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Abstract

With their growing popularity, Internet-of-Things (IoT) de-
vices have become attractive targets for attack. Like most
modern software systems, [oT device firmware depends on
external third-party libraries extensively, increasing the at-
tack surface of IoT devices. Furthermore, we find that the
risk is compounded by inconsistent library management prac-
tices and delays in applying security updates—sometimes
hundreds of days behind the public availability of critical
patches—by device vendors. Worse yet, because these depen-
dencies are “baked into” the vendor-controlled firmware, even
security-conscious users are unable to take matters into their
own hands when it comes to good security hygiene.

We present Capture, a novel architecture for deploying IoT
device firmware that addresses this problem by allowing de-
vices on a local network to leverage a centralized hub with
third-party libraries that are managed and kept up-to-date by
a single trusted entity. An IoT device supporting Capture
comprises of two components: Capture-enabled firmware on
the device and a remote driver that uses third-party libraries
on the Capture hub in the local network. To ensure isolation,
we introduce a novel Virtual Device Entity (VDE) interface
that facilitates access control between mutually-distrustful
devices that reside on the same hub. Our evaluation on a pro-
totype implementation of Capture, along with 9 devices and
3 automation applets ported to our framework, shows that our
approach incurs low overhead in most cases (<15% increased
latency, <10% additional resources). We show that a single
Capture Hub with modest hardware can support hundreds of
devices, keeping their shared libraries up-to-date.

1 Introduction

With their growing popularity, in-home Internet-of-Things
(IoT) devices are becoming ripe victims for remote attacks,
leading to high-profile incidents such as the Mirai botnet [5].
Compared to traditional network hosts, IoT devices are often
more vulnerable due to weak credentials [40, 60, 83], insecure

protocols [43], and outdated software [57,61]. Making matters
worse, despite their deployment in homes, these devices may
connect directly to public Internet hosts to send data and even
listen for incoming connections [30, 64]. If any of them are
compromised, attackers can easily wreak further havoc by
moving on to other devices on the same network [5, 80].

Although many current IoT exploits originate from miscon-
figurations, weak credentials, and insecure applications [3,40],
the extensive use of third-party libraries in IoT devices may
have security implications but remains overlooked. Vulnera-
bilities in common libraries, when left unpatched, can affect
a massive number of devices (e.g., CallStrager [82] and Rip-
ple20 [84]). The security impact of vulnerable libraries in
traditional software systems is well-known [12, 14], with
slow rollout of security-critical patches exacerbating the is-
sue [21,41,49]. To understand whether this situation is as com-
mon in [oT, we conducted a study of 122 IoT firmware (Sec-
tion 3), finding widespread use of common libraries. Match-
ing firmware release dates to CVE disclosures, we observed
significant delays in patching critical vulnerabilities (up to
1454 days), and inconsistent patch rollout even across the
same vendor. As end-users are usually unable to address these
vulnerabilities themselves, our findings call for better ways
of managing third-party IoT libraries, mitigating potential
threats arising from vulnerable libraries in the future.

Recent works in IoT security may partially alleviate this
challenge, but each has its limitations (Table 1). Commer-
cial IoT frameworks and operating systems (e.g., Microsoft
Azure Sphere [48], AWS Greengrass [4], and Particle Device
OS [53]) all assume the burden of managing a limited set
of shared libraries provided by the OS. However, develop-
ers may use a variety of IoT libraries for functionality [54].
These OSes provide little protection for those custom libraries
imported by developers. Alternatively, several proposals at-
tempt to isolate vulnerable devices on the network [22,36,70].
Network isolation offers limited flexibility when it comes
to mitigating the effects of compromised devices, so these
approaches present an inherent security tradeoff whenever
devices need Internet access.
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Automated Library | Prevent Malicious Secure Custom No Firmware No Application
Updates Network Access Libraries Changes Code Changes
Commercial IoT OS [4,48,53] v X X X
Network Isolation [22,36,70] X Partial v v
Capture v v X Optional

Table 1: Comparing Capture with other IoT security approaches. Commercial IoT OSes offer centralized management for a
limited set of libraries. Network isolation blocks unnecessary network communications, limiting exposure of vulnerable libraries.
Unless developed natively, existing IoT devices need to modify firmware to include either commercial OSes or Capture runtime.
Application code built with existing OS APIs also needs to change accordingly for the new OS’s APIs; for Capture, some
integration approaches provide backward-compatible API interfaces, avoiding changes to app-level code.

We present Capture, an approach that aims to reduce the
IoT attack surface stemming from vulnerable third-party li-
braries without compromising functionality. Capture is a
novel software architecture for writing [oT firmware, which
enables centralized management of third-party libraries, thus
simplifying the deployment of security-critical patches to
home IoT devices. Rather than a monolithic firmware run-
ning on an IoT device, Capture partitions firmware across the
device and its driver on a central hub. The hub is a trusted
entity under users’ direct control and maintains libraries up-
dated. When developing Capture-enabled devices, vendors
can implement the remote driver to use libraries maintained
by the hub rather than managing updates individually for
each version of their firmware. To provide flexibility and
backwards-compatibility, Capture still allows developers to
deploy custom, “unsupported” libraries directly on the device
firmware, but leverages isolation to reduce the attack surface
and limit damages to others in case they become compro-
mised.

To realize this vision, we must address several challenges.
First, since Capture splits devices into local firmware and
drivers, traditional device network identifiers such as MAC
and IP addresses are too coarse. Instead, we propose a novel
abstraction, Virtual Device Entitys (VDE) — a combination
of device, driver, and associated accounts and network con-
figurations on the hub — as the basis for managing devices
across hardware and facilitating access control.

Second, since we move part of the firmware functionality
from device hardware onto a shared, centralized hub, we must
ensure that drivers running on the hub are properly isolated
from each other such that they function the same way as they
did on the dedicated hardware. This is especially important so
that even if a device is compromised it cannot affect the other
devices on the hub. We place every VDE into its own subnet
attached to a unique virtual network interface (VNIC). By
blocking inter-vNIC traffic, we prevent devices from sending
network packets to each other. We also assign unique user
accounts and utilize Linux security primitives to isolate shared
resources on the hub.

Finally, as Capture represents a significant shift in the con-
ventional IoT architecture for developers, we take steps to

simplify the migration of existing IoT devices to our frame-
work. We design and evaluate three integration approaches
based on how current IoT devices are implemented — OS
Default Library Replacement, Existing IoT Framework Exten-
sion, and Native Driver Development — showing that Capture
can be adopted by developers by changing a few lines of code
in their existing firmware.

We developed a prototype Capture Hub on a Raspberry Pi 3
(RPi 3), and migrated 9 open-source IoT applications ranging
from streaming cameras to extensible “smart” mirror displays
into the framework. These applications cover a variety of hard-
ware platforms, from embedded real-time micro-controllers
to fully-provisioned Linux installations. In addition, we im-
plemented 3 home automation applets on IFTTT [38], which
provide additional macro-benchmarking data. Our evaluation
shows that porting an application is often straightforward,
while using Capture introduces a modest latency increase
(15% on average, <23 ms in most cases). We believe this
is imperceptible from a typical user’s perspective, although
it may vary depending on the set of applications that are in-
stalled. In particular, for IoT automation platforms such as
IFTTT, the overhead of Capture is negligible compared to the
time needed to communicate with the cloud backend. Appli-
cations that rely on throughput also fare well, experiencing
34% overhead on average, which we found preserves qual-
itative functionality. Importantly, our results show that the
hub itself scales well to many devices: the inexpensive RPi
3 prototype can easily accommodate on the order of 50 de-
vices without over-subscription, with more capable hardware
allowing hundreds of independent devices.

