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Abstract

This paper studies the problem of clustering in metric spaces
while preserving the privacy of individual data. Specifically,
we examine differentially private variants of the k-medians
and Euclidean k-means problems. We present polynomial al-
gorithms with constant multiplicative error and lower additive
error than the previous state-of-the-art for each problem. Ad-
ditionally, our algorithms use a clustering algorithm without
differential privacy as a black-box. This allows practitioners
to control the trade-off between runtime and approximation
factor by choosing a suitable clustering algorithm to use.

1 Introduction
Clustering is an important routine in many machine learning
tasks, such as image segmentation (Yang et al. 2017; Patel,
Van Nguyen, and Vidal 2013), collaborative filtering (Mc-
Sherry and Mironov 2009; Schafer et al. 2007), and time
series analysis (Mueen and Keogh 2012). Thus, improving
the performance of private clustering has a great potential for
directly improving other private machine learning tasks. Ide-
ally, we are looking to achieve differential privacy, a privacy
definition with strong theoretical support which requires that
the algorithm be insensitive to small changes in the dataset
(Dwork, Roth et al. 2014). As practical evidence of the sig-
nificance of differentially private clustering, differential pri-
vacy has been accepted by several large tech corporations
such as Google, Apple, and Microsoft (Álvarez Marañón
2020) and used in several clustering applications including
clustering network data (Ni et al. 2018), clustering for facial
recognition (Chamikara et al. 2020), and developing intel-
ligent electrical service through user data clustering (Xiong
et al. 2018). Hence, the motivation to study clustering in the
differential privacy framework has sources in both strong
technical and practical reasons. We begin with closely re-
lated works and our results, first in k-medians and then in
k-means.

The k-medians problem has been studied extensively in
the literature. Previous work in Kariv and Hakimi (1979)
proved that k-medians is NP-hard. There is a long line of
works on approximation algorithms for k-medians without
differential privacy (Chrobak, Kenyon, and Young 2006;
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Arya et al. 2004; Charikar et al. 2002; Jain and Vazirani
2001; Jain et al. 2003; Byrka et al. 2017). The state of the
art is a 2.675 + ϵ approximation by Byrka et al. (2017).
For the differentialy private k-medians problem, Gupta et al.
(2010) proposed a polynomial time (ϵp, 0)-differentially pri-
vate algorithm with cost at most 6OPT + O(k2 log2 n/ϵp).
Kaplan and Stemmer (2018) states a variant of the algorithm
for (ϵp, δp)-differential privacy with cost

O
(︂
OPT+

∆k1.5

ϵp
log

n

β

√︂
log n · log(1/δp)

)︂
where β is the failure probability and ∆ =
max(u,v)∈V 2 d(u, v) is the diameter of the metric space. We
denote by OPT the optimal objective cost of the non-private
clustering problem in question, and n and k denote the
number of points available for choice as cluster centers and
the number of clusters respectively.

In contrast with the non-private setting, any result for dif-
ferentially private clustering requires additive error in ad-
dition to a multiplicative factor on the optimal clustering
cost. In particular for the k-medians problem, Theorem 4.5
in Gupta et al. (2010) shows that any private algorithm needs
at least Ω(∆·k ln(n/k)/ϵp) additive error. In fact, their proof
shows there exists a family of k-medians instances such that
the optimal objective cost is 0 but every ϵp-differentially pri-
vate algorithm must incur a cost Ω(∆ · k ln(n/k)/ϵp). This
lower bound can be extended almost as is to (ϵp, δp)-DP with
δp = 1/poly(n). From a practical point of view, the additive
error is the main driver dictating the performance of algo-
rithms as can be seen from the experimental results in Balcan
et al. (2017). In Section 7 of Balcan et al. (2017) the experi-
ments show that increasing the number of centers reduces
the clustering cost for the non-private k-means algorithm
significantly, whereas the clustering cost stays relatively sta-
ble for the private counterpart. This behavior is observed in
both synthetic and real datasets and both for their algorithm
and SuLQ k-means. These results show strong evidence that
the additive error is both a limiting factor objectively and an
important key to improving private clustering algorithms.

Motivated by the insights from Gupta et al. (2010)
and Balcan et al. (2017), our main contributation is a new
(ϵp, δp)-differentially private k-medians algorithm whose
time is polynomial and which has a constant multiplicative



factor and improved additive error:

O

(︃
OPT+

k∆

ϵp
log n

(︃
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(︃
e

δp

)︃)︃)︃
.

Note that our additive error is linear in k and almost matches
the lower bound of Gupta et al. (2010) up to lower order
terms. In comparison, the best previous upper bound due
to Gupta et al. (2010); Kaplan and Stemmer (2018) has
a dependence of k1.5. By using the non-private algorithm
of Byrka et al. (2017) as a subroutine, our multiplicative fac-
tor is 6.35 + ϵ, which is slightly worse than 6 from Gupta
et al. (2010).

