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Huy L. Nguyễn∗, Anamay Chaturvedi∗, Eric Z Xu∗

Khoury College of Computer Sciences, Northeastern University
440 Huntington Ave

Boston, Massachusetts 02115
{hu.nguyen, chaturvedi.a, xu.er}@northeastern.edu

Abstract

We introduce a new (ϵp, δp)-differentially private algorithm
for the k-means clustering problem. Given a dataset in Eu-
clidean space, the k-means clustering problem requires one
to find k points in that space such that the sum of squares
of Euclidean distances between each data point and its clos-
est respective point among the k returned is minimised. Al-
though there exist privacy-preserving methods with good
theoretical guarantees to solve this problem, in practice it
is seen that it is the additive error which dictates the prac-
tical performance of these methods. By reducing the prob-
lem to a sequence of instances of maximum coverage on
a grid, we are able to derive a new method that achieves
lower additive error than previous works. For input datasets
with cardinality n and diameter ∆, our algorithm has an
O(∆2(k log2 n log(1/δp)/ϵp + k

√︁
d log(1/δp)/ϵp)) addi-

tive error whilst maintaining constant multiplicative error. We
conclude with some experiments and find an improvement
over previously implemented work for this problem.

Introduction
Clustering is a well-studied problem in theoretical computer
science. A relatively general variant of this problem is when
given a dataset D of size n to find k centers that minimize the
sum of distances of each point to its closest center. When the
ambient space is Euclidean and the distance is the square of
the Euclidean metric this is known as the k-means problem.

When algorithms handle sensitive information, an impor-
tant requirement that they might be expected to fulfill is that
of being differentially private (Dwork et al. 2016). Differen-
tial privacy provides a framework for capturing the loss in
privacy that occurs when sensitive data is processed. In this
work we are interested in the centralized model of differential
privacy, where the algorithm whose privacy loss we want to
bound is executed by a trusted curator with access to many
agents’ private information and who must reveal their answer
publicly.

In the theoretical study of the k-means problem, reducing
the worst-case multiplicative approximation factor has been
the focus of a major line of work (Kanungo et al. 2004; Ah-
madian et al. 2020). However, even Lloyd’s algorithm (Lloyd
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1982), which has a tight sub-optimal multiplicative guarantee
of O(log k), works well in practice. This behaviour can be
understood by showing (Aggarwal, Deshpande, and Kannan
2009) that Lloyd’s finds a solution with O(1) multiplicative
error with constant probability, or that for a general class of
datasets satisfying a certain separability condition (Ostrovsky
et al. 2012) the multiplicative error again has a strong O(1)
bound.

In contrast, when the algorithm is required to be (ϵp, δp)-
differentially private, no pure multiplicative approximation
is attainable and additive error is necessary. This principle is
formalised for the closely related discrete k-medians1 prob-
lem in theorem 4.4 of Gupta et al. (2010) which shows that
there is a family of instances whose optimal clustering cost
is 0 but any differentially private algorithm must incur an
Ω(∆2k(log n/k)/ϵp) expected cost. In practice, for many
datasets it is seen that although the non-private clustering
cost naturally decreases as the number of centers k increases,
the costs incurred by differentially private algorithms quickly
plateau (as in the experiments of Balcan et al. (2017)), sug-
gesting that they have reached their limit in the additive error.
Given this fundamental barrier, a major question is:

Question: Is it possible to obtain a finite approximation
with additive error nearly linear in k?

Contributions
We introduce a differentially private k-means clustering al-
gorithm for the global model of differential privacy. The
additive error is nearly linear in k in contrast to a polynomial
overhead in previous works, and the multiplicative error is
constant, which is competitive with all previous works. The
algorithm also exhibits an improvement experimentally over
earlier work on synthetic and real-world datasets (Balcan et al.
2017). For a specific setting of parameters with constants ap-
plicable for experiments, we have the following bound. More
general bounds can be found in subsequent sections.

Theorem 1. There is an (ϵp, δp) differentially private al-
gorithm for the k-means problem that achieves a util-
ity bound of O(1)fD(OPTD) + O

(︂
k∆2 log2 n log 1/δp

ϵp

)︂
+

1The discrete k-medians problem is formulated similarly except
the distance function is a metric, and the centers come from a public
finite set and not the whole ambient space.



Reference

Mult. Approx. Add. Approx.

