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Abstract

We provide new adaptive first-order methods for constrained
convex optimization. Our main algorithms ADAACSA and
ADAAGD+ are accelerated methods, which are universal in
the sense that they achieve nearly-optimal convergence rates
for both smooth and non-smooth functions, even when they
only have access to stochastic gradients. In addition, they do
not require any prior knowledge on how the objective func-
tion is parametrized, since they automatically adjust their per-
coordinate learning rate. These can be seen as truly acceler-
ated ADAGRAD methods for constrained optimization.

We complement them with a simpler algorithm ADAGRAD+
which enjoys the same features, and achieves the standard
non-accelerated convergence rate. We also present a set of
new results involving adaptive methods for unconstrained op-
timization and monotone operators.

1 Introduction

Gradient methods are a fundamental building block of mod-
ern machine learning. Their scalability and small memory
footprint makes them exceptionally well suited to the mas-
sive volumes of data used for present-day learning tasks.

While such optimization methods perform very well in
practice, one of their major limitations consists of their in-
ability to converge faster by taking advantage of specific
features of the input data. For example, the training data
used for classification tasks may exhibit a few very infor-
mative features, while all the others have only marginal rel-
evance. Having access to this information a priori would en-
able practitioners to appropriately tune first-order optimiza-
tion methods, thus allowing them to train much faster. Lack-
ing this knowledge, one may attempt to reach a similar per-
formance by very carefully tuning hyper-parameters, which
are all specific to the learning model and input data.

This limitation has motivated the development of adaptive
methods, which in absence of prior knowledge concerning
the importance of various features in the data, adapt their
learning rates based on the information they acquired in pre-
vious iterations. The most notable example is ADAGRAD
(Duchi, Hazan, and Singer| |2011)), which adaptively mod-
ifies the learning rate corresponding to each coordinate in
the vector of weights. Following its success, a host of new
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adaptive methods appeared, including ADAM (Kingma and
Bal2014), AMSGRAD (Reddi, Kale, and Kumar|{2018)), and
SHAMPOO (Gupta, Koren, and Singer|2018), which attained
optimal rates for generic online learning tasks.

A significant series of recent works on adaptive methods
addresses the regime of smooth convex functions. Notably,
Levy (2017), Cutkosky (2019), Kavis et al. (2019), and Bach
and Levy (2019) consider the case of minimizing smooth
convex functions without having prior knowledge of the
smoothness parameter. While a standard convergence rate
of 1/T is fairly easily attainable in the case of unconstrained
optimization, achieving the optimal 1/7"2 rate becomes sig-
nificantly more challenging. Even worse, for constrained
minimization objectives, where the gradient is nonzero at the
optimum, it is generally unclear how an adaptive method can
pick the correct step sizes even when aiming for the weaker
non-accelerated rate of 1/7'. These difficulties occur when
one merely attempts to find the correct learning rate; taking
advantage of non-uniform per-coordinate learning rates, as
in the case of the original ADAGRAD method has remained
largely open. In (Kavis et al.|[2019), finding such a method
with an accelerated 1/7% convergence is posed as an open
problem, since it would allow the development of robust al-
gorithms that are applicable to non-convex problems such as
training deep neural networks.

In this paper, we address this problem and present adap-
tive algorithms which achieve nearly-optimal convergence
with per-coordinate learning rates, even in constrained do-
mains. Our algorithms are universal in the sense that they
achieve nearly-optimal convergence rate even when the ob-
jective function is non-smooth (Nesterov||[2015). Further-
more, they automatically extend to the case of stochas-
tic optimization, achieving up to logarithmic factors opti-
mal dependence in the standard deviation of the stochastic
gradient norm. We complement them with a simpler non-
accelerated algorithm which enjoys the same features: it
achieves the standard convergence rate on both smooth and
non-smooth functions, and does not require prior knowledge
of the smoothness parameters, or the variance of the stochas-
tic gradients.

Previous Work: Work on adaptive methods has been ex-
tensive, and resulted in a broad range of algorithms (Duchi,
Hazan, and Singer|201 1; Kingma and Ba|2014} Reddi, Kale,
and Kumar [2018; Tieleman and Hinton|2012; [Dozat|2016}



Chen et al.|2018)). A significant body of work is dedicated
to non-convex optimization (Zou et al. 2018 |Ward, Wu,
and Bottou|[2019; [Zou et al.|[2019; L1 and Orabonal2019;
Défossez et al.[2020). In a slightly different line of research,
there has been recent progress on obtaining improved con-
vergence bounds in the online non-smooth setting; these
methods appear in the context of parameter-free optimiza-
tion, whose main feature is that they adapt to the radius of
the domain (Cutkosky and Sarlos|2019; |Cutkosky|[2020).