The k-means problem has also been studied extensively
with a long line of works on privacy-preserving approxima-
tion algorithms (Blum et al. 2005; Nissim, Raskhodnikova,
and Smith 2007; Feldman et al. 2009, 2017; Balcan et al.
2017; Kaplan and Stemmer 2018). As an extension of our
techniques, we also provide an (ϵp, δp)-differentially private
algorithm for the Euclidean k-means problem with constant
multiplicative error and better additive cost compared to pre-
vious work (see Table 1). Our algorithm has cost:

O
(︁
OPT+ k log n+ d0.51(log log n)2.53 (k log k)

1.01 )︁
Again, in this setting our additive error is almost linear in k
as opposed to k1.5 in previous work (Kaplan and Stemmer
2018).

In addition to improved performance guarantee, our k-
medians and Euclidean k-means algorithms use a non-
private clustering algorithm as a black-box. This allows
practitioners to control the trade-off between the approx-
imation guarantee and the runtime of the clustering algo-
rithm and even use heuristics with good empirical perfor-
mance. This is especially important since most applications
use Lloyd’s algorithm for k-means, which has superior prac-
tical performance compared with other methods despite its
O(log k) approximation factor. For example, in the exper-
iments of Balcan et al. (2017) they found that adding sev-
eral Lloyd’s iteration to their algorithms improves the exper-
imental result, supporting the importance of such heuristics
on practical performance.

Our technique is a novel approach based on Maximum
Coverage, in contrast to previous approaches in differen-
tially private clustering such as center swapping in Gupta
et al. (2010); Balcan et al. (2017) and locality sensitive hash-
ing in Nissim and Stemmer (2018); Balcan et al. (2017).
The algorithms for k-medians and Euclidean k-means in-
clude two main steps. In the first step, we iterate through
distance thresholds from small to large and at each threshold
apply a differentially private Maximum Coverage algorithm
to select centers that cover almost as many points as are cov-
ered by the optimal solution at those thresholds. For the sec-
ond step, we create a new dataset based on those centers
and apply a non-private clustering algorithm on this dataset
by moving each demand point to its nearest center and then
applying the Laplace mechanism (Dwork et al. 2006b) to re-
port the number of points at each center. This makes sure
that privacy is preserved for the new dataset and we incur
no additional privacy cost when we apply the non-private
clustering algorithm in the final step.

2 Related Works
Table 1 summarizes the performance of previous works in
comparison with our algorithms. In the table, only the work
by Gupta et al. (2010) is for (ϵp, 0)-differential privacy,
while the others are for (ϵp, δp)-differential privacy. As men-
tioned above, Gupta et al. (2010) gave the first private k-
medians algorithm with a constant multiplicative approxi-
mation and additive error polynomial in the number of cen-
ters and logarithmic in the number of points. The algorithm
uses the local search approach of Arya et al. (2004). Our al-
gorithm, on the other hand, can be used with any non-private
k-medians algorithm.

For the Euclidean k-means problem, Balcan et al. (2017)
proposes the strategy of first identifying a set of potential
centers with low k-means cost, then applying the techniques
of Gupta et al. (2010) to find the final centers among the
potential centers. However, their potential centers are only
guaranteed to contain a solution with multiplicative approx-
imation O

(︁
log3 n

)︁
. This result was improved by Kaplan and

Stemmer (2018), which can construct a set of potential cen-
ters containing a solution with constant multiplicative ap-
proximation.

Another approach for the k-means problem is via the 1-
cluster problem. Given a set of input points in Rd and t ≤ n,
the goal is to find a center that covers at least t points with
the smallest radius. The work of Feldman et al. (2017) shows
that the k-means problem can solved by running the algo-
rithm for the 1-cluster problem multiple times to find sev-
eral balls to cover most of data points with O(k log n) mul-
tiplicative error. Nissim and Stemmer (2018) proposed an
improved algorithm for the 1-cluster problem, resulting in
a differentially private k-means algorithm with O(k) multi-
plicative error.

3 Preliminaries
Differential Privacy
Differential privacy is a privacy framework for computations
run against sensitive input data sets. Its requirement, infor-
mally, is that the computation behaves similarly on two input
datasets that are nearly identical. Formally,
Definition 1. (Dwork et al. 2006a) A randomized algorithm
M has δp-approximate ϵp-differential privacy, or (ϵp, δp)-
differential privacy, if for any two input sets A and B with a
symmetric difference which has a single element and for any
set of outcomes S ⊆ Range(M)

Pr[M(A) ∈ S] ≤ exp(ϵp)× Pr[M(B) ∈ S] + δp.

If δp = 0, we say that M is ϵp-differentially private. An
algorithm with (ϵp, 0)-differential privacy ensures that the
output M(A) is (almost) equally likely to be observed on
neighboring datasets, whereas in (ϵp, δp)-differential privacy
the value δp dictates the probability that ϵp-privacy fails to
hold (Dwork et al. 2006a). In this way, (ϵp, δp)-differential
privacy is a relaxation of ϵp-differential privacy. We use an
error parameter ϵ for utility and we use ϵp and δp to denote
parameters for differential privacy (or ϵs and δs for Algo-
rithm 1, to differentiate privacy parameters to different algo-
rithms).