In summary, we make the following contributions:

o We present Capture, a novel architecture for deploying
IoT firmware in a way that supports centralized manage-
ment of third-party libraries, thus eliminating the need
for timely updates from individual vendors.

e We introduce Virtual Device Entities (VDEs) to securely
manage devices in Capture, and isolate untrusted com-
ponents running on shared hardware from each other.

e We propose three integration approaches for migrating
existing IoT devices to Capture. Our evaluation on 9
open-source 10T devices shows that these apps can be
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Figure 1: Current IoT device software stacks and network
communication. Devices have a variety of platforms (ARM
Cortex-M, ESP32) but utilize similar third-party libraries.

migrated to Capture with minimal changes.

e We implement a prototype of Capture on a RPi 3
and evaluate its performance for 9 IoT apps and 3
IFTTT applets. We show that Capture incurs low per-
formance overhead (<15% latency increases and <10%
extra on-device resources on average) and a single Cap-
ture Hub can support dozens to hundreds of local de-
vices. The code is available at https://github.com/
synergylabs/iot-capture.

2 Background and Setting

In this section, we provide essential background on the IoT
setting that we assume for the rest of the paper. Interested
readers are encouraged to read the comprehensive SoK paper
by Alrawi et al. [3] for additional details on IoT deployments
and security considerations.

IoT Device Software Stack. Figure 1 illustrates three rep-
resentative IoT devices and their software architecture based
on teardown blogs [1, 18]. IoT devices use a variety of micro-
controllers (MCUSs) with different capabilities. For example,
devices using ARM Cortex-M MCU can run a version of
Linux, supporting numerous Linux libraries (e.g., OpenSSL).
Meanwhile, more inexpensive devices often use less capable
MCUs s, such as Espressif ESP-32 with 520 KB RAM [26].
They also use light-weighted RTOSes and libraries (e.g., wolf-
SSL) to reduce resource use. Given that IoT developers often
focus their effort on building compelling application soft-
ware (e.g. App A, B, C in the figure), alternative IoT plat-
form designs have been proposed (e.g., HomeOS [19], Azure
Sphere [48], Particle OS [53]) which offer low-level OS and
library security updates as a service, enabling developers to
focus on applications using a limited set of APIs.

Home IoT Networking. During the installation of a device
in their home, users typically connect IoT devices to the In-
ternet either directly by associating them with their home
WiFi router, or through a vendor-provided hub (e.g. Sam-
sung’s SmartThings hub or the Philips Hue bridge) which

is then cloud-connected. Internet-connected devices can be
publicly accessible (via Network Address Translation (NAT)
from routers) due to functionality requirements, but may be
reachable from Internet attackers as well [11,81]. Although
sometimes devices can be restricted to not access the Internet,
they can still communicate with other devices on the LAN
without users’ involvement using, for example, the UPnP pro-
tocol [40, 42]. This can lead to cross-device exploits and
escalation attacks [5, 82].

Figure | shows an example IoT home deployment with
three devices that communicate with external hosts, including
the vendor’s proprietary cloud, the IFTTT automation service,
and possibly generic cloud service providers such as AWS or
Azure. In this example, however, not all devices are equally
secure. Device A and Device B both use OpenSSL, but Device
A uses an outdated version (1.1.0a) as compared to Device B
(1.1.0c). Device C, which runs on limited hardware, makes
use of a lighter-weight SSL library (WolfSSL). Even in a
small deployment, it may be common to see a wide range of
security-critical third-party libraries in use, becoming even
more of an issue in realistic settings.

3 Third-Party Libraries in IoT

In this section, we seek to address two key questions which
are largely unanswered. Namely, how prevalent is third-party
library usage among existing IoT devices, and how diligent are
device vendors when it comes to releasing firmware updates
that patch critical security vulnerabilities?

Previous studies [10,49, 86] that focus mainly on network
equipment report widespread vulnerabilities, some of which
can be attributed to unpatched third-party libraries. A recent
study focusing on smart appliances reports similar findings [3].
However, these studies do not address the state of affairs on
current IoT devices, and in particular on how frequently li-
braries are used and updated. To fill this gap in our knowledge,
we conducted a measurement study on 122 firmware releases
from 26 devices and 5 popular vendors. We find that third-
party library use is prevalent, and even more concerning, that
security-essential libraries like OpenSSL often remain un-
patched for hundreds of days.

3.1 Data Collection

Retrieving Library Information. A potential approach is
to analyze the binary images of publicly available firmware
images. However, despite the availability of analysis tools [20,
33], validating the resulting information would be time-
consuming and error-prone, and the number of devices with
easily obtainable firmware images is limited. Instead, we
collect vendor-reported information about the use of GPL
open-source libraries in firmware release notes, as this disclo-
sure is required by the license terms. While our results may
thus exclude information about closed-source and non-GPL
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Vendor BLK TP Ring Nest D-Link | Total
Devices 12 3 1 7 3 26
Firmware 12 3 1 74 32 122
Libraries 80 5 53 290 93 441
Lib. versions 103 5 55 400 114 654

Table 2: Summary of devices and vendors included in the
measurement. We skip firmware for network equipment since
our focus is on smart devices. BLK — Belkin, TP — TP-Link.

third-party libraries, we note that this will, if anything, under-
represent the true prevalence of third-party library use in IoT
devices. We used this approach to collect all available data
for 441 unique libraries across 122 firmware releases from
5 10T vendors, dating back to 2011. We manually collected
library names and version numbers for 122 firmware releases.

Firmware Selection. We selected 5 popular device vendors
(Belkin, TP-Link, Ring, Nest, and D-Link) since we were able
to find consistent, detailed information about their firmware
releases with the required third-party library information. Ta-
ble 2 summarizes 122 firmware releases we collected data
about. Nest and D-Link provide the most comprehensive in-
formation about their firmware release history, dating back to
2011. We use these historical releases to analyze longitudinal
patching behaviors. Belkin and TP-Link maintain public in-
formation for a single firmware version for each device still
under support. Ring releases one summary for all open-source
libraries used in their devices, which we categorize as a sin-
gle generic device with a single firmware release. Table 3
includes individual device details.

3.2 Results

From the collected data, we aim to characterize two main
statistics: the prevalence of third-party library usage in IoT
firmware images across vendors, and the characteristics of
patch release over time. In particular, our goal for the latter
statistic is to understand how quickly a new firmware image is
released after a third-party library is updated in response to a
known CVE with a corresponding moderate or high severity.