Balcan et al. (2017)

O
(︁
log3 n

)︁
Õ
(︁
k2 + d

)︁
Stemmer and Kaplan (2018)

O(1/γ) Õ
(︁
k1.5 + d0.5+γk1+γ

)︁
Jones, Nguyen, and Nguyen (2020)

O(1/γ) Õ
(︁
k + d0.5+γk1+γ

)︁
This work

O(1) Õ(k
√
d)

Table 1: Comparison with prior works where we omit all log
terms and the common ∆2 factor in the additive error, the
dependence on privacy parameters and set δp = 1/n1.5.

O

(︃
∆2k
√

d log 1/δp
ϵp

)︃
, where D is the input dataset,

fD(OPTD) is the optimal k-means cost for the input dataset
D, d is the ambient dimension of D, n is the cardinality of
D, ∆ is the diameter of D, and the failure probability of the
algorithm is polynomially small in n.

We extend the construction of Gupta et al. (2010) for the
discrete k-medians problem to our setting and show that a
linear dependence on k in the additive error is necessary for
any finite multiplicative approximation.

Theorem 2 (Informal). Any (ϵp, δp)-differentially pri-
vate algorithm must incur an expected additive error of
Ω
(︂

∆2k ln(ϵp/δp)
ϵp

)︂
.

The same construction also implies a lower bound for
(ϵp, 0)-differential privacy.

Theorem 3 (Informal). Any (ϵp, 0)-differentially private al-

gorithm must incur an expected additive cost of Ω
(︂

∆2kd
ϵp

)︂
.

All full proofs may be found in the supplementary material.
We finish with an experimental evaluation of our algorithm,
where we find better performance than an implementation of
previous work (Balcan et al. 2017).

Related Work and Techniques
In Gupta et al. (2010), the authors gave an algorithm for solv-
ing the discrete k-medians problem and subsequent works
focused on identifying good discretizations of the continuous
domain to invoke their algorithm. A recent approach by Stem-
mer and Kaplan (2018) uses locality sensitive hashing (LSH)
to identify a small set of points that serve as potential cen-
ters. Inherent in this approach is a trade-off between the
multiplicative approximation and the size of this discrete set,
which comes from the trade-off in LSH between the approx-
imation and the number of hash functions. The number of
candidate centers increases additive error and thereby causes

a trade-off between the multiplicative Õ(1/γ) and additive
Õ(k + d0.5+γk1+γ) errors. The work Jones, Nguyen, and
Nguyen (2020) achieved Õ(k1+γd0.5+γ) additive error but
the multiplicative error remained O(1/γ).

In this work, we reduce the minimum additive error in this
trade-off to nearly linear in k and also eliminate the resulting
blow-up in the multiplicative factor using the most natural
approach: discretizing the space using a grid and using all
grid points as candidate centers. We reduce the data dimen-
sions to O((log n)/ϵ2) and preserve all distances. However,
there can be (n)logn many points in the grid that we construct
since the grid size must start from 1/n for negligible additive
error. It is not clear how to implement a selection algorithm
(such as the exponential mechanism (McSherry and Talwar
2007)) on such a large number of choices. This hurdle, iden-
tified in Balcan et al. (2017), prompted subsequent works to
find alternative approaches. Resolving it directly is our key
contribution.

We observe that it is not inherently difficult to sample
uniformly among a large number of choices. Our task is non-
trivial since the k-means cost objective is a complex function.
To simplify the sampling weights, we exploit the connection
between clustering and coverage and reduce the problem to
finding maximum coverage: count the number of data points
within a given radius of each candidate center. The crucial ob-
servation is that there are at most nÕ(1/ϵ2) grid points within
the threshold radius of any data point, meaning that there
are only a polynomial number of grid points with non-zero
coverage. Thus, all but a polynomial number of choices have
the same coverage of 0 making it possible to implement the
exponential mechanism in polynomial time.

Given the implementation of the exponential mechanism
for coverage, we follow the approach of Jones, Nguyen, and
Nguyen (2020) to cover the points using clusters of increasing
radii. Note that the approach goes back to the non-private
coreset construction of Chen (2009). However, the use of
coverage for dealing with each radius has another crucial
advantage: as in Jones, Nguyen, and Nguyen (2020), by using
the technique of Gupta et al. (2010), the privacy loss only
increases by a log 1/δp factor even though the algorithm has
Ω(k) adaptive rounds of exponential mechanism.

Preliminaries
We are given a dataset D of n points that lies in a ball
B∆/2(0) (the ball of radius ∆/2 centered at 0) in some high
dimensional space Rd. The goal is to find a set of k points
S = {µ1, . . . , µk} such that

∑︁
p∈D d(p, S) is minimal. Here

d(·, ·) : Rd × Rd → R is the square of the Euclidean dis-
tance, that is d(p, q) :=

∑︁d
i=1(pi − qi)

2. Abusing notation,
d(p, S) := minµ∈S d(p, µ). Define

fD(S) =
∑︂
p∈D

d(p, S),

so when S is a set of size k, fD(S) is the k-means cost of
the solution S for the dataset D.