Reference Objective Multiplicative Error Additive Error
(Gupta et al. 2010), k-medians O(1) O(k log n)2

(Kaplan and Stemmer 2018) O(k log n)1.5

Ours k-medians O(1) O(k log n)

(Feldman et al. 2017) Euclidean k-means O(k log n) O
(︂
k
√
d log(nd) · 9log

∗(|X|
√
d)
)︂

(Balcan et al. 2017) Euclidean k-means O
(︁
log3 n

)︁
O
(︁(︁
k2 + d

)︁
log5 n

)︁
(Kaplan and Stemmer 2018) Euclidean k-means O(1) O

(︁
(k log (n log k))1.5

+d0.51(log log n)2.53 (k log k)
1.01 )︁

Ours Euclidean k-means O(1) O
(︁
k log n

+d0.51(log log n)2.53 (k log k)
1.01 )︁

Table 1: Comparison of our clustering algorithms with prior works, omitting dependence on ϵp, δp.

One basic construction for differentially private algo-
rithms is the Laplace mechanism.

Definition 2. (L1 sensitivity) A function f : N|X| → Rk has
L1 sensitivty ∆f if ∥f(A) − f(A′)∥1 ≤ ∆f for all A,A′

with a symmetric difference which has a single element.
Theorem 3. Laplace mechanism (Dwork et al. 2006b): Let
function f : N|X| → Rk have L1 sensitivty ∆f and ϵp > 0.
Mechanism M that on input A outputs f(A) + Lap(∆f

ϵp
)

is (ϵp, 0)-differentially private, where Lap(∆f
ϵp

) denotes a
random variable following Laplace distribution with scale
parameter b = ∆f

ϵp
.

Another tool for construction of differentially private al-
gorithms which we use in this work is the exponential mech-
anism. This construction is parameterized by a query func-
tion q(A, r) mapping a pair of input data set A and candi-
date result r to a real value. With q and a privacy value ϵp,
the mechanism selects an output which favors higher score
values using

Pr[Eϵq(A) = r] ∝ exp(ϵpq(A, r)). (1)

Theorem 4. (McSherry and Talwar 2007) The exponen-
tial mechanism when used to select an output r ∈ R gives
2ϵp∆-differential privacy and, letting R∗ be the subset of R
achieving q(A, r) = maxr q(A, r), ensures that

Pr[q(A, Eϵq(A)) < max
r

q(A, r)− ln

(︃
|R|
|R∗|

)︃
/ϵp − t/ϵp]

≤ exp(−t).

Maximum Coverage
Our differentially private k-medians algorithm solves the
Maximum Coverage problem as a subproblem. The Maxi-
mum Coverage problem is defined as follows: on a universe
U of items, a family S of subsets of U , and a parameter z, the
goal is to select z sets in S to cover the maximum number
of elements in U . Formally, we are looking to find

arg max
C⊆S,|C|=z

⃓⃓⃓⋃︂
c∈C

c
⃓⃓⃓
.

Our approach for solving private Maximum Coverage is
based on the Unweighted Set Cover algorithm in Gupta et al.

Algorithm 1: Maximum Coverage

Input: Set system (U,S), a private set R ⊂ U to
cover, ϵs, δs, m

i← 1, Ri = R, Si ← S. ϵ′ ← ϵs/2 ln(
e
δs
).

for i = 1, 2, . . . ,m do
Pick a set S from Si with probability

proportional to exp(ϵ′|S ∩Ri|).
Output set S.
Ri+1 ← Ri \ S, Si+1 ← Si − {S}.

(2010). To preserve privacy, Algorithm 1 chooses sets using
the exponential mechanism, with probability related to the
improvement in coverage caused by choosing the set.

Assume that there exists a selection of z sets that covers
U . A classic fact for the maximum coverage problem is that
if we build the family C by always selecting the item in S \C
that covers the largest number of uncovered elements in U ,
then after z iterations, | ∪c∈C c| ≥ (1 − 1/e)|U|. Here we
show an observation that will be useful for our algorithm
later. The proof is in the appendix.

Lemma 5. For ϵ > 0, if we always select a set that covers at
least half as many uncovered elements as the set that covers
the most uncovered elements, then after 2z ln 1/ϵ iterations,⃓⃓⃓⋃︁

c∈C c
⃓⃓⃓
≥ (1− ϵ)|U|.