Here we discuss, for comparison, relevant previous results
on adaptive first order methods for smooth convex optimiza-
tion where the function f : R? — R to be minimized is
smooth with respect to some unknown norm ||-|| 5, where B
is a non-negative diagonal matrix. The case where B = g1
is a multiple of the identity corresponds to the standard as-
sumption that f is S-smooth, and we refer to this as the
scalar version of the problem. In the case when B is a non-
negative diagonal matrix, we optimize using the vector ver-
sion of the problem.

Notably, Levy (Levy| 2017) presents an adaptive first
order method, achieving an optimal convergence rate of
O (BR?/T), without requiring prior knowledge of the
smoothness $. While this method also applies to the case
where the domain is constrained, it requires the strong
condition that the global optimum lies within the domain.
In (Levy, Yurtsever, and Cevher|2018a), this issue is dis-
cussed explicitly, and the line of work is pushed further
in the unconstrained case to obtain an accelerated rate of
O (BR*In(BR/ ||gol|) /T?), where g is the gradient eval-
vated at the initial point. In (Bach and Levy| [2019), the
authors consider constrained variational inequalities, which
are more general, as they include both convex optimization
and convex-concave saddle point problems. The rate they
achieve is O (BR?/T), where 3 is the an upper bound on
the unknown Lipschitz parameter of the monotone operator,
generalizing the case of 5-smooth convex functions. Based
on this scheme, in (Kavis et al.|2019)) the authors deliver an
accelerated adaptive method with nearly optimal rate for the
scalar version of the problem. There, they pose as an open
problem the question of delivering an accelerated adaptive
method for the vector case. We give a more in-depth com-
parison to previous work in the supplement.

Our Contributions: We give the first adaptive al-
gorithms with per-coordinate step sizes achieving nearly-
optimal rates for both constrained convex minimization and
variational inequalities arising from monotone operators.
Variational inequalities are a very general framework that
captures convex minimization, convex-concave saddle point
problems, and many other problems of interest (Bach and
Levy|2019; Nemirovski|2004). Our algorithms are universal,
in the sense defined by Nesterov (2015). They automatically
achieve optimal convergence rates (up to a /In 7" factor) in
the smooth and non-smooth setting, both in the determinis-
tic setting as well as the stochastic setting where we have
access to noisy gradient or operator evaluations. Our algo-
rithms automatically adapt to problem parameters such as
smoothness, gradient or operator norms, and the variance of
the stochastic gradient or operator norms. Our results answer

several open questions raised in previous work (Kavis et al.
2019; Bach and Levy|[2019).

For constrained convex minimization, we present three
algorithms: ADAGRAD+, ADAACSA, and ADAAGD+.
For p-smooth functions, ADAGRAD+ convergences at the
rate O (R%,d - 3In3/T), and ADAACSA and ADAAGD+

converge at the rate O (R%.d - 31In3/T?). Since Rood'/?
is the ¢ diameter of the region containing the /., ball
of radius R, these exactly match the rates of standard
non-accelerated and accelerated gradient decent, when the
domain is an ¢, ball (Nesterov| |2013). Therefore these
schemes can be interpreted as learning the optimal diagonal
preconditioner for a smooth function f.

For variational inequalities, we present the Adaptive
Mirror-Prox algorithm that couples the Universal Mirror-
Prox scheme (Bach and Levy|2019; Nemirovski|2004) with
novel per-coordinate step sizes. The Universal Mirror-Prox
algorithm of (Bach and Levy|[2019) sets a single step size
for all coordinates that is initialized using an estimate for
the gradient norms. In contrast, our algorithm uses per-
coordinate step sizes that are initialized to an absolute con-
stant. In addition to eliminating a hyperparameter that we
would need to tune, this approach leads to larger stepsizes.
Adaptive methods such as ADAGRAD are also implemented
and used in practice using step sizes initialized to a small
constant, such as e = 10710, We show that the algorithm si-
multaneously achieves convergence guarantees that are opti-
mal (up to a v/In T factor) for both smooth and non-smooth
operators, as well as in the deterministic and stochastic set-
tings.