Prevalence. As expected, we found that IoT devices use
third-party libraries extensively. Table 2 shows that the 122
firmware releases we studied disclosed 441 unique open-
source libraries. Counting libraries with different version
numbers as unique, this number increases to 654. While some
vendors consistently use the same version across images, oth-
ers do not: for example, of the 12 Belkin devices we studied
(each corresponding to one image), there are 80 unique li-
braries spanning 103 library versions. This finding already
suggests problematic patching behavior. While there is a sig-
nificant variation in the range of libraries in use (441 across

100% [1 % Devices (n=26)
% Vendors (n=5)
0% \($\\0 U \/6\/‘\&\% ol o]
052000 AR 00T B0 WSRO A° 4580 0% (OF
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Figure 2: List of the most common libraries in all 26 devices
across vendors. Among 26 devices, over 50% use these li-
braries. The most popular ones, OpenSSL and BusyBox, are
used by 92.31% and 88.46% of devices. We also show the
percentage of vendors who use these libraries on their devices.

just 26 devices), there is a common subset across devices. Fig-
ure 2 shows the most popular libraries, appearing in at least
50% of the devices. OpenSSL and BusyBox are ubiquitous,
used by 92.31% and 88.46% out of a total of 26 devices.

Patching Practices. To better understand the security risk
of third-party library use, we examine firmware releases lon-
gitudinally, and their alignment with library patches and CVE
disclosures. Since historical release data was only available
for 5 devices from Nest and D-Link, we use 100 firmware
releases for these devices, for a 7-year period (2011-2018).

We pick OpenSSL to study library patching practices for
two reasons. First, OpenSSL is a popular library used by all
vendors in our dataset, except for Ring which uses GnuTLS.
Second, OpenSSL is critical for software security and has
a well-documented history of vulnerability discoveries and
patches [52]. By examining OpenSSL versions in firmware
releases and OpenSSL’s update history, we analyze vendors’
patching behaviors and outstanding vulnerabilities over time.

Figure 3 shows the “age” of the OpenSSL library, defined
as the number of days elapsed since the release date of a par-
ticular version. The dashed lines represent the library ages
used in different device firmware, while the solid green lines
represent the ideal case where the devices can always use the
most up-to-date library versions. As shown in these dashed
lines, device firmware updates routinely lag behind using the
latest versions of OpenSSL. In some cases, this extends for
hundreds of days. For example, Nest Protect’s last firmware re-
lease on 2016-07-13 used a 1525 days old OpenSSL version,
while the latest available one was released on 2016-05-03
(only 71 days old). Furthermore, there are often multiple new
firmware releases made by vendors without incorporating
the up-to-date library version, suggesting a missed opportu-
nity. Notably, even devices from the same vendor often use
different library versions, highlighting the challenge of coor-
dinating upgrades.

The Nest Learning Thermostat appears to have the best
patching practices among devices in our study; it sometimes
even used the latest OpenSSL (red circles in Figure 3). How-
ever, a closer look at how this aligns with known vulnerabili-
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Figure 3: OpenSSL library ages in different devices. Dashed lines represent actual library used in the firmware. Each marker
indicates a new firmware release. Solid lines indicate the expected library age if new firmware release always uses the latest
versions, representing a best-case scenario. Red circles highlight cases in which devices actually use the latest version.
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Figure 4: Number of publicly known OpenSSL CVEs in firmware releases. X-axis shows the firmware release date. We do not
have CVE severity breakdowns for data prior to August 2014 (the red dashed line in (2)). For newer libraries, we find many High
and Moderate CVEs present in the firmware. Certain Nest Protect firmware releases are skipped due to missing release dates.

ties suggests that even this case reflects unnecessary exposure.
Figure 4a depicts the number of OpenSSL CVEs and in partic-
ular those of moderate or high severity (severity data is only
available after August 2014), that apply to each version of the
Nest Learning Thermostat in this time frame. Unsurprisingly,
the periods corresponding to Figure 3’s red circles are not
vulnerable, but this only lasts for a few months until multiple
vulnerabilities emerge. Importantly, most of these CVEs are
avoidable only if the firmware uses the latest OpenSSL.

Hardware Architecture. Many devices in our dataset are
Unix-based systems, as 88.46% and 46.15% of devices in-
clude BusyBox and Linux Kernel libraries. Teardowns on
high-end smart devices [17, 18, 35] often find powerful
ARM processors, affirming our findings. Meanwhile, budget-
oriented devices may prefer alternative microcontrollers (such
as ESP32 and ESP8266 in light bulbs and plugs [1,2]). Our

dataset might under-represent lower-end devices for two rea-
sons. First, they could use libraries provided by chip maker,
royalty-free [27]. Second, we had some difficulty searching
for open source compliance notices from several lesser-known
vendors.

Key Takeaways and Limitations. Our measurement re-
sults reveal concerning statistics about the current state of
third-party library management in IoT devices. Just by con-
sidering widely used open-source GPL libraries, we show
that even market-leading vendors such as Nest and D-Link
oftentimes fail to update their dependent libraries promptly.
This results in unnecessary exposure to known vulnerabilities.
While our data collection methodology is limited to open-
source GPL libraries, we aim to shed light on the existing
state of 10T library mismanagement using these libraries as
indicators.
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Device Vendor Firmware Release Date Libraries  Library Versions
WeMo F7C027/F7C028 Belkin 1 2019/08/09 53 55
Wemo Light Switch vl F7C030 Belkin 1 2019/08/09 53 55
‘WeMo SNS Belkin 1 2015/10/14 53 54
WeMo Mini F7C063 Belkin 1 2019/09/05 54 54
‘WeMo Smart Belkin 1 2015/06/30 54 55
WeMo Smart F7C046/47/49/50 Belkin 1 2019/09/05 53 54
WeMo WLS040 Belkin 1 2019/09/04 55 55
WeMo Dimmer Belkin 1 2019/09/03 47 48
WeMo InsightCR Belkin 1 2019/08/09 53 54
WeMo Jarden Belkin 1 2019/09/03 53 54
WeMo Maker Belkin 1 2019/09/03 53 54
‘WeMo Insight F7C029 Belkin 1 2019/08/09 53 54
SmartPlug - HS100 TP-Link 1 N/A 5 5
SmartPlug - HS110 TP-Link 1 N/A 5 5
SmartPlug - HS200 TP-Link 1 N/A 5 5
Generic Release Ring 1 N/A 53 55
Nest Cam Nest 2 N/A 177 186
Nest Connect Nest 1 N/A 7 8
Nest Detect Nest 1 N/A 12 13
Nest Guard Nest 1 N/A 107 108
Nest Hello Nest 1 N/A 20 20
Nest Learning Thermostat Nest 57 2011/10/25 - 2017/10/16 140 194
Nest Protect Nest 11 2013/11/19 - 2016/07/13 18 21
DSPW110 D-Link 9 2014/07/15 - 2016/07/14 75 86
DSPW215 D-Link 14 2014/06/05 - 2016/03/07 72 85
DCHS150 D-Link 9 2014/07/09 - 2016/04/30 51 54

Table 3: Details of devices and firmware releases included in the measurement. For each device, we count the number of unique
libraries and unique library-version combinations across all firmware releases.

{  Fimwarc A* M Firmware B* _§

. Capture Device Library ! . Capture Device Library ! Capture Hub
r: | DriverB* 1 -

' iver Library Jif Capture Driver Library oot
ISR, NS | & Enforce

L Shared Security Libraries (e.g. OpenSSL)

Figure 5: Capture system architecture. Every device consists
local device firmware and driver on the hub. They form a
logical unified entity, Virtual Device Entity (orange dashed
box). The Capture Hub maintains a central version of common
libraries and has extra monitoring and enforce modules.