Differential privacy is formalised as follows:



Definition 4. Two datasets D,D′ ∈ Xn are called neigh-
bouring if there is exactly one element in their symmetric
difference. We say that an algorithm A is (ϵ, δ)-differentially
private if for any two neighbouring datasets D,D′ and any
measurable output set U lying in the co-domain of A,

P (A(D) ∈ U) ≤ eϵP (A(D′) ∈ U) + δ.

Lower Bounds
Following the construction in theorem 4.4 of Gupta et al.
(2010), we derive lower bounds for k-means clustering in the
(ϵ, δ) and (ϵ, 0)-differential privacy regimes.
Theorem 5. For any 0 < ϵp, δp ≤ 1 and integer k, there
is a family of k-means instances over the cube [0,∆/

√
d]d

with d = O(ln(k/(ϵpδp))) dimensions such that the opti-
mal clustering cost is 0 but any (ϵp, δp)-differentially private

algorithm would incur an expected cost of Ω
(︂

∆2k ln(ϵp/δp)
ϵp

)︂
.

Proof. Let d = Θ(ln(k/((eϵp − 1)δp)) and W be the set of
codewords of an error correcting code with constant rate and
constant relative distance in {0, 1}d. The dimension d and
codewords W are chosen so that |W | ≥ k/((eϵp−1)δp). Let
L = ln((eϵp − 1)/(4δp))/(2ϵp). Our input domain is [0, 1]d

which has diameter ∆ =
√
d. Note that for other values of

∆, we can simply re-scale the construction.
Suppose M is an arbitrary (ϵp, δp)-differentially private

algorithm that on input D ⊂ [0, 1]d outputs a set of k lo-
cations. Let M ′ be the algorithm that first runs M on the
input and then snaps each output point to the nearest point
in W ; by post-processing, it has the same privacy guarantee.
Furthermore, observe that if the input points are located at a
subset of W then the cost of M ′ is within a factor 4 of the
cost of M . Let A be a size k subset of W chosen uniformly
at random and the dataset DA be a multiset containing each
point in A with multiplicity L. Note that the optimal cost for
DA is 0.

We would like to analyze ϕ = EA,M ′ [|A ∩M ′(DA)|]/k.
We have:

kϕ = E
A,M ′

[︄∑︂
i∈A

1i∈M ′(DA)

]︄
= k E

A,M ′
E

i∈A
[1i∈M ′(DA)]

= k E
i∈W

E
A,M ′

[1i∈M ′(DA)|i ∈ A]

Let i′ be an random point in W not in A. Changing A to
A′ = A \ {i} ∪ {i′} requires changing 2L elements of DA.
Notice that for random A \ {i} in W \ {i} and random i′ in
W \A, we have that A′ is still a uniformly random subset of
W \ {i}. Thus,

E
i∈W

E
A′,M ′

[1i∈M ′(DA′ )|i ̸∈ A′]

≥
(︃

E
i∈W

E
A,M ′

[1i∈M ′(DA)|i ∈ A]

)︃
e−ϵp·2L − δp

eϵp − 1

Here we use the fact that M ′ is (ϵp, δp)-differentially private,
and that the δp losses in expectation decrease geometrically

with factor exp(−ϵp) so the net leakage from the δ term
can be lower bounded by the sum of an infinite geometric
progression. Continuing,

E
i∈W

E
A′,M ′

[1i∈M ′(DA′ )] ≥ ϕ exp(−ϵp · 2L)−
δp

eϵp − 1

≥ 4ϕδp/(e
ϵp − 1)− δp

eϵp − 1

Since M ′(DA′) has at most k points, the LHS is at most
k/|W |. Thus, ϕ ≤ (k/|W | + δp/(e

ϵp − 1))/(4δp/(e
ϵp −

1)) ≤ 1/2.
For each point in A \ M ′(DA), the algorithm incurs a

cost of Θ(L∆2) due to the multiplicity of L of points in DA

and the fact that all points in W are at distance Θ(∆) apart.
The expected cost of M ′, and consequently the cost of M , is
hence Ω(kL∆2) = Ω

(︂
∆2k ln(ϵp/δp)

ϵp

)︂
.