4 Private k-medians
Given a set of points V , a metric d : V × V → R, a pri-
vate set of demand points D ⊆ V , and a value k where
k < |V | = n, recall that the objective of the k-medians
problem is to select a set of points (centers) F ⊂ V ,
|F | = k to minimize cost(F ) =

∑︁
v∈D d(v, F ), where

d(v, F ) = minf∈F d(v, f). Also, recall that we use ϵ as the
approximation parameter for maximum coverage problem in
Lemma 5 and we use ϵp and δp as privacy parameters. Let
Br(v) be the ball of radius r centered at v, i.e. the set of all
points in the metric space within distance r from v.

Our approach is based on the Maximum Coverage prob-
lem. One way to compute the clustering cost is by computing
for every distance threshold t the number of points within
distance t from the centers and integrating the counts from 0



to the maximum distance. Thus, if for every threshold t the
number of points farther than t from our solution’s centers
is not much more than the number of points farther than t
from the optimal centers, then our cost is not much larger
than the optimal cost. Thus, our algorithm goes through dis-
tance thresholds from small to large and tries to “cover” as
many points as possible using fresh centers every time. For
each threshold, we aim to cover (1 − ϵ) times the number
of points the optimal solution can cover. The result is that
our clustering cost is not much larger than the optimal cost,
albeit using more centers. Since we use exponentially grow-
ing thresholds, we only use a multiplicative factor O(log n)
extra centers in the final set C, which results in a small er-
ror due to privacy noise. The full algorithm is described in
Algorithm 2.

Algorithm 2: The k-medians algorithm
Input: a set of points V , a private set of demand

points D ⊆ V , a metric d, ϵ, ϵp, δp
1 V ′ = D,C = ∅, r =

⌈︁
1 + log1+ϵ n

⌉︁
2 for i from 1 to r do
3 Set ti = (1 + ϵ)i−1∆/n
4 Run algorithm 1 for the set system

U = V,S = {Bti(v) ∩ V ′ : v ∈ V }, with
ϵs =

ϵp
2 , δs = δp for m = 2k ln(1/ϵ) iterations

to get Ci

5 Vi =
⋃︁

v∈Ci
Bti(v) ∩ V ′

6 V ′ = V ′ \ Vi

7 C = C ∪ Ci

8 Assign each point in D to its closest point c ∈ C
9 Let nc be the total number of points assigned to c for

each c ∈ C
10 For each c ∈ C, set n′

c = nc + Yc where

Yc ∼ Lap
(︂

2
ϵp

)︂
11 Run a k-medians algorithm to select and return k

centers from V , with demand points at each c ∈ C
with multiplicity n′

c.

The algorithm begins with the discretization of distance
thresholds. The goal is similar to our discussion above. We
apply Algorithm 1 to select a set of points that covers a large
set of demand points across different distance thresholds.
Note that the objective cost of any set of centers following
the discretization scheme is not too far from the actual costs,
as we will show in Lemma 8. Thus, the set of many centers
in C that we find across different thresholds t should also
have cost similar to OPT.

Our final step is to obtain the final set of centers with
privacy. To preserve privacy for this step, we create a new
dataset similar to the original one with some privacy noise.
In this new dataset, every demand point is shifted towards
the closest center from C, and we apply the Laplace mech-
anism to the assigned number of demands points of each
point in C to preserve privacy. At this point, we can use
a k-medians algorithm on this dataset to output the final k
centers. Although the objective in the new problem changes

because of shifting and the Laplace mechanism, the set of
available choices for centers V is the same. Thus, the cost
of the centers returned in the final step is at most the cost
of this new objective plus the total shifting distance. In the
following sections, we will first formally analyze the privacy
and then the utility of this algorithm.

Privacy Analysis
We first show that this algorithm is (ϵp, δp)-differentially
private. To show this, we first show that the entirety of the
for loop is (ϵp/2, δp)-differentially private, and then take
advantage of composition and apply Theorem 3 at line 10
to obtain the final result. Note that the analysis of the loop
very closely follows the proof for privacy of Unweighted Set
Cover in Gupta et al. (2010); their algorithm selects sets in a
particular order to form a cover, while our algorithm selects
candidate centers with increasing distance thresholds where
a center is assumed to cover all demand points within its dis-
tance threshold. The significant difference in the two proofs
is that our algorithm could select the same center twice with
different distance thresholds while a set will never be chosen
twice in set cover in Gupta et al. (2010). This re-selection of
the same center will not affect the differential privacy of the
algorithm, because the privacy analysis hinges on which de-
mand points have been covered, not which centers have been
selected. As a result of this, we save an additional log n fac-
tor on privacy, which removes a log n term from the additive
error in Lemma 9 which carries through the additive error in
the utility. We include the proof in the appendix and omit it
here, due to its close similarity to Gupta et al. (2010).

Lemma 6. The for loop in Algorithm 2 preserves (ϵp/2, δp)-
differential privacy.

