifies dra-
matically. Jacot et al. (2018) showed that as network width
increases, the variance of NTK for a randomly initialized
DNN reduces to zero and the NTK remains fixed during the
training phase.

Another similar regime is to increase the depth to infinity
at a slower rate than the network width. Under this regime,
DNNs largely preserve the property of fixed CK and NTK.
Huang et al. (2020) studied the limiting NTK of feedfor-
ward network and residual network by increasing widths to
infinity first, and then increasing depths. Their result shows
that the limiting NTK of feedforward network degenerates
into delta function as the depth increases to infinity.

The fact that CK and NTK converge to fixed values at the
infinite width limit reveals important properties about DNNs.
First, it shows that the gradient descent optimizes wide
DNNs to a global minimum. During the training of an
infinite width neural network, the change of parameters
reduces to zero and the network behaves like a linear model.
The training dynamics of the output is precisely a kernel
regression. With proper initialization and well-behaved loss
function, the training loss will converge to zero. Second, it
explains the generalization of an overparameterized network.
NTK governs the generalization property of training an
infinitely wide neural network, while CK is related to the
generalization when we only train the last layer.

The limiting CK and NTK only depend on the network
depth, the scaling of variance at each layer, and the choice
of non-linearity function. The closed-form expression of
CK and NTK allows directly evaluating an infinite width
network and can be used for Kernel Regression or Kernel
Support Vector Machines (Arora et al., 2019; 2020).

However, the success of DNNs has not been fully explained
by the fixed CK and NTK. The NTK of an infinite width net-
work generally has no feature learning capability, because
it is data-independent. The training of DNNs, on the other
hand, is mostly considered as a feature selection process.
Arora et al. (2019); Chizat et al. (2019) demonstrate that the
linearized DNNs with a fixed NTK could have a substantial
gap of performance from finite width DNNs trained with
gradient descent.

The above limitations of existing DNN analysis methods
motivate us to study the prior distribution of CK and NTK
for finite width DNNs. However, most existing works fo-
cus on controlling the deviation of finite width DNNs from

the infinite width regime, rather than particular properties
associated with finite width. This paper aims to study the
CK and NTK for finite width network and the limiting be-
haviour when they converge to a random variable. The main
contributions of this paper are summarized as follows:

• This paper provides new analysis for CK and NTK at
finite width and depth condition. The precise distribu-
tions for diagonal elements of CK and NTK for every
parameter are derived. Our results are applicable to
both feedforward network and residual network with
ReLU activation function.

• This paper derives upper bounds for every order mo-
ments of random CK and NTK, instead of only variance
of them as in previous works. Our upper bounds on
r-th order moment is proportional to exp(

(
r
2

)
β) where

randomness coefficient β depends on network settings.
The fast increasing high order moments demonstrate
the long tail nature of CK and NTK for finite width
network.

• Our new results can be generalized into infinite width
and depth case, where we show that the limiting distri-
bution of CK and NTK with random initialization are
closely related to log-normal distribution. Our results
endorse existing practice of modeling activation and
gradient norm in neural network as log-normal distribu-
tion.

• We show that randomness coefficient β for residual net-
work could remains bounded even in the limit of infinite
depth and finite width. Therefore, an infinitely deep
residual network with proper scaling is still trainable.

A comparison of properties of CK and NTK under different
regimes of interest are shown in Figure 1.

2. Related Works
Convergence of Wide Network For infinite width neural
networks, the NTK is a fixed value during training and the
training trajectory is the same as kernel regression (Jacot
et al., 2018; Lee et al., 2019). This is not true for any finite
width network. However, neural networks with large but
finite width still enjoy similar properties. More specifically,
The NTK is almost fixed during training, and the training
loss decreases to almost zero (Arora et al., 2019; Du et al.,
2019a; Allen-Zhu et al., 2019; Buchanan et al., 2021). These
works characterize the size of the deviations around the
limiting behaviour in certain overparameterized regimes.