Algorithmically, we provide a new rule for updating
the diagonal preconditioner, which is better suited to con-
strained optimization. While the unconstrained ADAGRAD
algorithm updates the preconditioner based on the previ-
ously seen gradients, here we update based on the movement
performed by the iterate (see Figure[I). In the unconstrained
setting, our update rule matches the standard ADAGRAD up-
date. The works (Kavis et al.[2019; Joulani et al.[2020) tack-
led the difficulties introduced by constraining the domain by
using a different update rule based on the change in gradi-
ents.

Contemporaneous work: Joulani et al. (2020) also ob-
tain an accelerated algorithm with coordinate-wise adaptive
rates, in constrained domains. The convergence guarantee
is stronger than ours by a O(In ) factor in the smooth
setting, where [ is the smoothness constant, and by a
O(VInT) factor in the non-smooth and stochastic settings.
On the other hand, we obtain adaptive schemes for a wide-
range of settings, including a non-dual-averaging scheme
(ADAACSA, based on the AC-SA algorithm (Lan|2012)),
a dual-averaging scheme (ADAAGD+, based on the AGD+
algorithm (Cohen, Diakonikolas, and Orecchia/|2018))), and
an adaptive mirror-prox scheme (Bach and Levy|2019; Ne-
mirovski [2004) for solving variational inequalities which
generalizes both convex minimization and convex-concave
zero-sum games. The latter answers an open question (Bach
and Levy|2019). Joulani et al. (2020) propose a very differ-
ent dual-averaging scheme for convex minimization based
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Table 1: Convergence rates of adaptive methods in the vector setting. We assume that f : £ — R, with  C R4, is ei-

ther smooth with respect to an unknown norm ||-|| 5, where B = diag (51, ...

, B4), or non-smooth and G-Lipschitz. We as-

sume access to stochastic gradients v f(x) which are unbiased estimators for the true gradient and have bounded variance

- 2
E HV flz) = Vf(z) H < o2. The Adaptive Mirror Prox algorithm is for the more general setting of variational inequalities.

on the online-to-batch conversion (Cutkosky|2019; |[Kavis
et al[[2019) and the online learning with optimism frame-
work (Mohri and Yang|2016). Our algorithms use the iterate
movement to set the per-coordinate step sizes, whereas the
algorithm presented in (Joulani et al.|2020) uses the change
in gradients.

2 Preliminaries

Constrained Convex Optimization: We consider the prob-
lem mingcx f(z), where f: R — R is a convex func-
tion and X C R? is an arbitrary convex set. For simplic-
ity, we assume that f is continuously differentiable and we
let V f(z) denote the gradient of f at x. We assume access
to projections over K in the sense that we can efficiently
solve problems of the form argmin,cx (g,2) + % Hx||%
where D is an arbitrary non-negative diagonal matrix and
], = V& Da.

We say that f is smooth with respect to the norm ||-|| 5 if
V2f(x) < B, for all z € K. Equivalently, we have f(y) <
f@)+(Vf(x),y —x)+ 3 |lz —y|g, forallz,y € K. We
say that f is strongly convex with respect to the norm ||-|| 5
if V2f(x) = B, forall x € K.

Variational Inequalities: We also consider the more
general problem setting of variational inequalities arising
from monotone operators. Let X C R? be a convex set
and let F': L — R be an operator. The operator F' is
monotone if it satisfies (F(xz) — F(y),x —y) > 0 for all
x,y € K and it is smooth with respect to the norm ||-||,5
if |F(z) — F(y)llg-1 < |lz —yllg forall z,y € K. The
goal is to find a strong solution x* for the variational in-
equality arising from F, i.e., a solution z* € K satisfying

Letzog € K, Do = I, Roo > max, yek || — Yl -
Fort=0,...,T — 1, update:

. 1
s —argin {(97)0) + o -l }

2
D2, = D2, (1 + W) for all i € [d].

o0

_ T
Return Ty = 4 Y, 4.

Figure 1: ADAGRAD+ algorithm.

(F(z*),z* —z) < 0forall z € K.

Variational inequalities are a very general framework that
captures convex minimization, convex-concave saddle point
problems, and many other problems of interest (Bach and
Levy|2019; Nemirovski|2004). For convex minimization, the
operator F'(z) is simply the gradient V f ().