The function affected by the Laplace mechanism in line
11 returns a vector of the counts nc. In the case of sets
A,A′ as in Theorem 3, the difference between f(A) and
f(A′) is exactly one for one item in this vector, and there-
fore ∥f(A)− f(A′)∥ = 1, so the function has L1 sensitivity
1. Thus, line 10 is (ϵp/2, 0)-differentially private by The-
orem 3. By composition, this fact and Lemma 6 yield the
following lemma:

Lemma 7. Algorithm 2 is (ϵp, δp)-differentially private.

Utility Analysis
We define t0 = 0, t1 = ∆

n , t2 = ∆(1+ϵ)
n , ..., tr = ∆ as

shorthand for the thresholds. Also, let oi be the number of
points at distance in the range [ti−1, ti) from their center in
the optimal solution (which we denote by OPT) and let ai
be the the number of points at distance in the range [ti−1, ti)
from their closest point in C after the for-loop in Algo-
rithm 2. To bound the performance of our solution, we first
show in Lemma 8 that discretizing the distance thresholds at
ti’s instead of integrating from 0 to ∆ introduces negligible
error to the cost of the optimal solution. Next, for each dis-
tance threshold, Lemma 9 uses the approximation guarantee
of maximum coverage to show that we are efficiently cover-
ing demand points using not many more centers than OPT.
Crucially, Lemma 10 shows that by covering almost as well



as OPT at every distance threshold, our solution has cost not
much more than that of OPT.

We begin by bounding the discretized cost of OPT.

Lemma 8.
∑︁

i=1 oiti ≤ (1 + ϵ)OPT+∆

Proof. On all u ∈ D and set of centers F , define d′(u, F )
as the minimum distance threshold ti which is larger than
d(u, F ). If d(u,OPT) > ∆

n then d′(u,OPT) ≤ (1 +
ϵ)d(u,OPT) since thresholds ti scale geometrically with
factor 1 + ϵ. If d(u,OPT) ≤ ∆

n , then d′(u,OPT) = ∆
n ≤

d(u,OPT)+ ∆
n . Summing over d ∈ D yields the bound.

Before we begin using this bound, we will first prove the
effectiveness of Algorithm 1 in the context of Algorithm 2,
to show that we are effectively covering demand points. For
each distance threshold ti, the following lemma shows that
the algorithm covers almost as many points as OPT.

Lemma 9. Consider iteration i of the for-loop and let Mi

be the maximum coverage of k centers with radius ti over
points in V ′. With high probability, at line 5:

|Vi| ≥ (1− ϵ)Mi −
24k lnn ln

(︂
e
δp

)︂
ϵp

Proof. The items in the family S in line 4 are exactly one-to-
one with the points in V , and the set sv ∈ S corresponding
to v ∈ V is exactly the set of points which are not within dis-
tance ti−1 of an existing center in C but are within distance
ti of v. Therefore, the items covered by the centers in Ci are
all within distance ti of their closest centers, so the change
in the coverage of C is at least the size of the set coverage
from Ci.

Our analysis is similar to Gupta et al. (2010). The main
difference is that instead of covering all points that OPT can
cover, we aim to cover a (1−ϵ) portion within an additive er-
ror, hence we run 2k log(1/ϵ) iterations instead of 2k log n.
Consider |Ri| to be the number of remaining elements yet to
be covered, and define Li = maxS∈S |S ∩ Ri|, the largest
number of uncovered elements covered by any set in S.

By Theorem 4, the exponential mechanism, when select-
ing a set, ensures that with probability at most 1/n2 that
we select a center with coverage less than Li − 3 lnn

ϵ′ . When
Li >

6 lnn
ϵ′ , we are guaranteed to choose a center that covers

at least Li/2 points. Based on Lemma 5, for each iteration as
long as Li >

6 lnn
ϵ′ we always take the greedy option and are

guaranteed to have |Ci| ≥ (1−ϵ)Mi with probability at least
1 − 1

n . When Li ≤ 6 lnn
ϵ′ , although we are not guaranteed

to take the greedy action there are at most 6k lnn
ϵ′ points yet

to be covered by the algorithm compared to OPT at radius
r. Thus, the algorithm loses at most 6k lnn

ϵ′ points.

The next lemma relates the cost of our solution and that of
OPT given that we cover almost as well as OPT at every dis-
tance threshold. Specifically, we bound the discretized cost
of our coverage in terms of the discretized cost of the cover-
age of OPT and the additive error resulting from Algorithm
1.