4 Capture Framework

To mitigate the security threats from outdated libraries in
device firmware reported in Section 3, we present Capture,
a novel architecture for deploying IoT firmware to support
centralized management of third-party libraries, alleviating
the need for library updates by individual vendors.

4.1 Overview

Figure 5 provides an overview of Capture. A Capture Hub
in the local network centralizes library security updates. Ev-
ery device has two components: a device firmware (F/W A*,
B*), and a remote driver (Driver A*, B¥) running on the Cap-
ture Hub. Developers can use default drivers (provided by

Capture) or implement custom ones to use the latest libraries
on the hub. The device firmware and the driver use Capture
SDK libraries for network communication. Moreover, the
driver uses API wrappers provided by Capture to interact
with common libraries on the hub. If vendors need libraries
not provided by Capture, they can include custom dependen-
cies in their firmware while still benefiting from Capture’s
isolation protection. The Capture Hub Monitor and Enforce
module manages all drivers and provides runtime and network
isolation for all devices supported by it.

Threat Model. We assume that the Capture Hub is trusted,
and all standard wireless protocols and Linux tools we use to
provide isolation are up-to-date to address any vulnerabilities.
We consider an adversary who seeks to compromise [oT de-
vices through known vulnerabilities in unpatched third-party
libraries. Unlike prior efforts that restrict devices to explicitly
whitelisted hosts (e.g., the vendors’ cloud backend) [36,39],
we allow devices to communicate with arbitrary hosts to avoid
limiting their functionality. Since local devices (or drivers)
may be compromised, our goal is to prevent them from being
able to affect other non-compromised devices and drivers in
the same home deployment. Attack vectors from zero-day
exploits (i.e. no patches available) and non-library vulnerabil-
ities (e.g., weak passwords) are out of the scope of this work.
In addition, we exclude side-channel attacks arising from the
shared hub access from different drivers.
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Security Goals. Intuitively, the main goal of Capture is to
centralize library management by providing a consistent,
up-to-date set of third-party libraries for devices in the local
network, configured and managed by the central hub. Since
we do this by splitting the firmware across an IoT device and
a hub, Capture should not introduce new vulnerabilities or
attack opportunities. For example, Capture needs to preserve
device integrity by protecting communication that would
normally be on the device. Hence Capture needs to prevent
any entity from intercepting or impersonating a device with
its driver on the hub and vice-versa.

In addition, Capture needs to maintain proper isolation
between devices and drivers. This implies that compromised
devices should not be able to communicate with other hosts
on the same local network, and that compromised drivers on
the hub should not affect the operation of devices other than
the one that they represent.

4.2 Library Update Management

Capture alleviates the burden of patching security-critical
shared libraries, enabling device vendors to use the up-to-date
versions on the Capture Hub without managing patches them-
selves. Notably, vendors still implement their device firmware
and the corresponding drivers. However, they may be con-
cerned with losing control over devices’ stability whenever
Capture automatically updates shared libraries. These library
updates can potentially cause semantic changes (e.g., new
APIs) or unexpected bugs to break the existing functionality
of the drivers. Fortunately, prior work on patching vulnerable
libraries for Android apps provides an optimistic outlook [16],
reporting that 97.8% of apps using libraries with known vul-
nerabilities can be fixed with a drop-in patched version of
the library. To determine whether this finding applies to loT
devices, we analyze the dataset from Section 3 for potential
impacts of library updates on device functionality. We focus
on the OpenSSL library usage in Nest devices, since their
dataset has a comprehensive history of versions and upgrades.

OpenSSL Versioning. OpenSSL’s versioning scheme uses
letters to denote minor security patches and numbers for major
changes [51]. For example, an application using version 1.0.2a
can upgrade to 1.0.2b to fix bugs and security vulnerabilities,
while an upgrade to 1.1.0 indicates new features and APIs.
Each major version has an end-of-life date, after which users
stop receiving security updates. OpenSSL’s staggered release
strategy supports multiple major versions at the same time,
providing a buffer to transition between versions. Our analysis
on Nest’s OpenSSL use finds that Nest always upgrades the
major version before the old one reaches end-of-life.

Library Update Strategies. There are three strategies for
Capture to support multiple library versions concurrently.

Maintain Multiple Majors in Parallel. The most stable
strategy to preserve device functionality is to support all
active major versions in parallel. The hub applies security
patches for each major version independently. According to
the OpenSSL’s release history [52,76], Capture has to support
two or three majors concurrently and needs to apply security
updates every few months. This strategy will not break any
Nest device’s functionality in our dataset, since they never
use any outdated major versions.

Only Maintain the Latest Major Version. Managing multi-
ple library versions in parallel may become complicated as
the number of libraries increase. A simple strategy is to only
keep one version per library on the hub, presumably the latest
major release. Based on our dataset, Nest devices use a non-
latest major version in 1238 out of 2184 days. This strategy
will cause version mismatches almost half of the time. Mixing
drivers intended for older versions with newer runtime can
be problematic. Although OpenSSL meticulously preserves
backward compatibility across major upgrades [51], we are
pessimistic about third-party libraries ° stability in general.
Therefore, we use the major mismatch as a conservative es-
timator of potential functionality breakages. Choosing how
many major versions to support demonstrates the tradeoffs
between manageability and functionality.

Forceful Major Upgrades after End-of-Life. Vendors could
ignore library upgrades so long that it reaches the end-of-life
dates. Capture could forcefully upgrade major versions to
maintain security at the expense of potential functionality
breakages. Since Nest always upgrades OpenSSL to the next
major version before the end-of-life dates, we do not have
data to measure the impact of a forceful upgrade. However,
this tradeoff is a very difficult yet open challenge. Prior works
proposed various strategies from blocking devices with inse-
cure libraries [39], quarantining insecure devices locally [22],
to preserving functionality at the expense of security [43]. We
plan to leave this as a configurable option for end-users to
make informed decisions based on their concerns.

4.3 Virtual Device Entities (VDEs)

An IoT device supporting Capture comprises of two com-
ponents: a Capture-enabled firmware on the device and an
associated software driver running on a hub, collectively form-
ing a Virtual Device Entity (VDE). Note that Capture creates a
unique VDE instance for every deployed device. Even if there
are multiple identical devices, Capture instantiates separate
VDE instances for each of them. Capture ensures confiden-
tiality within the VDE and enforces isolation across different
VDEs, as we will explain in the following sections.

Device Bootstrap. Figure 6 illustrates the process of boot-
strapping new devices and obtaining VDE. A device first
connects to a setup network with pre-shared credentials, just
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Figure 6: Device bootstrap procedure. In Step 1, the device
connects to the Capture Hub using a shared setup network.
Then it joins a VDE-specific VLAN network in Step 2 (dashed
box). Section 4.4 discusses more details on network configura-
tions. Section 4.6 addresses potential attacks during bootstrap.

like traditional home WiFi. In Step (), the Capture Hub cre-
ates a fresh VDE and prepares a VDE-specific VLAN on the
second operation network. After receiving the VDE-specific
credential, the device disconnects the setup network and joins
the operation network (Step (2)), where the hub binds the
device to its VLAN. This transition won’t affect other exist-
ing devices, since they are connected to their VDE-specific
VLANS already. The hub creates a driver for the VDE, sets
up network interfaces and isolation, and enforces resource
isolation for the driver on the hub.