Finite Width Correction The research works along this
direction focus on the deviation of NTK from its expecta-
tion without overparameterized assumption. Hanin & Nica
(2020) provided an upper bound on the variance of diago-
nal element of NTK based on path counting. Littwin et al.
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Figure 1: Different regimes in the study of CK and NTK.
Network width and depth are denoted as d and n. Black
line and Blue line: CK and NTK converge to fixed values.
Green line: For feedforward network, diagonal elements of
CK and NTK of each parameter converge to log-normal dis-
tribution. The variance of the log value is proportional to d

n .
Diagonal elements of residual network NTK converges to
the product of CK of a single feedforward network and a log
normal distribution random variable. Red line: For feedfor-
ward network, the variance of CK and NTK is unbounded.
For residual network, diagonal elements of CK converges
to log-normal distribution, and diagonal elements of NTK
converges in law to a log-normal distributed variable times
CK of a feedforward network.

(2020) extended the result to networks with residual struc-
ture. These results do not reveal the heavy tail nature of
prior distribution of CK and NTK, as only second order
moments are discussed. Dyer & Gur-Ari (2020) presented
bounds on general correlation functions in DNNs. However,
most results are limited to linear network or remain to be
conjectures.

Log-Normal Distribution in Neural Network Log-
normal distribution has been used to approximate the output
rate in neuroscience (Koulakov et al., 2009; Uzan et al.,
2018). Hanin & Nica (2019); Gurbuzbalaban & Hu (2021)
give theoretical guarantee that norm of feedforward network
output converge to a log-normal distribution. In machine
learning with artificial neural network, log-normal distri-
bution is also observed to serve as a better approximation
of gradient distribution than Gaussian distribution and in-
spires new technique for quantized training in (Chmiel et al.,
2021).

3. Preliminary
Feedforward Networks We consider feedforward network
with fully connected layers and ReLU activation. With
assuming the input as x0, the definition of each layer is:

yi = σiWixi−1 + bi, i = 1, . . . , d

xi = ReLU(yi), i = 1, . . . , d− 1 , (4)

where f(x0) = yd is the output of the network and xd is
the output of last hidden layer. The length of vectors yi
and xi is ni. The parameters of the network are initialized
to independent random variables (Wi)j,k ∼ N (0, 1) and
bi = 0. Note that although bi is set to 0 at initialization, this
parameter is still trainable thus it contributes to the NTK.

We assume that output is a scalar and nd = 1 while analyz-
ing the NTK of feedforward network, and require output to
be a vector with the same size as input x0 when the feedfor-
ward network is used as one branch in residual network.

Residual Network We consider a residual network where
every residual block is a feedforward network with ReLU
activation. With input x0, for i = 0, · · · ,m− 1, we have:

xi,0 = xi

yi,j = σi,jWi,jxi,j−1 + bi,j , j = 1, . . . , di

xi,j = ReLU(yi,j), j = 1, . . . , di − 1 (5)
xi+1 = xi + yi,di

yout = σoutWoutxm

where m is the total number of residual branches, f(x0) =
yout is the output of the network. The length of vectors yi,j
and xi,j is ni,j . The length of vector xi is ni = ni,0 =
ni,di = n. The length of output yout is nout = 1. The
parameters are initialized in a similar way as feedforward
networks. The additional fully connected layer helps change
the dimension of output and simplify the analysis of NTK.

Conjugate Kernel The conjugate kernel is defined as the
inner product of last hidden layer. More specifically, CK
is Σ(x0, x̃0) = xTd−1x̃d−1 for feedforward networks and
Σ(x0, x̃0) = xTmx̃m for residual network.

We also define the conjugate kernel of output as the inner of
the output layer of the network. For feedforward networks
Σ′(x0, x̃0) = yTd ỹd and for residual networks Σ′(x0, x̃0) =
yToutỹout. These values arise in the analysis of residual
network NTK.

Neural Tangent Kernel The NTK is defined as inner prod-
uct of gradient with respect to network parameters. There-
fore, NTK can be decomposed into summation of smaller
NTKs, each of which comes from training a unique parame-
ter in the network. More specifically,

K(x0, x̃0) =
∑
θ

Kθ(x0, x̃0)

Kθ(x0, x̃0) =
∂f(x0)

∂θ

∂f(x̃0)

∂θ

>
(6)

where θ is the weight or bias in one layer.