Lemma 10.
r∑︂

i=1

aiti ≤
1− ϵ

1− ϵ− ϵ2

∑︂
i=1

oiti +
24∆k lnn ln

(︂
e
δp

)︂
ϵp(1− ϵ− ϵ2)

Proof. Let Oi =
∑︁r

j=i oj , Ai =
∑︁r

j=i aj , and E =

24k lnn ln
(︂

e
δp

)︂
ϵp

. Given a threshold ti, we know that the cen-
ters in OPT cover n − Oi+1 points with distance at most
ti. At threshold ti, Algorithm 2 has already covered n− Ai

points so we know that there is a solution covering an ad-
ditional (n − Oi+1) − (n − Ai) = Ai − Oi+1 points. By
the guarantee of the greedy set cover algorithm in Lemma 9,
we cover ai ≥ (1 − ϵ)(Ai − Oi+1) − E new points on the
next iteration. By substituting Ai = ai + Ai+1, we have
ai ≥ (1−ϵ)

ϵ (Ai+1 − Oi+1) − E
ϵ . Rearranging the last in-

equality to isolate Ai+1, notice that
r∑︂

i=1

aiti =

r∑︂
i=1

Ai(ti − ti−1)

≤
r∑︂

i=1

(︃
ϵai−1

1− ϵ
+Oi +

E

1− ϵ

)︃
(ti − ti−1)

=

r∑︂
i=1

ϵai−1

1− ϵ
(ti − ti−1) +

r∑︂
i=1

oiti +
∆E

1− ϵ
.

The last equality holds because of telescoping sums. Also,
notice that

r∑︂
i=1

ϵai−1

1− ϵ
(ti − ti−1) =

r−1∑︂
i=1

ϵai
1− ϵ

(ti+1 − ti)

≤
r−1∑︂
i=1

ϵ2

1− ϵ
aiti.

The last inequality holds because for all 1 ≤ i ≤ r − 1,
ti+1 ≤ (1 + ϵ)ti by definition. We are also able to drop the
term i = 0 from the last two sums because a0 = 0.

Thus,
r∑︂

i=1

aiti −
r−1∑︂
i=1

ϵ2

1− ϵ
aiti =

1− ϵ− ϵ2

1− ϵ

r−1∑︂
i=1

aiti + artr

≤
∑︂
i=1

oiti +
∆E

1− ϵ

which implies that
r∑︂

i=1

aiti ≤
1− ϵ

1− ϵ− ϵ2

∑︂
i=1

oiti + (1− ϵ− ϵ2)∆E.

Combining the results of Lemmas 8 and 10, we see that
r∑︂

i=1

aiti ≤
1− ϵ

1− ϵ− ϵ2
((1 + ϵ)OPT+∆)+(1−ϵ−ϵ2)∆E

which gives us a bound on the cost of snapping points in D
to points in C. This will be included in our final cost, which
we show in the next lemma.



Lemma 11. Consider the k-medians problem in the last line
of Algorithm 2, where demand points in D are shifted to
points in C and Laplace noise is applied. With high proba-
bility, the optimal objective cost of this new k-medians prob-
lem is at most

OPT+
∑︂

aiti +
4∆k ln(1/ϵ)

ϵp

(︃
ln(n)

ln(1 + ϵ)
+ 2

)︃
.

Proof. After assigning every point in D to the closest point
in C, we run a k-medians algorithm on a multiset defined
by C where each element c ∈ C has multiplicity n′

c as in
line 10 of Algorithm 2. Recall that the absolute value of a
random variable following a Laplace distribution with pa-
rameter b follows an exponential distribution with parame-
ter 1

b . Also note that the sum of exponential variables will be
less than twice the expectation with high probability, with
probability of failure decreasing exponentially in the num-
ber of summands. For the sake of completeness, we include
the proof of this fact in the appendix. It is also significant
that since we call Algorithm 1 a total

⌈︂
log(1+ϵ) n+ 1

⌉︂
=⌈︂

lnn
ln(1+ϵ) + 1

⌉︂
times with m = 2k ln(1/ϵ), we select at most

|C| ≤ 2k ln(n) ln(1/ϵ)/ ln(1 + ϵ) + 2k ln(1/ϵ) centers be-
fore calling the black-box k-medians algorithm. With all this
preliminary information, we begin to prove the claim.

The last term in the bound is obtained by the Laplace
mechanism, where noise is applied to the counts of each
center c ∈ C. Each of the centers in C has Laplacian noise
applied to it with parameter 2/ϵp. Therefore, with high prob-

ability at most 4k ln(1/e)
ϵp

(︂
ln(n)

ln(1+ϵ) + 2
)︂

demand points are
”added” by line 10 of the algorithm and each of these points
is at distance at most ∆ from their closest center, which
yields the last term in the bound.

The first two terms come from the fact that we shift points
in line 8 of Algorithm 2 and the triangle inequality. For each
of the original demand points v ∈ D, let the cluster center
in OPT closest to v be OPTv , and let the point in C closest
to V be denoted cv . We see that

d(cv, OPTv) ≤ d(v, cv) + d(v,OPTv)

by the triangle inequality. Since OPT of the original k-
medians problem is a candidate solution for the new k-
medians problem, the objective cost of using OPT upper
bounds the optimal cost of the new problem. Summing over
all v ∈ D, we see that the objective cost of shifted demand
points is therefore bounded as∑︂

v∈D

d(cv, OPTv) ≤
∑︂

aiti + OPT

since
∑︁

aiti is an upper-bound approximation of the cost of
shifting the demand points to centers in C, and the sum of
d(v,OPTv) yields exactly OPT. Thus, the first two terms
come from the cost of shifting the real demand points, and
the last term comes from the Laplacian noise.