4.4 Communication Isolation

A Capture-enabled device essentially functions as a “local” de-
vice since it can only communicate with its driver on Capture
Hub and vice versa. Other communication, such as between
local devices or different drivers, is automatically blocked. We
achieve this in Capture by creating unique logical networks
for each VDE with its own subnet and virtual interface.

The Capture Hub simultaneously manages two separate
WiFi Access Points (APs). The first one is a WPA2-Personal
AP with pre-shared credentials for the first step of initializa-
tion (Figure 6), similar to current home WiFi. The second
AP uses WPA2-Enterprise and enforces VDE-based isola-
tion. Specifically, Capture Hub creates unique RADIUS user
accounts and constructs different virtual Network Interface
Cards (vNICs) for each VDE. Using enterprise features such
as VLAN and RADIUS authentication, the second AP binds
each VDE’s device into its own subnet and vNIC. The hub
binds the corresponding driver to the same vNIC interface
using TOMOYO [68], a Linux security module for mandatory
access control. If the driver needs Internet access, the hub cre-
ates a designated public-facing port and enables the driver’s
connection to the port via TOMOYO. We then configure the
firewall program iptables’s rulesets to block communica-
tions across VNICs to achieve VDE-based isolation. Capture’s
VDE-based isolation is inspired by DreamCatcher [22], which
shows vNIC-based isolation is effective against link-layer
spoofing. We extend DreamCatcher’s network isolation with

additional mandatory access control to accommodate Capture
Hub’s shared driver execution environment.

To bind multiple devices into different vNICs while using
a single WiFi AP, we utilize the VLAN isolation feature from
WPA2-Enterprise. While WPA2-Personal is common for
home users, popular WiFi modules used by vendors to build
their products already support WPA2-Enterprise [24]. Hence
we believe modern devices can support Capture and WPA2-
Enterprise either out of the box or with updated firmware. For
legacy devices without WPA2-Enterprise support, Capture
can create a new WPA2-Personal AP for each legacy device,
however that may run into software limitations of the number
of SSIDs per antenna [22]. An alternative approach is to create
unique WPA group keys for each device, isolating hosts under
one shared WPA2-Personal network [70]. Capture didn’t take
this approach as it requires modifying standard protocols.

4.5 Resource Isolation

Since Capture Hub executes multiple drivers, a key challenge
is to ensure secure and fair resource sharing on the hub. Cap-
ture needs to ensure slow or malicious drivers are contained
and cannot affect other VDE’s availability and private data.
Linux containers [45] seem like a natural choice for process
isolation. However, they are ill-suited for Capture since each
container has a copy of the libraries the driver needs. When-
ever the library is updated, all container images would have to
be updated and rebuilt, which conflicts with our goal of man-
aging libraries centrally. Instead, Capture provides resource
isolation and access control using lightweight Linux system
primitives. The Capture Hub creates a new Linux user account
per VDE, under which context the associated driver runs, ap-
plying standard Linux filesystem and memory protections. We
further limit the driver’s capability by utilizing the TOMOYO
Linux extension and its domain-based security management.
We assign each VDE and all of its subprocesses to the same
security domain and enforce security policies for network-
ing and file systems. Finally, we used Linux cgroups [34],
a key building block for implementing containers, to limit
the resources used by each VDE. Linux cgroups are known
to be an efficient and low overhead mechanism to account
for resource usage [55, 79]. Currently we statically set the
CPU and the memory resources for each driver to equally
share the total system resources, but in the future, we can add
support for drivers to specify their resource demands (such as
via manifest files during installation, similar to mobile apps)
and dynamically enforce them.

4.6 Security Analysis

External Threats. Capture protects devices from external
threats by securing the driver components, which are reach-
able from the Internet. This is done by the Capture Hub, which
ensures that the latest library versions are installed automat-
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ically and used by the drivers, without the device vendors
having to do this. Unlike drivers, the actual devices are iso-
lated from other hosts in the local network. Manufacturers
still implement custom firmware running on their devices,
meaning that some outdated libraries and vulnerabilities may
still exist. However, since the network isolation in Capture
only allows communication between driver and device, it lim-
its other hosts from exploiting them. This security protection
is contingent on vendor adoptions and properly implemented
driver software.

Internal Threats. We consider internal threats which in-
clude compromised devices, drivers, and other devices within
the WiFi range. Capture prevents compromised local devices
from attacking other Virtual Device Entities (VDEs) through
network isolation since these devices are confined to their
VDE and cannot reach any other hosts directly. Similarly, a
compromised driver is also isolated from other VDE drivers
using our network and other resource isolation mechanisms
(Mandatory Access Control, cgroups) mentioned above. In
Capture, drivers communicate with their associated device us-
ing our library runtime, which requires developers to specify
the message format between the device firmware and driver.
This design prohibits compromised drivers from sensing arbi-
trary packets to their associated devices and affecting them.
Furthermore, drivers cannot communicate with other VDEs
on the hub due to our resource isolation mechanisms.

Malicious devices (including Capture-incompatible local
devices) can not learn about other VDE’s network credentials
simply by eavesdropping on the setup network. Although the
setup network is a WPA2-Personal AP with shared password
credentials, each device actually has its own PTK (pairwise
transient key) through WPA2 4-way handshake [43,75]. How-
ever, link-layer encryption provided by WPA?2 is insufficient
for Capture’s network isolation because all drivers will run in
the same application layer on the hub. Therefore, we generate
a unique network interface and VLAN for each VDE during
the bootstrap process (Figure 6).

An adversary could potentially impersonate the Capture
Hub and perform man-in-the-middle attacks during new de-
vice bootstraps (Figure 6). This threat can be mitigated by
using certificates and public key infrastructure for devices to
verify the hub’s identity, or other novel device pairing and
initialization techniques [32,65]. We did not implement these
features in our prototype since our current threat model fo-
cuses on attacks from vulnerable third-party libraries (Sec-
tion 4.1).

5 Integration Approaches

We propose three integration approaches for developers to
adopt Capture, motivated by current IoT development prac-
tices. Our goal is to provide paths of least resistance to help
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(b) Capture-enabled SmartThings devices move all network commu-
nication onto the device drivers at the central hub.

Figure 7: Integration using IoT framework SDK extension.

with the adoption while providing flexibility to developers.

5.1 OS Library Replacement

The first approach is to provide a Capture-enabled version
of standard OS libraries. Take the OS networking library in
ESP32 platform, WiFi.h, for example. Devices use APIs from
this library to connect access points, maintain web servers, and
communicate over sockets. We provided a fully-compatible
Capture-enabled library, named as CaptureWiFi.h. Devel-
opers just need to make minor changes to use Capture, such
as replacing the #include <WiFi.h> statement and initial-
izing Capture global runtime. We provide a default Capture
driver on the hub, which acts as a proxy to relay network
traffic. If the original device works as a webserver, we open
a public-facing server on the driver to forward traffic and
restrict network traffic between driver and device.

This approach is platform-dependent. We need custom im-
plementations for specific OS APIs and libraries. However,
this is a one-time effort that can then be used by device de-
velopers with minimal porting effort. For example, all of our
prototype apps use the same ESP32 modified library runtime.