In this paper, we consider the case where f(x0) is a scalar,
thus NTK can be described as a scalar as well. But our
results can be easily extended to the case where a network
has a vector output, and the NTK K(x0, x̃0) is a matrix.
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Norm of Gaussian Random Vector We introduce two
functions that will be used in our analysis. For an n-
dimensional standard Gaussian vector w ∼ N (0, In×n),
we define the following two functions regarding to even
order moments of w and ReLU(w):

G1(n, r) = E
[
‖w‖2r

]
=
r−1∏
t=0

(n+ 2t) (7)

G2(n, r) = E
[
‖ReLU(w)‖2r

]
=

1

2n

n∑
k=0

(
n

k

)
G1(k, r)

For large n, we have:

G1(n, r) = nr
(

1 + 2

(
r

2

)
1

n
+O(

1

n2
)

)
(8)

G2(n, r) =
(n

2

)r (
1 + 5

(
r

2

)
1

n
+O(

1

n2
)

)

Log-Normal Distribution eZ , where Z follows Gaus-
sian distribution, is said to follow log-normal distribution.
When Z ∼ N (−β2 , β), we have the r-th order moment as
E[(eZ)r] = exp(

(
r
2

)
β). We use parameter β to characterize

the randomness of such random variable. The log-normal
distribution is heavy-tail in the sense that moment generat-
ing function E[exp(teZ)] is infinite for all positive t.

4. Feedforward Networks
We first introduce the precise distribution of diagonal ele-
ments of conjugate kernel.

Theorem 1 (CK of feedforward network). The diagonal
elements of conjugate kernel Σ(x0, x0) have the same dis-
tribution as ‖x0‖2

∏d−1
k=1 σ

2
k ‖ReLU(vk)‖2 at initialization

where vk ∼ N (0, Ink×nk
) is the independent standard

Gaussian random vector.

Moreover, Σ′(x0, x0) has the same distribution as
‖x0‖2 σ2

d ‖vd‖
2∏d−1

k=1 σ
2
k ‖ReLU(vk)‖2 at initialization.

We can further calculate the moments of CK as follows.

Corollary 1 (Moments of feedforward network CK). The
r-th order moment of CK of d-layer feedforward network
with ReLU activation is:

E[Σ(x0, x0)r] = ‖x0‖2r
(
d−1∏
k=1

σ2r
k G2(nk, r)

)

= ‖x0‖2r cr
(

exp

((
r

2

)
β

)
+O(

d∑
i=1

1

n2
i

)

)

where r is a non-negative integer, c =
∏d−1
k=1 σ

2
k
nk

2 and
β =

∑d−1
k=1

5
nk

.

We can derive the convergence of distribution as follows.

Theorem 2 (Limiting distribution of CK). With the same
definition of c and β as Corollary 1, at the limit of
n1, · · · , nd−1 → ∞ and c and β converge to fixed val-
ues, c → ĉ and β → β̂, the distribution of E[Σ(x0, x0)r]
converges to a log-normal distribution in law. More specifi-
cally, the limit distribution is the same as ‖x0‖2 ĉeZ where
Z ∼ N (− β̂2 , β̂) is a Gaussian random variable.

Remark 1. By comparing Corollary 1 and moments of log-
normal distribution, we can easily see that all moments
converge to moments of log-normal distribution in the same
limit in Theorem 2. However, we point out that the con-
vergence in law as stated in Theorem 2 is stronger than
convergence of all moments. The reason is that the long tail
of log-normal distribution makes itself not determined by its
moments (Heyde, 1963).

Remark 2. The results in Corollary 1 and Theorem 2 can
be easily generalized to Σ′(x0, x0). When we require nd
also increases to infinity, values c and β in Corollary 1
and Theorem 2 should be changed to c = 2

∏d
k=1 σ

2
k
nk

2 ,
β = 2

nd
+
∑d−1
k=1

5
nk

and the distribution of Σ′(x0, x0) still
converges to log-normal distribution.

When we have nd = 1, the limiting distribution of Σ′(x0, x0)

is the same as ‖x0‖2 σ2
d‖w‖2ĉeZ where w is a standard

Gaussian variable and other values are the same. Therefore,
the activation of one single neuron doesn’t converge to log-
normal distribution.

Next, we derive the distribution of diagonal NTK coming
from trainable weights Wi:

KWi(x0, x0) =
∑
j,k

∂f(x0)

∂(Wi)j,k

∂f(x0)

∂(Wi)j,k

>
. (9)

This distribution is fully characterized by the connections
between CK and NTK.

Theorem 3 (NTK of weights). KWi(x0, x0) at initial-
ization has the same distribution as conjugate kernel
σ2
dΣ(x0, x0).