3 Adaptive Schemes for Constrained Convex
Optimization and Variational Inequalities

Constrained ADAGRAD Scheme: Figure[I|presents the ba-
sic ADAGRAD algorithm for constrained convex optimiza-
tion. The algorithm can be viewed as a generalization of
ADAGRAD to the constrained setting. To see the parallel
with ADAGRAD, consider the gradient mapping:

1
gt = =Dy (w41 — ) © w11 =2 — Dy gy

Letting n = R, the update is
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In the unconstrained setting, we have g; = V f(z;) and our
scheme almost coincides with ADAGRAD. We have chosen
the initial scaling to be the identity, whereas the original
ADAGRAD scheme uses Dy = el. Our analysis extends to
this choice and we incur an additional O (In(1/¢)) factor in
the convergence guarantee. In addition, the diagonal matrix
D, we use is off by one iterate, in the sense that it does not
contain information about g;. This is an essential feature of
our method, since in the constrained setting computing the
gradient mapping requires access to D;.

Similarly to (Bach and Levy|2019), we can motivate the
choice of updating D by the iterate movement as follows.
The algorithm simultaneously addresses the unconstrained
setting and the more challenging constrained setting. Since
our goal is to design a universal method, intuitively we
would like the step size to decay in the non-smooth setting
and to remain constant in the smooth setting, similarly to the
standard (non-adaptive) gradient descent schemes. In the un-
constrained setting, the iterate movement coincides with the
gradient. In the constrained setting, the gradient is non-zero
at the optimum and we cannot hope that the gradient norm
decreases as we approach the optimum. Instead, as the it-
erate converges to the optimum, the movement also goes to
zero and thus our adaptive step size remains around the op-
timal value.

We show that our algorithm is universal and it obtains the
smooth rate of % if the function is smooth while retaining

the optimal % rate if the function is non-smooth. Our al-

gorithm and analysis extend to the stochastic setting. The al-
gorithm automatically adapts to the smoothness parameters,
the gradient norm, and the variance parameter.

Vie[d].

Accelerated Schemes: We give two adaptive schemes
for constrained convex optimization that achieve the opti-
mal rate of % for smooth functions without knowing the
smoothness parameters. Our algorithms are adaptive ver-
sions of the AC-SA algorithm (Lan|[2012)), and the AGD+
algorithm (Cohen, Diakonikolas, and Orecchial2018). For
this reason, we coin the names ADAACSA (Figure @) and
ADAAGD+ (Figure [3). The AGD+ algorithm is a dual-
averaging version of AC-SA. The algorithms and their adap-
tive versions have different iterates and they may be useful
in different contexts.

We show that our algorithms simultaneously achieve con-
vergence rates that are optimal (up to a v/InT factor) for
both smooth and non-smooth functions, both in the deter-
ministic and stochastic setting. The algorithms automati-
cally adapt to the smoothness parameters, the gradient norm,
and the variance parameter.

Variational Inequalities: Building on the work of Bach
and Levy (2019), we give the first universal method with
per-coordinate adaptive step sizes for variational inequali-
ties arising from monotone operators, and answer the open
question asked by them. The algorithm, shown in Figure

LetDO:I’ZoeK:’at:’ytzl—i—%’R

2
maxg yek ||z — yll-
Fort=0,...,T — 1, update:

z=(1—a; Yy +a; 2z,
. 1
cevr = argmip {0 (95, 0) + 5 Ju =l |
Yrr = (1—a; )y + oy 241

2
D2, =D?, <1 + W) forall i € [d].

Return yr.

Figure 2: ADAACSA algorithm.

Let Dy = 1,2 € K,ar =t, A = 22:1 a; = t(tgl)’

RZ > max, yex |2 =y %
Fort=1,...,T, update:

e I
t A, Yt—1 A, t—1
. 1
2 = arginellrcl (Zl (a;V f(zi),u) + 3 llu — ZO”;)
Aiq Qg
Yt = A, Yi—1 + tht )

2
Zti — Rt—1.4
D2, = D2, <1+W

o0

> ,forall i € [d].

Return yp.

Figure 3: ADAAGD+ algorithm.

is the natural extension to the vector setting of the scheme of
(Bach and Levy|2019). A notable difference is that the algo-
rithm provided in (Bach and Levy|2019) uses an estimate for
G > max ek || F(x)|| as part of the step size. Our algorithm
does not use the G parameter and it automatically adapts to
it, as well as the smoothness and variance parameters.