Using that |W | = 2Ω(d), and by setting L =
ln(|W |/(2k))/(2ϵp), tracing the same proof one obtains a
lower bound for (ϵp, 0)-differential privacy.
Theorem 6. For any 0 < ϵp ≤ 1 and integers k and d =
Ω(ln(k)), there is a family of k-means instances over the
cube [0,∆/

√
d]d such that the optimal clustering cost is 0

but any (ϵp, 0)-differentially private algorithm would incur

an expected cost of Ω
(︂

∆2kd
ϵp

)︂
.

Algorithm
Our algorithm can be described in four steps.

Step 1: The dataset D ⊂ B(0,∆/2) ⊂ Rd is preprocessed
via dimension reduction, scaling and projection to produce
a dataset D′ ⊂ B1(0) ⊂ Rd′

where d′ = O((log n)/ϵ2).
We let Gi be multi-dimensional grids of side lengths ti and
observe that if µ is a center of a cluster with radius ≤ ri in
the optimal solution, then by the triangle inequality a ball of
radius ri + ti

√
d′ centered at ⌊µ⌋(i) (the “floor" of µ the in

grid) contains all the points of the same cluster.

Step 2: The threshold radii ri increase geometrically by
a factor of (1 + ϵ) from 1/n to 2; the unit length of grid
Gi is ti = ϵri/

√
d. From Gi we choose candidate centers

of clusters with radii in the interval [ri−1, ri). This is done
by counting the number of datapoints within ri + ti

√
d′ of

every grid point Gi. We calculate a set of valid offsets Vi and,
iterating over p ∈ D, increment counts for all grid points
within an offset of ⌊p⌋(i). We use the exponential mechanism
to greedily identify the set of k log⌈1/ϵ⌉ best grid points Ci

that attains close to optimal coverage. The candidate set C is
the union of C1, C2, . . . , Clog1+ϵ 2/(1/n)

.

Step 3: We want to construct a proxy dataset D′′ by moving
each datapoint in D′ to its closest center in C. To maintain
privacy, we compute the count nc of datapoints whose closest
center is c and add Laplace noise to get ñc. D′′ then contains
ñc copies of c for all c ∈ C.



Algorithm 1: Private k-means

Data: D ⊂ Rd dataset, |D| = n.
Result: S = {µ̃1, . . . , µ̃k} ⊂ Rd

T ∼ JohnsonLindenstrauss(n, ϵ); // Step 1
D′ ← T (D)
d′ ← dim(T ) = O((log n)/ϵ2)

Scale D′ down by a factor of ∆(1+ϵ)
2 and project to

B1(0)
Let T ′ be the composition of T with the scaling and
projection so that T ′(D) = D′

r1 ← 1/n ; // Step 2

t1 ← ϵ/(n
√
d′)

for i = 1, . . . ,m = ⌈log1+ϵ 2n⌉ do
Ci ← algorithm 2(D′, ti, ri)
ri+1 ← (1 + ϵ)ri.
ti+1 ← (1 + ϵ)ti.

end
D′ ← T ′(D) ; // Step 3
C =

⋃︁m
i=1 Ci

Assign all p ∈ D′ to the closest point C, denoted
grid[p]

Let nc be the number of points in D′ assigned to c

For each c ∈ C set n′
c = nc + Lap

(︂
1
ϵL

)︂
Let D′′ be the dataset where every c ∈ C is repeated
n′
c times

S′′ = {µ′′
1 , . . . , µ

′′
k} ← Lloyd(D′′) ; // Step 4

D′
i ← {p ∈ D′ : argminµ′′∈S′′ d(p, µ′′) = µ′′

i } for
i = 1, . . . , k

for i = 1, . . . , k do
µ̃i = algorithm 3(D, 1D′

i
, ϵG, δG) ; // 1D′

i
(p)

indicates whether T ′(p) ∈ D′
i for

p ∈ D
end
return S̃ = {µ̃1, . . . , µ̃k}

Step 4: In the final step we apply any non-private k-means
clustering algorithm to D′′ to get some cluster centers S′′.
We cluster D′ using these cluster centers to get clusters C ′,
and define final clusters for D by identifying points with their
images under the projection and re-scaling. To stay private
we use NoisyAVG (Nissim, Stemmer, and Vadhan 2016) to
derive centers by averaging over cluster sets.

The formal pseudocode requires some additional justifica-
tion; the construction of the offset set Vi, and the polynomial
time implementation of the exponential mechanism.

Lemma 7. A data point p is within distance ri + ti
√
d′ of

a grid point tib for b ∈ Zd′
only if

∑︁d′

j=1 min((⌊p⌋(i)j −
tibj)

2, (⌊p⌋(i)j − ti(bj + 1))2) ≤ (ri + ti
√
d′)2. Let Vi =

{v : v ∈ Nd′
,
∑︁d′

j=1 t
2
i v

2
j < (ri + ti

√
d′)2}. If d(p, tib) <

(ri + ti
√
d′)2 then for some s ∈ {0, 1}d and v ∈ Vi, tib =

⌊p⌋(i) + tis+ (2s− 1̄)tiv, where 1̄ = (1, 1, . . . , 1).