5.2 IoT Framework SDK Extension

Similar to replacing OS APIs, our second approach is to ex-
tend the SDK of a popular IoT framework to support Capture.
IoT frameworks (e.g., Azure Sphere [48], Particle OS [53],
and Samsung SmartThings Device SDK (ST-SDK) [62]) pro-
vide rich functionalities to differentiate from standalone em-
bedded device OSes with limited networking APIs. For exam-
ple, Azure Sphere [48] and Particle DeviceOS [53] provide
APIs to communicate with their native cloud backends; Sam-
sung SmartThings Device SDK [62] offers local devices the
option of using the SmartThings Hub as an MQTT broker.
In this case, the developers of the IoT frameworks can incor-
porate Capture by modifying their SDK implementation while
preserving existing functionality. As a proof of concept, we
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added Capture support into the ST-SDK, which enables third-
party devices to use their SmartThings Hub. Figure 7a shows
how an example device would integrate with the ST-SDK, sim-
ilar to a custom OS library. A locally installed SmartThings
Hub (ST-Hub) provides functions such as MQTT brokers,
which device developers can directly invoke using ST-SDK
APIs. A device-side library manages the underlying connec-
tions with the ST-Hub. We develop a Capture-augmented ST-
SDK library (Figure 7b), so that device developers only need
to switch their ST-SDK library runtime without modifying
their application. Since the SmartThings Hub is proprietary,
we were only able to re-create their known functions such
as MQTT brokers using corresponding open source versions.
We provide a default SmartThings-compatible driver to mimic
the ST-Hub operations in Capture.

5.3 Native Driver Development

The two prior approaches provide default drivers on the Cap-
ture Hub to aid developer adoption. As a complementary
approach, we developed a Capture Native Driver SDK, for
developers to implement their own custom drivers with much
more flexibility. To motivate this, consider an IoT device with
a web server. Using the previous approaches, the default driver
on our hub will create another public accessible web server
for new connections, and relay incoming client connections
to the device local-only web server. However, this may cause
unnecessary latency to serve the web request since both in-
bound and outbound traffic has to go through the hub and
processed by two webservers. To address this, we propose the
Capture Native Driver SDK for developers looking to build
customized drivers. Developers can use our SDK APIs to
access security and networking functions on the Capture Hub,
and even offload some computation to the hub.

6 Implementation

6.1 Core Hub Functionality

We implement the Capture Hub using a Raspberry Pi 3B+
with Linux in 1874 lines of C++ (https://github.com/
synergylabs/iot-capture). We use the TOMOYO Linux
security module [68] and iptables to implement the Vir-
tual Device Entity based isolation mechanisms. Our hub uses
hostapd [37] to manage WPA?2 Personal and Enterprise WiFi
APs. The main Capture program listens for new connections
on the setup network, and upon request, creates a new VDE
for the incoming device, allocates a new VLAN subnet with
fresh RADIUS credentials, launches the corresponding driver
program based on the device type, and updates the TOMOYO
and iptables rulesets accordingly. The main program stores
all metadata for each VDE locally. While our current proto-
type does not address device removal, this functionality can
be added in a straightforward manner.

Optimizations. Existing applications often use blocking
network calls. During prototype development, we observed a
pathological case wherein the application only communicated
using one sequential byte at a time. Clearly, adapting such ap-
plications into Capture introduces a significant performance
penalty, as each read request will incur one round of commu-
nication with the driver residing on the hub. We found that
without correction, this can lead to a 9.56x latency penalty for
the simple Web Server app (listed in Section 6.2).

The first optimization we perform to address this issue is
to introduce read and write buffers on the device. When an
Internet host sends data to the driver, the payload is forwarded
to the local device in batch. Subsequent read calls from the
device will just retrieve the payload from the local buffer.
Similarly, using write buffers enables network writes to be
non-blocking I/Os, aggregating multiple payloads into chunks
in one round of driver communication. We found that this
reduces the latency penalty for the Web Server app from
9.56x to 1.62x, largely due to the reduced number of round
trips to the hub.

Although the previous approach reduces average latency
overhead to an acceptable 1.62x, it still incurs a median in-
crease of 31 ms. We were able to attribute this to the poor
wireless performance on the budget-oriented ESP32 micro-
controller, where a single packet transmission can take up to 6
milliseconds. To reduce the total number of packets sent, we
extended the protocol header fields and aggressively coalesce
small packets throughout our protocol. One concrete example
is proactively loading read buffers after accepting new clients,
where previously the device needs to send two messages to
check client status and fetch data to read, respectively.

Applying protocol optimizations and message coalescing
bring down the median latency overhead to 1.2x (+10 ms),
using the Web Server’s baseline performance as a reference.
Given that the ESP32 takes 5-6 ms to send a single packet,
this approaches the limit of what can be done without better
hardware. Detailed results are discussed in Section 7.1.

6.2 Benchmark Applications

To evaluate Capture, and explore different approaches for
integrating apps, we developed 9 prototype applications (Ta-
ble 4), including smart devices, Linux applications, and IoT
frameworks, and 3 IFTTT automation applets for benchmark-
ing (Table 5). Capture provides runtime libraries for device
firmware and drivers to handle network setup and communi-
cation with the hub. The device-side library was implemented
in 1335 lines of C++ code while the driver-side library varies.

Prototype Apps. We collected 6 open source applications
from popular online forums and tutorials [23,31,71], and
adapted them to use Capture. We chose the Espressif ESP32
platform given its reported popularity [1,2] and use in hun-
dreds of millions of IoT devices [25]. We implemented a
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Abbreviation App Name Platform Description
WEB Web Server ESP32 Standard web server to display and manage GPIO on/off status.
CAM Camera ESP32 Stream live video, take pictures.

SM Servo Motor ESP32 Adjust the speed of a servo motor.

CP Color Picker ESP32 Change the color of LED light bulb.

WS Weather Station ESP23 Monitor weather with a BME sensor.

TH Temperature & Humidity ESP32 Display temperature and humidity data from DHT sensor.
ST-L SmartThings Lamp SmartThings Subscribe to MQTT broker to receive on/off message.
ST-S SmartThings Switch SmartThings Publish to MQTT broker to issue on/off message.

MM MagicMirror Linux Smart mirror display with online data such as news and weather.

Table 4: Prototype applications and descriptions.

generic default driver to support the OS Replacement ap-
proach, which required 166 lines of Python.

IoT Framework. We extended the Samsung SmartThings
Device SDK (ST-SDK) [62] to showcase integrating Capture
with existing frameworks (Section 5.2). ST-SDK is open-
source, whereas other proprietary alternatives (e.g., Azure
Sphere and Particle OS) raise challenges for replication and
comparison. Capture-enabled devices cannot work directly
with unmodified SmartThing Hub, so we analyzed ST-SDK’s
codebase and replicated its functionality with a driver that
executes on the Capture hub. We then adapted sample appli-
cations provided by ST-SDK [63] into Capture.