We show that the algorithm simultaneously achieves con-

vergence rates that are optimal (up to a v/InT factor) for
both smooth and non-smooth operators, both in the deter-
ministic and stochastic setting. We note that, in the stochas-
tic setting, the analysis of (Bach and Levy|[2019) makes the
additional assumption that the stochastic estimates of the op-
erator are bounded almost surely, which is stronger than our
assumption of bounded variance. This assumption simpli-
fies the analysis, as it allows one to directly upper bound
Dr (equivalently, lower bound the step size nr = 1/Dr),
which is a key loss term in the convergence analysis. Our
analysis removes this assumption by employing a more in-
volved argument that does not upper bound Tr(Dr) directly.

Table [T] summarizes the convergence guarantees for all of
the algorithms, and we give the complete analyses in the



Letyo € K, D1 =1, Roc > max, yer || — Yl o
Fort =1,...,T, update:
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ye = argmin {(F(xt)w} +5lle - ytIHDt} :
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_ T
ReturnZp = 4 Y, 4.

Figure 4: Adaptive Mirror-Prox algorithm, extending (Bach
and Levy[2019) to the vector setting.

supplement.

4 Convergence Analysis

In this section, we provide a brief sketch of the convergence
analysis in the setting where f is smooth with respect to the
norm ||-|| 5, where B = diag(31, ..., 3q), and we have ac-
cess to exact gradients (o0 = 0). Similarly, for variational
inequalities, we consider the setting where F' is smooth with
respect to ||-|| ; and we can evaluate F exactly. The complete
analyses can be found in the supplement.

ADAGRAD+ Algorithm: Using the standard analysis of
gradient descent for smooth functions, we obtain

f(@es1) = f(@") <

1 2 2 2

5 (oo =21, = lzess = 2113, = lower - 2}, )
2

T3 [@e1 — el -

Summing up over all iterations and using the inequality
|z =yl < Tr(D) |l — y]|%, < Tx(D)RZ, we obtain

T—1
(f(@i41) = f(2¥)) <
t=0
T—1
1 1
gRgoTT(DT) =5 2 et - I,
t=0
T-—1
1
5 D e — el -

t

Il
o

The heart of the analysis is to show that the right-hand
side is bounded by a constant (independent of T'). Our
analysis can be viewed as a vector generalization of the
scalar analyses presented in previous work (Levy, Yurt-
sever, and Cevher|2018b; Bach and Levy|[2019; |Kavis et al.
2019). Note that the above guarantee has two loss terms,
R? Tr(DT) and ZtTBl lzse1 —
Z ||xt+1 — :z:t||D We will use the gain to absorb most

xt||?3, and the gain term

of the loss. To this end, we split the guarantee into two terms
as follows:
=
2 2
R Tx(Dr) = 5 ; [e+1 — zellp,

()
T-1

1 T—-1

2 2

+ Z [@e41 — 2l — 5 Z |41 — 2|, -
t=0 t=0

()
We bound each of the terms (x) and (xx) with the aid of the
following inequalities, which are standard and are equivalent
to the inequalities used in previous work.

Lemma 4.1. Let d%, d3,d3,... ,d2T and R? be scalars. Let
Do > 0 and let D1,...,Dr be defined according to the

recurrence D}, | = Dj (1 + %é). We have Zf;i Dy -
d? > 2R?>(D, — D,). If & < R? for all t, we have

VD &2 < (V24+1)R*(Dy — D) and Y0-) d? <
AR (B

To bound (), we apply Lemma for each coordinate
i separately with d? = (2441, — x+;) and R* = R% . The
first inequality in the lemma implies that
(x) < R%Te(Do) = R2.d
To bound (**), we note that, for each coordinate 4, Dy ; is

increasing with £. We let T'; be the last iteration ¢ for which
D, ; < 2p;. We have

(%)

d T-1

1
> (51 Ter1i — i) — 3 Dui (Tt41,0 — xt,i)2>
=0

=11

d T;
2
ZZ/BZ Tt41,5 xt,i)

For each coordlnate i € [d] separately, we apply Lemma
with d2 = (2441, — 1) and R = R2 > d2. The third
inequality in the lemma implies

T; T,—1
(g1, — xt,i)Q < R% + Z (Teg1,i — l"t,i)Q
t=0 t=0
2 2 Dy, i 2 2
<R +4R In Do) = RS, +4R% In(25;) .
0,7
Therefore

d
(%) <O (Rio Zﬂi In (2@)) :