Sketch of proof. For any real number, either its floor or its

ceil is closer to a given integer than it is. Applying this prin-
ciple coordinate-wise in the grid, we see that a point can lie
within a distance ri + ti

√
d′ of a given grid point only if the

vertex of the grid unit cube closest to that grid point were also
to lie within a distance of ri + ti

√
d′. The second half of the

claim follows by noting that the expression tis+(2s− 1)tiv
is exactly the closest vertex of the grid unit cube containing
p to tib.

Lemma 8. After computing the cover of each grid point,
algorithm 2 executes the exponential mechanism correctly
and in polynomial time.

Proof. We know that for any data point the only grid points
whose cover must be updated lie in Vi. It suffices to show
|Vi| < nÕ(1/ϵ2). The number of ordered tuples v ∈ Nd′

for
which

∑︁
j t

2
i v

2
j < (ri + ti

√
d′)2 ⇔ ∑︁

j v
2
j < d′( 1ϵ + 1)2,

equals the number of ways of partitioning d′( 1ϵ + 1)2 +
d′ + 1 balls into d′ + 1 distinguishable bins. It follows that

|V | = 2d
′(︁d′( 1

ϵ+1)2+d′+1
d′+1

)︁
< 2d

′
(︂

ed′( 1
ϵ+1)2+d′+1

d′+1

)︂d′+1

=

2d
′
O(1/ϵ2)d

′+1 = nO((1/ϵ2) log 1/ϵ), using that d′ =
O
(︁
(log n)/ϵ2

)︁
.

We want that the grid point g ∈ Gi be sampled with prob-

ability P (g) =
exp

(︂
ϵE |cover[g]|

2

)︂
∑︁

h∈Gi
exp

(︂
ϵE |cover[h]|

2

)︂ . Since all but poly-

nomially many grid points {g : cover[g] = 0} are being
sampled with the smallest probability any point is sampled
with, we can use the law of total probability to write this
sampling distribution as a uniform distribution on the entire
grid with some probability 1 − Psamp, and a second distri-
bution with P ′ supported only on the polynomially many
grid points with non-zero cover with probability Psamp, i.e.
P (g) = PsampP

′(g)+ (1−Psamp)
1

|Gi| . Setting g to be any
point with 0 cover for which P ′(g) = 0, one derives the
necessary expression for Psamp.

Utility
To derive a bound for the utility attained by algorithm 1, we
have three steps; first we show that the set C constructed by
choosing points from the grid contains a discretized version
of any optimal k-means solution with high probability. Sec-
ond, we show that a k-means solution for the proxy dataset
constructed using C works well for the dimension reduced
dataset D′. Third, we derive cluster centers for the original
dataset D by taking the average of all datapoints in each
cluster.

The analysis of the first step proceeds as in Jones, Nguyen,
and Nguyen (2020). We let oi = {p ∈ D′ : d(p,OPTD′) ∈
[ri−1, ri)} and ai = D′ ∩ Bri+ti

√
d′(Ci), where Ci is the

set of grid points selected from Gi in the ith call to algo-
rithm 2. The ith call to algorithm 2 would be successful if the
grid points Ci ⊂ Gi returned cover close to the maximum
possible.



Algorithm 2: Private grid set cover

Data: D′ dataset (passed by reference), ti grid unit
length, ri threshold radius

Result: set Ci ⊂ Gi

Ci ← ∅
repeat k′ times

cover← empty linked list
Vi ← {v : v ∈ Nd′

,
∑︁d′

j=1(tivj)
2 <

(ri + ti
√
d′)2}

for all p ∈ D′ do
for all v ∈ Vi do

for all s ∈ {0, 1}d′
do

tib = ⌊p⌋(i) + tis+ (2s− 1̄)tiv ;
// where 1̄ is the
all-ones vector

if d(tib, p) < (ri + ti
√
d′)2 then

cover[tib] += {p}
end

end
end

end
totalCover← 0
for g ∈ cover do

totalCover += exp
(︂

ϵE |cover[g]|
2

)︂
end
totalCover += |Gi| − len[cover]

Let Psamp = 1− |Gi|
totalCover .

if Ber (Psamp) = 1 then
g ← i ∈ [len[cover]] w.p. ∼ P (g) ∝
exp

(︂
ϵE |cover[g]|

2

)︂
− 1

else
g ← uniformly at random from Gi

end
Ci ← Ci ∪ {g}
D′ ← D′\cover[g]

end
return Ci

Algorithm 3: NoisyAVG(Nissim, Stemmer, and Vad-
han 2016, Algorithm 5)

Data: Multiset V of vectors in Rd, predicate g,
parameters ϵ, δ

Set
m̂ = |{v ∈ V : g(v) = 1}|+ Lap(5/ϵ)− 5

ϵ ln(2/δ).
If m̂ < 0, output a uniformly random point in the
domain B∆/2(0).