Remark 3. For weights Wd at the last layer of feedforward
network, KWd

(x0, x̃0) = σ2
dΣ(x0, x̃0) always holds true.

Theorem 3 shows that a similar relationship between NTK
and CK exists for all other weights in the network when
we only consider the distribution of diagonal elements at
initialization.

Remark 4. Since the distribution of KWi(x0, x0) is the
same as σ2

dΣ(x0, x0), they also enjoy the same limiting be-
haviour. More specifically, at the limit of depth and width
increasing to infinity at same rate, KWi

(x0, x0) also con-
verges to a log-normal distribution. This supports the obser-
vation and assumption in (Chmiel et al., 2021) that gradient
magnitudes are log-normal distributed.
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We then derive the distribution of diagonal NTK coming
from trainable biases bi.

Kbi(x0, x0) =
∑
j

∂f(x0)

∂(bi)j

∂f(x0)

∂(bi)j

>
. (10)

Theorem 4 (NTK of each biases). Kbi(x0, x0) has the
same distribution as

∏d−1
k=i σ

2
k+1 ‖ReLU(vk)‖2 where

vk ∼ N (0, Ink×nk
).

The moments are given by

E[Kbi(x0, x0)r] =

(
d∏

k=i+1

σ2r
k

)
d−1∏
k=i

G2(nk, r)

=cr

(
exp

((
r

2

)
β

)
+O(

d∑
i=1

1

n2
i

)

)

where c =
∏d−1
k=i σ

2
k+1

nk

2 and β =
∑d−1
k=i

5
nk

.

This random variable also converges to a log-normal dis-
tribution in the limit that ni, · · · , nd−1 →∞ and c, β con-
verge to fixed values.

We have derived the distributions and moments of weights
NTKs and biases NTKs separately. However, the correla-
tions between them are too convoluted to have a simple
closed form solution. Therefore, we further adopt Jensen’s
inequality to derive an upper bound of any moments of the
whole NTK:

K(x0, x0) =

d∑
i=1

(KWi(x0, x0) +Kbi(x0, x0)). (11)

Corollary 2 (The upper bound of moments of NTK).

E[K(x0, x0)r]

(E[K(x0, x0)])r
≤ exp

((
r

2

)
β

)
+O(

d∑
i=1

1

n2
i

)

where β =
∑d−1
k=1

5
nk

.

By comparing the upper bound in Corollary 2 and moments
of a log-normal distribution, we can conclude that the effec-
tive randomness coefficient is β =

∑d−1
k=1

5
nk

.

5. Residual Networks
We first give the distribution of diagonal CK of the residual
networks.

Theorem 5 (CK of residual network). The conjugate ker-
nel of m-branches residual network Σ(x0, x0) has the
same distribution as ‖x‖2∏m−1

i=0 ‖ê+ Vi‖2 where Vi =

σi,djvi,di
∏di−1
j=1 σi,j ‖ReLU(vi,j)‖, ê is a unit vector

along any direction and vi,j ∼ N (0, Ini,j ,ni,j ).

Remark 5. The random variable ‖Vi‖2 has the same dis-
tribution as Σ′(ê, ê) of a single branch in residual network
when regarded as a separate feedforward network.

The moments of CK can be derived as follows. The closed
form expression can be found at section A.1.
Corollary 3 (Moments of CK). We have

E[Σ(x0, x0)r]=exp

((
r +

4

n

(
r

2

))m−1∑
i=0

ci

)
+O(

m−1∑
i=0

c2i )

where r is a positive integer, ci = 2
∏di
k=1 σ

2
i,k

ni,k

2 .

Next, we provide the limiting distribution of CK of residual
networks.
Theorem 6 (Limiting distribution of CK). Let ci =

2
∏di
k=1 σ

2
i,k

ni,k

2 , βi = 2
ni,di

+
∑di−1
k=1

5
ni,k

and β = 4
n .

At the limit of ci → 0,
∑m−1
i=0 ci → ĉ while βi remains

bounded and β → β̂, the distribution of Σ(x0, x0) con-
verges in law to eĉeZ , where Z ∼ N (− β̂ĉ2 , β̂ĉ).
Remark 6. Theorem 6 is irrelevant to the specific shape
of any residual branch, but only requires the randomness
coefficients βi for every branch to remain bounded. There-
fore, this theorem is applicable to the residual network with
infinite branches but every branch is a finite width and depth
feedforward network.
Remark 7. The randomness coefficient of CK for residual
network is 4

n

∑m−1
i=0 ci and doesn’t directly depend on depth.