Note that there may be a better solution than the original
k-medians’ OPT to this new k-medians problem, but this is
consistent with the bound by inequality.

Using a non-private approximation algorithm for the k-
medians problem with approximation factor M in the last
step of Algorithm 2, the entire cost gains a multiplicative
factor M . Therefore, we can summarize the utility of Algo-
rithm 2 into the following lemma and even simpler theorem:

Lemma 12. With high probability, Algorithm 2 preserves
(ϵp, δp)-differential privacy and solves the k-medians prob-
lem with cost

O (M(1 + ϵ))OPT

+O

(︃
Mk∆

ϵp
lnn

(︃
ln

(︃
e

δp

)︃
+

ln(1/ϵ)

ln(1 + ϵ)

)︃)︃
where the black-box k-medians algorithm used in the last

step of Algorithm 2 has approximation factor M and ϵ is a
small, positive constant.

Proof. Combining the results of Lemmas 8, 10, and 11, we
see that with high probability the optimal cost of the k-
medians problem at the final line of Algorithm 2 is given
by at most(︂2− ϵ− 2ϵ2

1− ϵ− ϵ2

)︂
OPT+

(︂4∆k ln(1/ϵ)

ϵp

(︃
ln(n)

ln(1 + ϵ)
+ 2

)︃

+
24k lnn ln

(︂
e
δp

)︂
ϵp(1− ϵ− ϵ2)

+
1− ϵ

1− ϵ− ϵ2

)︂
∆.

For simplicity, we will use big-O notation going forward, so
this is the same as

(2 +O(ϵ))OPT

+O

(︃
k∆

ϵp

(︃
ln(n)

ln(1/ϵ)

ln(1 + ϵ)
+ lnn ln

(︃
e

δp

)︃)︃)︃
.

Since the k-medians algorithm used at the last line has
approximation factor M , the objective cost of the shifted k-
medians problem is M times that result. To obtain the ob-
jective cost for the original problem, we see that for any de-
mand point v ∈ D, the distance between v and a center is
at most d(cv, v) and the distance from cv to a center, by tri-
angle inequality. Therefore, the new objective cost only adds
the shifting cost on top of the modified k-medians problem’s
objective cost, which only slightly affects the factor in front
of OPT,

(2M + 1 + (M + 1)O(ϵ))OPT

+O

(︃
Mk∆

ϵp

(︃
ln(n)

ln(1/ϵ)

ln(1 + ϵ)
+ lnn ln

(︃
e

δp

)︃)︃)︃
,

which simplifies to the claim.

Corollary 13. By using a constant-approximation non-
private algorithm for k-medians, there is a (ϵp, δp)-
differentially private algorithm for the k-medians problem
that, with high probability, outputs a solution with objective
cost

O

(︃
OPT+

k∆

ϵp
ln(n)

(︃
ln

(︃
1

δp

)︃
+

ln(1/ϵ)

ln(1 + ϵ)

)︃)︃
.



Note that our algorithm allows for any k-medians algo-
rithm to be used at the last step. One can choose a preferred
trade-off between runtime and performance to select a suit-
able algorithm. This is in contrast to the approach in Gupta
et al. (2010), where the algorithm builds on the k-median
algorithm in Arya et al. (2004).

5 Application to Euclidean k-means
In the Euclidean k-means problem, instead of having a dis-
crete set of demand points, V is defined to be all of Rd. We
wish to select a set of points (centers) F ⊂ Rd, |F | = k to
minimize cost(F ) =

∑︁
v∈D d(v, F )2. In this section, we

will apply our result to improve additive error in the ap-
proach in Kaplan and Stemmer (2018).

The strategy in Kaplan and Stemmer (2018) is to first
identify a polynomial set of candidate centers such that it
contains a subset of k candidate centers with low k-means
cost. Then, the algorithm uses a private discrete k-means
algorithm to select the final k-centers with low cost from
the set of candidate centers. More concretely, the algorithm
in Kaplan and Stemmer (2018) is guaranteed to output a
(ϵp, δp)-private set of candidate centers Y of size at most
ϵpn log( kβ ) such that with probability at least 1 − β, there
exist a subset of size k centers with constant multiplicative
error and additive error of O(T

1
1−a−b ·w

1
1−a−b ·k

1
1−a−b )∆2,

where a, b are small constant parameters of the Locality
Sensitive Hashing algorithm used in Kaplan and Stemmer
(2018), T = Θ(log log n) and

w = O

(︄√
d

ϵp
· log log n · log

(︃
k

β

)︃√︄
log

log log n

δp

)︄
.