Denote σ = 5∆
4ϵm̂

√︁
2 ln(3.5/δ), and let η ∈ Rd be a

random noise vector with each coordinate sampled
independently from N(0, σ2).

return g(V ) + η

Lemma 9. If Ml is the maximum number of points that can
be covered within distance rl + tl

√
d′ of k grid points in Gl,

then with probability 1− γ

|al| ≥ (1− ϵ)Ml −O

(︃
k log n

ϵE · poly(ϵ)
log

n

γ

)︃
.

where ϵE is the privacy parameter used in the exponential
mechanism.

Sketch of proof. The set cover function that counts the num-
ber of datapoints that lie within ri + ti

√
d′ within any set of

grid points Ci is submodular. It follows that greedily picking
points by maximising the marginal increase in cover leads to
covering (1− ϵ) as many points as the maximum, provided
we pick O(log⌈1/ϵ⌉) as many grid points than there are in
the optimal solution. Calls to the exponential mechanism lead
to covers within logarithmic loss of the maximum and after
accounting for these losses we get the stated bound.

To use the fact that the number of datapoints covered in
the ith call to algorithm 2 |ai| is close to |oi|, we bound
the optimal total movement of points when mapping each
datapoint p ∈ D′ to its closest candidate grid point g ∈ C in
terms of the optimal clustering cost.

Lemma 10. The thresholded cost obeys the bound
m∑︂
i=1

|oi|ri ≤ (1 + ϵ)fD′(OPTD′) + 1. (1)

Similarly, we can bound the actual increase in cost incurred
from total distance moved by datapoints when constructing
the proxy dataset D′ in terms of ai.

Lemma 11. The total movement of points p ∈ D′ to the
closest point grid[p] ∈ C is can be bounded in terms of the
ai as follows:∑︂

p∈D′

d(p, grid[p]) ≤ (1 + ϵ)

m∑︂
i=1

|ai|ri.

From the previous two lemmata and by deriving a rela-
tion between the sums

∑︁m
i=1|ai|ri and

∑︁m
i=1|oi|ri, we can

complete the first step of the proof.

Lemma 12. The total movement of points p ∈ D′ to the
closest point grid[p] ∈ C can be bounded in terms of the
optimal cost as follows:∑︂

p∈D′

d(p, grid[p]) ≤
(︃
1 +

3ϵ

1− ϵ− ϵ2

)︃
fD′(OPTD′)

+O

(︃
k log n

ϵE · poly(ϵ)
log

n

γ

)︃
.

Proof. Let Oi =
∑︁m

j=i |oj | and Ai =
∑︁m

j=i |aj |. Then∑︁m
i=1|ai|ri =

∑︁m
i=1 Ai(ri− ri−1). Centers in OPTD′ cover

n−Oi+1 points at a maximum distance of ri. We also know
that algorithm 1 has already covered n−Ai points at a dis-
tance of ri−1 + ti−1

√
d′. It then follows that there are some

k grid points in Gi (snapping the centers in OPTD′ to grid)



that cover at least Ai −Oi+1 points in oi. From the lemma 9
guarantee, we know

|ai| ≥ (1− ϵ)(Ai −Oi+1)− E,

where E = O
(︂

k logn
ϵE ·poly(ϵ) log

n
γ

)︂
. Since Ai = |ai| + Ai+1,

we have that

Ai+1 ≤
(︃

ϵ

1− ϵ

)︃
|ai|+Oi+1 +

E

1− ϵ
.