If only the summation of ci is bounded, the randomness
coefficient remains finite when depth increases to infinity.
Therefore, the random feature at the last hidden layer of
deep residual network is much stabler than that of a deep
feedforward network.
Remark 8. Theorem 6 implies that in order to keep an ar-
bitrarily deep residual network trainable, it is necessary
that 4

n

∑m−1
i=0 ci has an upper bound that is independent

of branch number m. Similar phenomenon has been stud-
ied in previous works. Zhang et al. (2019) observed that
if ci of each layer is kept as a constant, the variance of
network output will increase as branches increase. Arpit
et al. (2019) proposed an initialization method that ensure∑m−1
i=0 ci doesn’t increase with m.

We then derive the distribution of diagonal NTK of weights
and biases.
Theorem 7 (NTK of each weights and biases).
The diagonal NTK coming from weights in one
layer KWi,j

(x0, x0) has the same distribution as
‖x‖2 σ2

out ‖Vi‖2
∏m−1
s6=i
s=0

‖ê+ Vs‖2. . The definition of Vi,

vi,j and ê is the same as Theorem 5.

The distribution of NTK coming from biases
in one layer Kbi,j (x0, x0) is the same as
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σ2
out

∥∥V ′i,j∥∥2∏m−1
s=i+1 ‖ê+ Vs‖2 , where V ′i,j =

vi,di
∏di−1
k=j σi,k+1 ‖ReLU(vi,k)‖.

We defer the closed form expression of NTK moments into
Section A.1 due to the limit of space. Next, we derive
the limiting distribution of NTKs and connect them with
conjugate kernel of a feedforward network.

Theorem 8 (Limiting distribution of weights NTK). With
the same distribution of ci, βi and β as Theorem 6, at the
limit of cs → 0 for all s 6= i,

∑m−1
s=0
s6=i

cs → ĉ while βi

remains bounded for all s 6= i and β → β̂, the random vari-
able KWi,j (x0, x0) converges in law to σ2

oute
ĉeZΣ′i(ê, ê),

where Σ′i(ê, ê) is the conjugate kernel at the output layer of
a feedforward network with the same shape as (i + 1)-th
branch in the residual network and Z ∼ N (− β̂ĉ2 , β̂ĉ).

Theorem 9 (Limiting distribution of biases NTK). With the
same distribution of ci, βi and β as Theorem 6, at the limit
of cs → 0 for all s > i,

∑m−1
s>i cs → ĉ while βi remains

bounded for all s > i and β → β̂, the random variable
Kbi(x0, x0) converges in law to σ2

oute
ĉeZΣ′i,j(0, 0), where

Z ∼ N (− β̂ĉ2 , β̂ĉ) and Σ′i,j(0, 0) is the conjugate kernel at
the output layer of a feedforward network with the same
shape as (i+ 1)-th branch in the residual network but the
bias bj is initialized as a standard Gaussian vector.

The above results on the weights NTK and biases NTK can
also be combined to derive an upper bound on moments of
the whole NTK.

Corollary 4 (The upper bound of the total NTK).

E[K(x0, x0)r]

(E[K(x0, x0)])r
≤ exp

((
r

2

)(
max
i
βi +

4

n

∑
i

ci

))
+

O

m−1∑
i=0

di∑
j=1

1

n2
i,j

+
m−1∑
i=0

c2i


where βi = 2

ni,di
+
∑di−1
k=1

5
ni,k

and ci = 2
∏di
k=1 σ

2
i,k

ni,k

2 .

Remark 9. By comparing the upper bound in Corollary 4
and moments of a log-normal distribution, we conclude that
the effective randomness coefficient is maxi βi + 4

n

∑
i ci.

Note that βi only depends on the shape of a single branch,
and effective randomness coefficient only depends on max-
imum βi. This clearly contrasts with the feedforward net-
work where, β increases linearly with depth. The extra
term 4

n

∑
i ci is the same as the randomness coefficient of

CK. Therefore, with proper scaling, any order moments of
NTK of residual network could remain bounded at infinite
branches and finite width limit.