Linux apps. Some IoT devices are powerful enough to
run a Linux OS and applications (Section 3), so we adapted
Linux smart devices into Capture to demonstrate its capa-
bility. We selected MagicMirror, a project with over 12K
Github stars [47], that uses Raspberry Pi with a display to
function as a smart mirror, displaying custom content (e.g.
news and weather). Internally, the app includes a webserver
and a browser to display the webpage. We migrated Mag-
icMirror into a Capture prototype using the custom driver
integration (Section 5.3) and separated the server component
to the driver on the hub, keeping the display parts on the
firmware.

Automation Applets. To better measure Capture’s macro-
benchmark performance impact on real-world scenarios,
we implemented several home automation applets devel-
oped for IFTTT [38]. Prior work [46] categorized IFTTT
applets by trigger-action service types (Device=WebApp,
WebApp=-Device, Device=-Device) and reported an aver-
age execution latency of several seconds. We implemented
Capture-enabled devices for all three trigger-action service
types (Table 5), using the Web Server app (c.f. Table 4, WEB)
on ESP32 in place of physical lights and switches, since it
can control GPIO pins. Since ESP32 boards are lower perfor-
mance and slow at performing SSL encryption, integrating
these devices into Capture often improves performance due

to our hub hardware being more capable. To provide a fair
comparison, we also implement “mock” lights and switches
directly on the Raspberry Pi and measure the latency impact
from Capture integration as well.

7 Evaluation

Our evaluation aims to answer three primary questions.

e How much performance overhead do key device func-
tionalities incur on Capture versus their native platform,
and is the amount tolerable for typical home use?

e Can the Capture Hub scale to home deployments with
hundreds of devices in the near future, and how many
devices can our prototype reliably support at once?

e Roughly how much effort is required to port existing [oT
devices to Capture, and do the integration approaches in
Section 5 entail meaningful differences in the effort?

Our experiments were performed in a laboratory setting on
9 prototype devices (Table 4) and 3 IFTTT automation ap-
plets (Table 5). We use one Raspberry Pi 3 B+ as the Capture
Hub and another Raspberry Pi and multiple ESP32 boards
for prototype apps. Our evaluation results show that Capture
typically incurs low overhead (15% latency increase, 10% de-
vice resource utilization), insignificant impact on applets from
real-world automation platforms, and can support hundreds
of devices for a single Capture Hub.

7.1 Performance Overhead

Setup. We compare the performance of apps running on
Capture to that achieved by their original implementations.
Because many IoT devices and automation apps are event-
driven, they usually transmit a small amount of traffic but
are sensitive to delays in latency. We categorize prototype
apps (Table 4) into two categories: latency-sensitive and
throughput-sensitive. We measure application-layer latency
for all of them, but only measure the throughput reduction
for the second group (such as a streaming camera). For most
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applications, we use Apache JMeter [6] to benchmark av-
erage and median latency for 500 HTTP requests. For the
streaming camera (CAM), we measure the video latency by
pointing the camera towards a millisecond clock and calculate
average delays from 50 readings. For the SmartThings apps
(ST-L and ST-S), we add instrumentation to send a notification
packet to the hub so that we can calculate the time duration
between the first MQTT message and the final notification
from Wireshark’s packet capture history. Finally, we measure
the firmware code size and memory utilization on the device.

Simple Integration with All Apps. We aim to conserva-
tively estimate Capture’s performance impact assuming mini-
mal burden on the developer. Hence, we first try to integrate
apps with either OS or SDK replacements, since these re-
quire minimal modifications by the developer. If this attempt
fails (for example, the app requires features not supported
by our current prototype), we develop simple native drivers
without spending too much engineering effort on app-specific
optimizations.

Figure 8a shows the normalized latency for integrated apps.
On average, apps experience a 15% latency increase due to
the extra processing by the drivers on the hub. The baseline
apps for the comparison process everything on the device
and communicate directly with external hosts. After Capture
integration, external hosts need the drivers on the hub acting
as a proxy. For example, the camera streaming app driver
needs to retrieve the raw footage from the device and forward
it to the viewers. These extra steps introduce overhead to
the end application. However, as Figure 8a shows, most apps
experience a modest latency change between —34 ms and
+23 ms. Given most apps’ event-driven nature, this minor
increase in absolute latency should not impact the quality of
services for end applications. CAM app experiences the most
substantial latency increase, increasing from 523 ms to an
average of 820 ms (+297 ms), and a 40% FPS throughput
reduction. However, the relative increase (1.6x) is on par with
other apps. Since the baseline latency is very high, we believe
the original app is not designed to be real-time for ESP32,
and thus we did not further optimize its driver.

Several of the apps integrated with OS-Replacement see
improved average latency results. This is because Capture-
integrated apps perform more consistently, while the ESP32-
only baselines occasionally experience latency spikes (thus
having higher average results). Median results are more ro-
bust against outliers, and confirm Capture often increases
latency slightly. The overall results show that Capture offers
comparable performance to the baseline for most requests.

We measure the throughput overhead for several
throughput-sensitive apps and report results in Figure 8b. For
throughput metrics, we choose FPS for streaming, packet
transfer rates for taking pictures, and full web page load time
for the complex MagicMirror dashboard. The Camera app
has a modest throughput reduction of around 40%. We ob-

serve no throughout drop for the Linux-based MagicMirror
benchmark. Figure 8c shows that the Capture firmware is, on
average, 10% larger and uses 7% more on device memory.
We only measure the code increase for ESP-based devices
given they have limited flash storage.

7.2 Overhead Perceived in the Real World

We implemented several IFTTT automation applets and mea-
sured Capture’s impact on latency (Table 5). We programmat-
ically trigger applets 30 times, reporting the average end-to-
end latency. These results show moderate variances, largely
due to the fact that these applets interact with remote cloud
services (IFTTT, Google Sheets, and email servers), which
is consistent with results from prior work [46]. Applets Al
and A2 show insignificant latency changes from Capture inte-
gration, indicating the communications to Internet services as
the performance bottleneck. Applet A3’s ESP32 integration
demonstrates a benefit of Capture for low-budget devices. A3-
ESP32 baseline has high latency due to compute-intensive
tasks such as TLS encryption, while A3-Raspberry Pi and
Capture-integrated ones have comparable latency results.

7.3 Scalability

Since our Capture Hub executes all drivers on the hub, its
resources limit the number of devices it can support. Among
resources including memory, CPU, network interfaces, and
private IP addresses, we identify the memory capacity as the
key scaling bottleneck. The default driver for OS replacement
uses the least amount of memory (3.7 MB) while the Mag-
icMirror’s driver uses the most memory (42 MB) as reported
by smem’s Proportional Set Size [69]. Therefore, we emulated
a deployment of 40 devices using the default drivers and 10
devices with MagicMirror drivers on a single Raspberry Pi
3B unit (1 GB RAM, quad-core). This setup uses 664 MB
memory, but the CPU load average never exceeds 0.8 (max
4.0, due to four cores). Network virtual interfaces and subnets
do not impose any practical limits with fine-grained assign-
ments [58]. While the RAM on the hub is a limiting factor,
several inexpensive platforms exist with more memory (e.g.,
Raspberry Pi 4 with 8 GB RAM for $75 [56]), which can
potentially support hundreds of devices.