Substituting this in the telescoping
∑︁m

i=1 Ai(ri − ri−1),

m∑︂
i=1

|ai|ri ≤
m∑︂
i=1

(︃
ϵ|ai−1|
1− ϵ

+Oi +
E

1− ϵ

)︃
(ri − ri−1)

≤
m∑︂
i=1

(︃
ϵ2|ai−1|
1− ϵ

)︃
ri−1 +

m∑︂
i=1

|oi|ri +
2E

1− ϵ

where to get from the second to the third line we use that
ri − ri−1 = ϵri−1, and that rm − r0 = 2. Rearranging, we
get

m∑︂
i=1

|ai|ri
(︃
1− ϵ2

1− ϵ

)︃
≤

m∑︂
i=1

|oi|ri +
2E

1− ϵ

⇒
m∑︂
i=1

|ai|ri ≤
1− ϵ

1− ϵ− ϵ2

m∑︂
i=1

|oi|ri +
2E

1− ϵ− ϵ2

Substituting the order term E, using that ϵ is bounded away
from 1 and applying the previous two lemmata we get the
desired inequality.

In lemma 13 we bound the k-means cost of the proxy
dataset D′′ in terms of the k-means cost of D′. Doing so
requires us to account for the noisy counts used to construct
the proxy dataset; this leads to the additional O(k logn

ϵL
) error

term. The proof of this step essentially follows from two
applications of the triangle inequality, where since d is not a
true metric we must gain a factor of 2 in the multiplicative
loss for every application.

Lemma 13. With probability 1 − γ, fD′′(OPTD′) is at

most
(︂
4 + 6ϵ

1−ϵ−ϵ2

)︂
fD′(OPTD′) + O

(︂
k logn

ϵE ·poly(ϵ) log
n
γ

)︂
+

O
(︂

k logn
ϵL·poly(ϵ)

)︂
.

In lemma 14, by essentially applying the triangle inequal-
ity, we bound the cost incurred by using the non-private
k-means clustering solution for the proxy dataset D′′ for the
dataset D′ completing the second step of the analysis.

Lemma 14. Let A be the clustering algorithm used in algo-
rithm 1 of algorithm 1. If A has a multiplicative loss of EM ,
then fD′(A(D′′)) ≤ (8EM+2+(8EM+4)ϵ)fD′(OPTD′)+

O
(︂

k logn
ϵE ·poly(ϵ) log

kn
γ

)︂
+O

(︂
k logn

ϵL·poly(ϵ)

)︂
.

To complete the utility analysis, we need to account for
the projection and scaling as well as the Gaussian noise
added to maintain privacy. In theorem 15 we account for the
scaling and projection and then add the cost incurred due to
the privacy preserving NoisyAVG of (Nissim, Stemmer, and
Vadhan 2016). This gives us an upper bound for the net cost
incurred by algorithm 1.

Theorem 15. Algorithm 1 returns a set of points S̃

such that E
[︂
fD(S̃)

]︂
≤ (1 + ϵ)

(︂
8 + 12ϵ

1−ϵ−ϵ2

)︂
(EM +

1)fD(OPTD) + O
(︂

k∆2 logn
ϵE ·poly(ϵ) log

n
γ

)︂
+ O

(︂
k∆2 logn
ϵL·poly(ϵ)

)︂
+

O

(︃
k∆2
√

d log 1/δG
ϵG

)︃
+O

(︂
k∆2 logn/δG

ϵG

)︂
.

Sketch of proof. The scaling factor was picked according
to the Johnson-Lindenstrauss (JL) transform to ensure that
with high probability nothing needs to be projected, so we
only need account for the re-scaling. We recall that the k-
means clustering cost can be expressed only using the clus-
ter sets D1, . . . , Dk via the expression

∑︁
p∈D′ d(p, S) =∑︁k

i=1

∑︁
p̸=q∈Di

d(p,q)

|Di| . As the JL transform preserves the
square of the Euclidean distance within a factor of (1 + ϵ),
the k-means cost can increase by a factor of at most 1 + ϵ
when using the same clusters for D as were found in D′.

The final centers are computed using the NoisyAVG sub-
routine of Nissim, Stemmer, and Vadhan (2016). NoisyAVG
modifies the well-known Gaussian mechanism by using a
noisy version of the cluster size since in this application
the cluster size is also private. For large clusters the noisy
count does not increase the variance too much and for small
clusters the worst-case cost is dominated by other error

terms. This noisy averaging adds the O

(︃
k∆2
√

d log 1/δG
ϵG

)︃
+

O
(︂

k∆2 logn/δG
ϵG

)︂
term to the clustering cost.

Privacy
The main result of this section is the following:

Theorem 16. Algorithm 1 is
(︁ eϵE ln δ−1

E

2 +ϵL+ϵG, δE+δG
)︁
-

differentially private.