6. Overview of Proof
Our analysis is based on the equivalent transform on random
vectors and tensor networks. We note that many previous
works adopt path-based approach to study neural network
with ReLU activation (Hanin & Rolnick, 2018; Hanin &
Nica, 2020; Littwin et al., 2020). This method decomposes
the network output into a summation of all possible path
connection input neuron to output one. Each path carries
the weights and activation from all layers. Compared with
this sum-over-path method, our method is more intuitive
and reveals more properties of CK and NTK.

We first focus on the method for calculating CK and NTK
of the feedforward network. After that, we generalize the
method to residual network.

6.1. Conjugate Kernel

The last hidden layer of a feedforward ReLU network with
biases initialized as 0 can be expressed as:

xd−1 =
d−1∏
i=1

σiReLU(Wd(. . . (ReLU(W1x0)) . . . )) .

We define an auxiliary random variable at each layer as vi =
1

‖xi−1‖Wixi−1. If ‖xi−1‖ = 0, we take vi as a uniform
random vector on the unit sphere. Then we have vi ∼
N (0, Ini,ni). Each layer of the feedforward network can be
expressed as:

yi = σivi ‖xi−1‖ , xi = σiReLU(vi) ‖xi−1‖ . (12)

Therefore, the norm of last hidden layer is ‖xd−1‖ =

‖x0‖
∏d−1
i=1 σi ‖ReLU(vi)‖, and the norm of network out-

put is ‖yd‖ = ‖vd‖ ‖x0‖
∏d
i=1 σi

∏d−1
i=1 ‖ReLU(vi)‖.

The output at each layer of the network yi is dependent on
the previous layer. However, we can show that the normal-
ized output vi is independent with each other.
Lemma 1. All random vectors vi for i = 1, . . . , d are
independent with each other.

Based on above lemma, it is easy to prove the distribution
of Σ(x0, x0) and Σ′(x0, x0) in Theorem 1.

6.2. Neural Tangent Kernel

In this section, we demonstrate our methods via proving the
moments of NTK coming from weights. The proof is best
shown in the language of tensor network diagram. Here we
give a brief introduction of this notation, and we will give
more examples to illustrate how the tensor graph notation
corresponds to the standard vector and matrix notation in
Section B.

We denote a vector v in diagram as v . The node v in
the diagram represents a tensor, and only one edge com-
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ing out of this node indicates that it is a rank-1 tensor or

a vector. Similarly, a matrix V is represented as V .
The contraction of tensors or matrix multiplication is rep-
resented as an edge connecting two tensors. For example

for any two matrix A and B, A B represents the
matrix multiplication AB. The identity matrix can be repre-
sented as an unbounded edge in the diagram without
a node attached to it for simplicity. (Bridgeman & Chubb,
2017) provided a more comprehensive introduction on ten-
sor network diagram. The main benefit of tensor network
diagram is that trace, tensor product and tensor contraction
can be expressed in a simple and unified way without extra
notation.

In the feedforward network with ReLU activation, xi =
ReLU(yi) can be written in a matrix multiplication form
xi = Diyi. The matrix Di is a diagonal matrix where
[Di]j,j is 1 if [yi]j > 0 and is 0 if [yi]j < 0. When [yi]j = 0
we take [Di]j,j as a Bernoulli random variable with p = 1

2 .
Therefore the output of feedforward network can be written
as yd = WdDd−1Wd−1 . . . D1W1x0. For the compactness
of the diagram, we define A = Dd−1Wd−1 . . . Di and B =
Di−1Wi−1 . . . D1W1x0 when we consider NTK coming
from weights Wi in i-th layer.

With above definitions, the network output can be written
as follows:

yd =

( d∏
i=j

σj

)
Wd A Wi B

The weights Wd at the last layer is a vector rather than
matrix since we require scalar output yd.

The partial gradient with respect to Wi can be represented
as follows:

∂yd
∂Wi

=

( d∏
j=1

σj

)
Wd A B

The NTK is just the inner product of gradients, therefore
has the following form:

KWi
(x0, x0) =

( d∏
j=1

σ2
j

) Wd A B

Wd A B


In the above diagram, we highlight the contraction in the red
box. The key idea in our method is substituting this part of
the tensor network with the expectation of another random
tensor network.

Given a random matrix V where all elements are i.i.d. stan-
dard Gaussian variables. We have the expectation of V ⊗V ,
which is V tensor product with itself as EVi,jVk,l = Ii,kIj,l.