Putting everything together, we obtain

1 T

f@r) = f=") < & Y (flze) = fa™)

<0 (R?,o 2?21 Bi lﬂ(25i)> _
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Our analysis above did not directly upper bound
Tr(Dr). Using our techniques, we show in Lemma

9.7 that Tr(Dy) < Tr(Dy) + O (22‘21 B;1n (251»)) +

(f(x0) — f(x*)) /(2R2,). Thus the ADAGRAD step sizes
remain constant and very close to the ideal step sizes given
by the smoothness parameters. The result theoretically
confirms the intuition provided in previous work (e.g.,
(Bach and Levy|2019)) and it expands our understanding of
ADAGRAD.

ADAACSA Algorithm: We assume that the parame-
ters of the algorithm are chosen so that ag = 1, 0 <
(p+1 — 1) 141 < apye, and ¢ < oy for all ¢. By extending
the analysis given in (Lan/2012), we obtain

(ar = 1) yr (f(yr) — f(2™))
< %RgoTr(DT,l)

2 1 2
—zey1llg — 5 |2 — Zt+1||Dt> :

We analyze the right-hand side using an argument that is
analogous to the one we used above for ADAGRAD+. We
write

( R, Tr(Dr_y) Z Iz — Zt+1||Dt>
*)
5 (321 - (3-55) ! )
5 1Rt = 2i+1llp — | 5 = 5= | It — Zt+1lip,
~\2a B \2 922 b

(xx)
Using Lemma we obtain (x) < 1RZ.d and (%x) <
o (Rgo Z;l=1 BiIn (2ﬁ1)> Thus

d
(ar = Dr (flyr) — f(z¥)) <O <Rc2>o Zﬁi In (261'))

i=1

One choice is v = oy = % + 1. Another choice is v; = ay,

_ 144/14407
2

ag =1, 411 =
assumptions and they give

. Both choices satisfy the above

2 N 5194
flur) — f@) =0 (Roo YA %)) |

Adaptive Mirror-Prox Algorithm: Following (Bach and
Levy| 2019), we analyze the convergence of the algo-
rithm in Figure [] for variational inequalities via the regret
Zle (F(x4),x¢ — x*). In the following, we sketch the re-
gret analysis and show that, if F'is smooth, the regret is up-
per bounded by a constant. Bach and Levy (2019) showed
that this implies the optimal % convergence rate for smooth
operators. We refer the reader to the supplement for the de-
tails and the complete analysis. By extending the analysis of

(Bach and Levy|2019), we obtain

QZ 1), xp —x¥) <
T

2 2
> (low = yalD, + e = well3,)

t=1

]% Tr l)T

M\H

()

T
2 1 2
+ 3 (= vl = 5 = e

t=1

(%)

T
2 1 2
# 3 (o=l = e =l )
t=1

(%Kx)

Using a similar argument to the one above, we ob-
tain that (x) < 2R2.d and (%x) + (x * %) <

O(Rgo S B ln(26i)). Thus the regret is at most
o (Rio Zgﬂ Biln (251‘))-

5 Experimental Evaluation

To empirically validate the ADAACSA and ADAAGD+ al-
gorithms, we test them on a series of standard models en-
countered in machine learning. While the analyses we pro-
vided are specifically crafted for convex objectives, we see
that these methods exhibits good behavior in the non-convex
settings corresponding to training deep learning models.
This may be motivated by the fact that a significant part of
the optimization performed when training such a model oc-
curs within convex regions (Leclerc and Madry|2020).

Algorithms: We evaluated our ADAACSA and
ADAAGD+ algorithms against three popular methods,
SGD with momentum, ADAGRAD, and ADAM. We also
evaluated the algorithms against the recent method of
(WJoulan1 et al.|2020) which we refer to as JRGS. We
performed extensive hyper-parameter tuning, such that
each method we compare against has the opportunity to
exhibit its best possible performance. We give the complete
experimental details in the supplement.