From the basic and parallel composition laws of differen-
tial privacy and the privacy guarantees of the Laplace mecha-
nism and algorithm 3 most of the expression for the bound on
privacy loss claimed in this result follows relatively straight-
forwardly. To bound the privacy loss incurred in the calls to
algorithm 2, we adapt a technique from Gupta et al. (2010).
We use this technique in the following lemma to show that
the privacy loss when using the exponential mechanism many
times successively can be bounded as an expression of the
sum of expected gains in the cover. For the set cover function
this sum of expected gains can be shown to decay exponen-
tially, which leads to a strong bound on the privacy loss.

Lemma 17. The m calls to algorithm 2 from algo-
rithm 1 that construct the set of centers C are collectively(︂

eϵE ln δ−1
E

2 , δE

)︂
-differentially private.



Proof of theorem 16. First, we bound the loss in privacy
that occurs when constructing the proxy dataset D′′. From
lemma 17 we know that in the m calls to algorithm 2 the net

loss in privacy is ( eϵE log δ−1
E

2 , δE). In the calculation of noisy
counts we see that two neighbouring datasets can only differ
in their true counts by 1 unit at one center of C. It follows
that the ℓ1 sensitivity of the tuple of all counts is 1 unit; this
justifies the choice of parameter in the Laplace mechanism.
Using basic composition along with the privacy loss bound
for the Laplace mechanism we see that the net loss in privacy

on releasing the proxy dataset D′′ is
(︂

eϵE log δ−1
E

2 + ϵL, δE

)︂
.

Now D′′ is publicly known and the low-dimensional do-
main can be partitioned by identifying each point in the
domain with the closest point in the set returned by the non-
private clustering algorithm used (a Voronoi diagram). To
bound any further loss in privacy we use the parallel composi-
tion theorem of McSherry (2010) along with the privacy guar-
antee of algorithm 3. Since each application of algorithm 3
on the separate clusters is (ϵG, δG)-differentially private, by
parallel composition the net privacy loss over all k applica-
tions is still (ϵG, δG). By basic composition the stated result
follows.

Experiments
We present an experimental comparison between algo-
rithm 12, the private k-means clustering algorithm from Bal-
can et al. (2017), and the non-private Lloyd’s algorithm. We
are not aware of any other private clustering methods which
have been implemented. Two datasets are used; a synthetic
dataset reproducing the construction in Balcan et al. (2017)
and the MNIST training dataset (Lecun et al. 1998).

The empirical results shown here for Balcan et al.’s algo-
rithm (Balcan et al. 2017) come largely from their MATLAB
implementation available on Github. Some corrections were
made to the implementation of Balcan et al. (2017); although
the pseudocode uses a noisy count of the cluster sizes when
computing the noisy average of the clusters found their im-
plementation used the non-private exact count. We replaced
this subroutine with algorithm 3 to use the best method we
know for privately computing the average.

Implementation details: We set ϵ = 1 and δ = n−1.5 for
both algorithms. Similar to Balcan et al. (2017), we project
to a smaller subspace of dimension log(n)/2 rather than
O(log(n)/ϵ2) - this does not affect privacy. At the conclu-
sion of both algorithms, we run one round of differentially
private Lloyd’s algorithm; adding this call to the differen-
tially private Lloyd’s yielded better empirical results for both
algorithms. The addition of these rounds of Lloyd’s requires
adjusting privacy parameters by a constant factor but other-
wise does not affect the privacy guarantees of the original
algorithms. Being (ϵ, 0)-private, Balcan et al. (2017) use the
Laplace mechanism for their noisy average which we re-
placed with the noisyAVG routine of Nissim, Stemmer, and

2The code used for our experiments is available at https://github.
com/Anamay-Chaturvedi/Differentially-private-k-means
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Figure 1: Empirical comparison of algorithm 1 and the pri-
vate k-means clustering algorithm from (Balcan et al. 2017).
Averages and standard deviations computed over 5 runs.

Vadhan (2016) for a comparison in the (ϵ, δ)-regime. Lloyd’s
algorithm was executed with 10 iterations.

Datasets: The synthetic dataset is comprised of 50,000
points randomly sampled from a mixture of 64 Gaussians in
R100. The MNIST training dataset uses the raw pixels; it is
comprised of 60,000 points with 784 features each.

Results: As can be seen in fig. 1, our algorithm achieves a
lower k-means objective score for both datasets. Similar to
the experimental results in Balcan et al. (2017), increasing
the number of centers results in a decrease in the cost in
the non-private algorithm but did not result in a concomitant
decrease in the cost of the private algorithms. This behavior
suggests that these algorithms are limited by their additive
error and that perhaps further decreasing even the constants
in the additive error would improve the gap between them
and their non-private counterparts.

https://github.com/Anamay-Chaturvedi/Differentially-private-k-means
https://github.com/Anamay-Chaturvedi/Differentially-private-k-means
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