This can be represented in the following diagram:

E

[(
V

V

)]
=

This relationship can be generalized to higher order with
Isserlis’ theorem. For example:

E

 V
V

V

V

 = + + .

Generally, the expectation of ⊗2r
i=1V , which is 2r-th order

tensor product of V to itself, can be represented as sum-
mation of (2r − 1)!! terms of tensor product of identity
matrices, each of which corresponds to a pairing in a set of
2r elements.

Based on Isserlis’ theorem, we can substitute the contraction
part in the the diagram of KWi(x0, x0)r as follows:

KWi
(x0, x0)r =

∏d
j=1 σ

2r
j

(2r − 1)!!
EV

(
Wd A V B

)2r

An extra term (2r − 1)!! shows up in the above result. We
next take the expectation of Wd. Since elements in Wd is
also i.i.d. standard Gaussian variables, the expectation of
⊗2r
i=1Wd also contains (2r− 1)!! terms of tensor product of

identity matrices. Therefore, we have following result:

E[KWi(x0, x0)r] =

( d∏
j=1

σ2r
j

)
E

(
A V B
A V B

)r

Recall that Σ(x0, x0)r =
(∏d−1

j=1 σ
2r
j

)
‖AWiB‖2r. By us-

ing similar auxiliary random variable in section 6.1, we have
E[KWi

(x0, x0)r] = σ2r
d E[Σ(x0, x0)r].

For a network with only one hidden layer, the distribution of
Σ(x0, x0) is determined by its moments according to Car-
leman’s condition. Therefore, the distributions of diagonal
weights NTK and diagonal CK are same. For feedforward
network with more than one hidden layer, we need to set up
auxiliary variable in backward manner, the specific proof is
shown in Section D. The biases NTK can be controlled in
similar way.

6.3. Residual Network

For conjugate kernel, we can adopt auxiliary random vari-
ables vi,j similar to Section 6.1. We only need to show vi,j
are independent with each other to prove Theorem 5.

The NTK can be controlled with same methods in Sec-
tion 6.2. The only difference is that when we calculate the
NTK of parameter in one branch, we need to remove the
skip connection bypassing that branch in the tensor network.
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MOMENT PREDICTED ESTIMATED

EΣ(x0, x0)
1 2.50E-1 2.52E-01 ± 2.55E-03

EΣ(x0, x0)
2 6.89E-2 6.98E-02 ± 1.49E-03

EΣ(x0, x0)
3 2.08E-2 2.13E-02 ± 7.43E-04

EΣ(x0, x0)
4 6.86E-3 7.08E-03 ± 3.73E-04

Table 1: Verification of CK and NTK of a three layers

feedforward network.

7. Experimental Results
In this section, we will validate our theoretical results with

numerical experiments.

7.1. Verifying the Moments

We sample 1000 three layers feedforward network and cal-

culate the NTK and CK at initialization. All parameters are

initialized in the distribution specified in Section 3. The

hyper-parameters are set as n0 = n1 = n2 = 100, n2 = 1
and σi =

1
10 . The input x0 is sampled from a unit sphere.

The theoretical prediction and estimation obtained in nu-

merical experiment is shown in Table 1. We only show

the moments for Σ(x0, x0) in this section. Moments of

Σ′(x0, x0) and NTKs are deferred to Section C.1 due to the

limit of space. We don’t include higher order moments be-

cause the long tail nature of CK distribution makes it harder

to numerically estimate higher order moments. The theory

and experiment results fit well in terms of first 4 order mo-

ments, which demonstrates the accuracy of our theoretical

results.

We also compare the moments of residual network in Table 2

by sampling 10000 residual network with ni,j = 100 and

σi,j =
1
10 . Only CK moments are shown below and the full

result can be found in Section C.1.

7.2. Verifying the Log-Normal Distribution

In the following experiment, we will verify our theoretical

results on limiting distribution of diagonal CK and NTK.

According to Theorem 2, the diagonal CK of feedforward

network converges to the log-normal distribution in the in-

finite width and infinite depth limit. We demonstrate the

convergence in Figure 2, in which we take three feedfor-

ward networks with different depth. The hyper-parameters

including σi and ni are tuned to keep c = 1 and β ≈ 1. We

reinitialize these networks 106 times and plot the empiri-

cal distribution of CK. Figures of empirical distribution for

other settings can be found in section C.2.