Synthetic experiment: First, we tested all the methods on
a synthetic example, known as Nesterov’s “worst function
in the world”, which is a canonical example used for testing
accelerated gradient methods (Nesterov 2013):

f()=2<$1+33 +Z i = Tit1) )-ﬂh

We see that ADAACSA easﬂy beats all the other methods.
In Table[2lwe show for each method the number of iterations
before finding a solution with a fixed target error in function
value. We plot the values of f in Figure[3]

Classification experiments: Additionally, we tested
these optimization methods on three different classification



le-1 | le-2 le-3 le-4 le-5
SGD 16 400 | >2000 | >2000 | >2000
ADAGRAD | 101 104 | >2000 | >2000 | >2000
ADAM 64 149 570 1055 1697
ADAACSA 10 73 275 387 431
ADAAGD+ 30 154 525 934 1633
JRGS 18 136 278 495 880
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Table 2: Evaluation on Nesterov’s “worst function in the
world”. For each method, we display the number of itera-
tions before the first iterate with target error is encountered.

SGD Adam —— AdaAGD+ SGD Adam —— AdaAGD+
Adagrad AdaACSA — JRGS Adagrad AdaACSA — JRGS
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Figure 5: Function value achieved using 2000 iterations and
30 iterations, respectively, for Nesterov’s “worst function”.

models typically encountered in machine learning. The first
one is logistic regression on the MNIST dataset. This is a
simple convex objective for which ADAACSA achieves the
best training loss, while ADAAGD+ achieves the best test
loss. The second is a convolutional neural network on the
MNIST dataset. Despite non-convexity, both our methods
behave well, and ADAAGD+ achieves the best test loss. The
third is a residual network for the CIFAR-10 classification
task. We report the training losses, test losses and test accu-
racies achieved in Table 3] In Figure 6| we plot these values,
averaged over 5 runs.

Discussion: We verified experimentally that ADAACSA
and ADAAGD+ behave very well on convex objectives, as
anticipated by theory. For practical non-convex objectives,
they show a remarkable degree of robustness, managing to
reach close to zero training loss. By contrast, JRGS requires
a significant amount of tuning in order to converge — our ex-
periments show that in non-convex settings, without prop-
erly constraining the domain to a small /., ball, it is very
hard for it to achieve any nontrivial progress.
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Figure 6: Train losses, test losses, and test accuracies. Top
row: logistic regression on MNIST. Middle row: convolu-
tional neural network on MNIST. Bottom row: residual net-
work on CIFAR-10. The plotted lines correspond to values
averaged over 5 runs (except for ADAGRAD on CIFAR-10,
where one run failed to converge). Shaded areas correspond
to the standard deviation.

logistic train loss test loss test accuracy
SGD 2.44e-1+0.38¢e-2 2.86e-1+0.46e-2 92.25+0.21
ADAGRAD 2.31e-1+0.27e-2 2.84e-1+0.42¢-2 92.41+0.20
ADAM 2.35e-1+0.17e-2 2.80e-1+0.22e-2 92.53+0.12
ADAACSA 2.23e-1+0.10e-2 2.90e-1+0.28¢-2 92.36+0.13
ADAAGD+ 2.38e-1+0.15¢-2 2.68e-1+0.14e-2 92.57+0.09
JRGS 3.35e-1+1.22e-2 4.42e-1£1.15¢-2 90.61+0.40

CNN train loss test loss test accuracy
SGD 10.46e-4+207.62e-5 | 4.06e-2+1.39¢-2 99.30+0.23
ADAGRAD 7.32e-4+25.06e-5 2.83e-2+0.17e-2 99.19+0.07
ADAM 0.05e-4+0.04e-5 3.28e-2+0.24e-2 99.39+0.04
ADAACSA 0.18e-4+0.71e-5 3.93e-2+0.26e-2 99.28+0.08
ADAAGD+ 10.18e-4+57.92e-5 2.49e-240.18e-2 99.24+0.04
JRGS 4.43e-4+7.32e-5 3.33e-2+0.44e-2 99.27+0.08

ResNet18 train loss test loss test accuracy
SGD 0.10e-1+0.19¢-2 0.50+1.11e-2 90.83+0.24
ADAGRAD* 0.07e-1£0.05¢e-2 0.61+2.01e-2 88.50+0.35
ADAM 0.06e-1+0.09¢-2 0.48+1.15¢-2 91.44+0.18
ADAACSA 0.20e-1+0.31e-2 1.0049.13e-2 83.48+1.15
ADAAGD+ 0.23e-1£0.18e-2 0.60+2.79%-2 88.10£0.60
JRGS 0.32e-1+0.16e-2 0.55+3.24e-2 88.20+0.55

Table 3: Comparison between optimization methods for lo-
gistic regression on MNIST/convolutional neural network
on MNIST/residual network on CIFAR-10.
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