Note that a, b can be chosen to be arbitrarily small at the cost
of making the multiplicative approximation factor a larger
constant. The work of Kaplan and Stemmer (2018) focuses
on the regime where a, b are small and 1/(1−a−b) ≤ 1.01.
The resulting additive error for identifying candidate centers
is Õϵp,δp(k

1.01d.51).
The performance bottleneck of the Euclidean k-means is

in the algorithm to select the final k centers from a candidate
set. We can apply our algorithm on the potential centers re-
turned by Kaplan and Stemmer (2018) to improve the algo-
rithm’s performance. Note that our algorithm can be applied
to solve the k-means objective by passing the correct dis-
tance function. Although the square of Euclidean distance
is not a metric, we can still apply the same algorithm and
similar analysis to get the bound for the k-means objective.
The only algorithmic difference is at the last step, where in-
stead of running a k-medians algorithm we run a k-means
algorithm to get final centers.

Rather than replicate the entire analysis section, we will
only review the proofs which are directly affected by the
change in the distance function. Furthermore, we will extend
the proof to all distance functions dp for any natural number
p where d2 is the distance function in the Euclidean k-means
objective.

Notably, the privacy analysis is independent of the dis-
tance function, and is therefore unaffected. In fact, the only

steps in the proofs of Section 4 which involve the distance
function are Lemma 8, 11 and 12. For the distance function
dp, Lemma 8 is amended as follows:

Lemma 14.
∑︁

i=1 oiti ≤ (1 + ϵ)pOPT+∆

Proof. In the case where (d(u,OPT))p > ∆
n2 , now

(d′(u,OPT))p ≤ (1 + ϵ)p(d(u,OPT))p. Otherwise, the
proof is functionally identical to that of Lemma 8.

For Lemmas 11 and 12, we directly address and resolve
the main issue the distance function faces here, which is that
the triangle inequality does not hold when p > 1. However,
we can use the following lemma, which we prove in the ap-
pendix:

Lemma 15. In any metric space and p ≥ 1, (d(a, b))p ≤
2p−1 ((d(a, c))p + (d(b, c))p).

Using this lemma, we see that when the triangle inequality
would be applied, we gain an additional 2p−1 constant. This
affects the leading constant of the approximation factor and
additive error, but does not affect the asymptotic cost.

Therefore, the only changes to Algorithm 2 necessary to
make it a functional k-means algorithm are to use the proper
input metric d and to run a black-box k-means algorithm as
the last step rather than a black-box k-medians algorithm.
Then, if we are trying to minimize the objective function
using the distance function dp and we use a black-box al-
gorithm for this objective function at the last step of Algo-
rithm 2, the proofs in section 4 using Lemma 14 instead of
Lemma 8 yields the following lemma and corollary:

Lemma 16. Given a problem equivalent to k-means but
with distance function dp, and a non-private algorithm for
that problem with approximation factor M , there exists
an (ϵp, δp)-differentially-private algorithm for that problem
which, with high probability, has objective cost at most

O
(︁
2p−1M(1 + ϵ)p

)︁
OPT

+O

(︃
Mk∆p

ϵp

(︃
lnn+ 2p−1 ln |Y | ln

(︃
e

δp

)︃)︃)︃
.

Corollary 17. There is a (ϵp, δp)-differentially private al-
gorithm for the Euclidean k-means problem that with prob-
ability at least 1− β returns a solution with a constant mul-
tiplicative factor and an additive error of

O
(︂
∆2
(︂
T

1
1−a−b · w

1
1−a−b · k

1
1−a−b

)︂
+
∆2k

ϵp

(︃
lnn+ ln

(︃
ϵpn log

(︃
k

β

)︃)︃
ln

(︃
e

δp

)︃)︃)︃
.

Note that our algorithm results in a better additive term
compared to applying Gupta et al. (2010) on the potential
centers. Specifically, the second additive term is almost lin-
ear in k instead of k1.5, making the entire additive error
nearly linear in k.
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Ethics Statement
Clustering has many applications in machine learning, such
as image segmentation (Yang et al. 2017; Patel, Van Nguyen,
and Vidal 2013), collaborative filtering (McSherry and
Mironov 2009; Schafer et al. 2007), and time series anal-
ysis (Mueen and Keogh 2012). Privacy is a major concern
when input data contains sensitive information. Differential
privacy (Dwork et al. 2006b) has become a rigorous frame-
work for ensuring privacy in algorithms. Thus, differentially
private algorithms for clustering problem would ensure for
each individual in the input a robust privacy guarantee.

Our improved utility guarantee will perhaps encourage
adoption of privacy-preserving algorithm as a replacement
for the non-private counterpart. Furthermore, our approach
allows for usage with another clustering algorithm as a
black-box. We believe this further improves the applicability
of private clustering algorithms, making it easier to incor-
porate the privacy guarantee into existing clustering frame-
works. The limitations of the work are that the privacy guar-
antee requires that the range of the data is bounded and the
utility guarantee has additive error that is only meaningful
when the dataset has a large enough number of participants.
When applying the algorithm, the curator has to ensure that
the assumptions hold to protect the privacy of the partici-
pants.
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