We use Kolmogorov–Smirnov test to calculate the difference

between the distributions of CK and NTK and their limiting

distributions to validate Theorems 2 to 4. Table 3 shows

MOMENT PREDICTED ESTIMATED

EΣ(x0, x0)
1 2.25E+0 2.25E+00 ± 4.09E-03

EΣ(x0, x0)
2 5.23E+0 5.23E+00 ± 1.95E-02

EΣ(x0, x0)
3 1.26E+1 1.26E+01 ± 7.33E-02

EΣ(x0, x0)
4 3.13E+1 3.12E+01 ± 2.58E-01

Table 2: Verification of CK and NTK of a two branches

residual network. Every branch is a feedforward network

with one hidden layer.

−3 −2 −1 0 1 2

log Σ(x0, x0)

d=2

d=5

d=15

0.0 0.5 1.0 1.5 2.0 2.5

Σ(x0, x0)

d=2

d=5

d=15

Figure 2: Distribution of CK The red line is the theoretical

limiting distribution given c and β.

that the p-value for CK and NTK coming from weights and

biases at first layer. The KS test takes 1000 samples of CK

and NTK can calculate the maximum difference between the

empirical distribution and the theoretical limiting distribu-

tion. The hyper-parameters are the same as neural networks

used in Figure 2. Table 3 illustrates that when d = 2, we

have strong evidence to support that the distributions of CK

and NTK are not log-normal. However, when the depth

increases to 5 and 15, it is hard to distinguish them from the

log-normal distribution.

We further verify the limiting behaviour in Theorems 8

and 9. For CK of residual network, we test the empirical

distribution of Σ(x0, x0) against the limiting the log-normal

distribution. The NTK of residual network is tested against

another sample of eZΣ(x0, x0) where Σ(x0, x0) is CK of

a finite sized feedforward network and eZ is independently

sampled from the log normal distribution. The sample size

in Table 4 is also 1000. We set the branch of residual net-

work as the feedforward networks with one hidden layer and

hyper-parameters are tuned so that
∑

i ci = 1 and β = 4
100 .

We note that the p-value for conjugate kernel in Table 4

gradually increases, which indicates the distribution of CK

gradually converges to the log-normal distribution. The p-

value for NTK in a residual network with only one branch

is very high. This is expected because the variance of log-

normal distribution coming from other branches is 0.

We also conduct empirical study on the correlation between

NTK from different parameters in Section C.3. Although

the joint probability is complicated, we can provide approx-

imation on the correlation coefficient of logarithm NTKs.
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DEPTH Σ(x0, x0) KW1(x0, x0) Kb1(x0, x0)

2 1.60E-10 3.48E-09 3.48E-09
5 1.30E-01 1.44E-02 1.44E-02
15 7.13E-01 1.23E-01 1.23E-01

Table 3: The p-value of KS test on CK and NTK of the
feedforward network.

BRANCHES Σ(x0, x0) KW0,1 Kb0,1

1 0.00E+00 8.28E-01 5.73E-01
5 1.65E-31 1.62E-04 3.96E-05
20 3.97E-05 7.76E-02 2.41E-01
100 1.36E-01 9.71E-02 1.34E-01

Table 4: The p-value of KS test on CK and NTK of the
residual network.

The statistics property of non diagonal elements of random
CK and NTK are discussed in Section C.4. In Section C.5,
the random gradient are used as random feature for classifi-
cation on UCI dataset.

8. Conclusion
We derive the precise distributions and moments of diagonal
elements of Conjugate Kernel (CK) and Neural Tangent
Kernel (NTK) for ReLU networks. These distributions have
long tail similar to log-normal distribution and can be char-
acterized by one parameter β. We show that randomness
coefficient β has different dependency on the network depth
and width in different architecture. For residual network, β
could remain bounded even in the infinite depth and finite
width limit.

This paper includes two regimes where CK and NTK con-
verge to a distribution. In contrast to infinite width and fixed
depth limit where NTK is fixed, our results show the possi-
bility of a neural network to learn data-dependent feature.
However, the dynamics of NTK during training still largely
remains unknown, as the training process is complicated and
data-dependent. We believe explaining how NTK achieves
better alignment with data during training is a challenging
but appealing direction.
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