7.4 Integration Efforts and Tradeoffs

Integrating apps by replacing OS libraries or framework SDKs
is straightforward, requiring modifying less than 10 lines of
code after importing the Capture device library. Developing
native drivers is more involved since it requires declaring a
custom message format for device-driver communications and
implementing the driver while delegating the network man-
agement to Capture’s library runtime. The most sophisticated
CAM driver we implemented was 817 lines of Python.
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Figure 8: Performance overhead for all prototype apps. Data are normalized to results from the orignal apps. CAM has two
modes: STreaming videos and taking Pictures. We denote integration approaches in parentheses: OS Replacement, Native Driver,
and Framework SDK Replacement. Based on geometric means, Figure (2) shows a 15% latency increase and Figure (b) shows a
34% throughput reduction. Figure (c) shows the Capture-enabled firmware incur around 10% more on-device resource utilization.

Service Type ESP32 (seconds) Raspberry Pi (seconds)
Trigger Action Original Capture Original Capture
Al| Device Web App | Turn on switch. = Add line to Google Sheet. | 2.654+0.42 | 2.00+0.35 | 2.04+0.66 | 1.83£0.75
A2| Web App Device New email arrives inbox. = Turn on light bulb. | 2.93+0.82 | 2.93+£0.90 | 2.62+0.62 | 2.83+0.87
A3| Device Device Turn on switch. = Turn on light bulb. 2214043 | 0.81£0.16 | 0.94£0.28 | 0.88+0.35

ID

IFTTT Applet Rule

Table 5: Average latency for automation apps with standard deviations (30 runs). Overall, Capture has insignificant impacts, with
noteworthy improvements on Al and A3 (ESP) due to offloading TLS operations on the hub. See Section 7.2 for further analysis.

We demonstrate the tradeoff between ease of adoption and dor’s loss of agency and to avoid breaking functions.
performance impact by analyzing different integration ap- The need for firmware splitting may pose another major
proaches for the Web Server app. Although we spent consid- roadblock for vendors. They have to bear the extra onus of
erable effort optimizing the default OS-replacement driver, developing two separated pieces of the “device” and the addi-
it yielded a modest 12% average latency reduction over the tional overhead in signing and logistics involved in firmware
baseline ESP32 app. The integration only requires changing a updates. Implementing Capture drivers and new firmware
few lines of the original code. In comparison, implementing a would require vendors to change significantly from the cur-
native driver for this app significantly reduces latency by 36% rent status quo and would induce extra engineering efforts.

over the same baseline. However, to implement the driver, we
modified 264 lines of source code to process device-driver

.. . Single Point of Failure. Capture’s centralized design
communication and customize protocols.

means that the Capture Hub is a potential single point of
failure; this is part of our threat model (Section 4.1), where

8 Limitations and Future Work the hub is assumed to be trustworthy. If the hub is compro-
mised by vulnerabilities or privilege escalation bugs like those

Vendor Incentives and Adoption Challenges. Vendors on conventional systems [9, 13], the integrity and confidential-
may be incentivized to use Capture because they can offload ity of the installed devices will be likewise compromised. By
the security upkeep responsibility to a central trusted entity centralizing the management of security-critical updates, and
(the Capture Hub). They no longer need to keep applying providing additional isolation between devices, we hope to
security patches themselves, a task they often lag behind (Sec- contribute to improving the overall security posture of devices
tion 3). Capture’s isolation design also helps protect vendors deployed within the network (i.e., relative to the status quo).
from other compromised devices in the user’s local home. However, this improvement is contingent on vendor adoption.
There might be several hurdles for vendor’s adoption. We Centralization may lead to a less robust network even with-
have already proposed various integration approaches Sec- out adversarial compromise. If the hub goes down, devices
tion 5 to reduce adoption costs for existing devices and hub’s would lose network connectivity and drivers become unre-
library management strategies Section 4.2 to alleviate ven- sponsive. Because most device firmware controls local actions
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(e.g., managing the on/off states for smart plugs), most devices
should still function (e.g., through physical buttons on the de-
vice). Capture Hub failures, in this case, largely resemble
network outages and router failures in current smart homes.

Protocol Compatibility. Since Capture isolates devices,
link layer discovery and local network scanning no longer
work. One such example is UPnP, an infamous protocol for
posing security threats in IoT devices [40,42] and recent ex-
ploits like CallStranger [82]. A future direction for our work
is to provide a secure centralized discovery service on the
Capture Hub itself with co-located drivers and shared libraries,
substituting link layer discovery and mitigating fallout like
CallStranger. With that said, many smart devices have com-
panion smartphone apps that communicate with the device
via a cloud service to support access to the device behind a
home NAT. As communication through the cloud will not be
impeded by our approach, we believe that the practical impact
of Capture’s isolation on everyday use will be minimal.

There are other potential security improvements, which are
out of the scope of the current security goals for Capture and
threat model. We do not support alternative wireless protocols
such as BLE, Zigbee, and Z-Wave since Internet-based attacks
over WiFi, the focus of our work, impose significant threats
already. As future work, we can look into incorporating re-
lated works in securing other wireless protocols [36, 85] into
Capture’s centralized hub design. In addition, Capture does
not address potential attacks due to weak security practices,
such as the use of default credentials. However, Capture’s
Virtual Device Entity isolation blocks compromised devices
from exploiting any other devices’ vulnerabilities.

Augmenting Device Resources. Another opportunity that
we have not explored is to use the hub’s computation re-
sources to augment the limited resources of local devices.
Specifically, by introducing additional Capture APIs, we can
extend the storage and processing capability of low-power
microprocessors on the device to the hub.

Firmware Splitting. Capture proposes splitting mono-
lithic firmware into remote and local components, an ap-
proach that could face practical challenges, such as data
serialization, consistency, and fault tolerance. These issues
are not uncommon to many distributed systems that make
use of RPC-like components and have been studied exten-
sively [7,28,29,59,67,72-74,77]. While our prototype im-
plementation does not make use of all of these advances,
Capture can benefit from this work to enhance its robustness
and reliability. We view this as important future work.

9 Related Work

IoT Network Security. Several prior efforts have looked
at IoT security issues [80], and proposed augmenting current
network designs to address them. Dreamcatcher [22] uses
a network attribution method to prevent link-layer spoofing
attacks. Simpson et al. [66], DeadBolt [39], and SecWIR [43]
propose adding features and components on network routers
to secure unencrypted traffic. HoMonit [85], Bark [36], and
HanGuard [15] propose finer-grained network filtering rules
and context-rich firewall designs.

Capture takes a similar network-based approach draw-
ing inspiration from isolation techniques used in prior
works [8,22,70]. However, we take a more direct and prin-
cipled approach to reduce the attack surface by centralizing
standard library management. Centralizing shared libraries
introduces additional challenges, which previous work does
not consider.

IoT Software Security. Several projects address vulnera-
bilities in various aspects of current [oT software develop-
ment. Vigilia [70] introduces capability-based network access
control to protect devices while supporting home automa-
tion applications. Each device has one driver program, which
provides public APIs accessible by home automation pro-
grams. In comparison, Capture focuses on security issues in
traditional smart device firmware; by decoupling networking
components in the original firmware into their drivers, Cap-
ture provides a centralized mechanism for updating shared
libraries across all devices. Other efforts [44,50, 78] address
security challenges in the application-layer of devices, such
as operation logging, cloud backend services, and automation
apps, which are complementary to our work.

IoT Frameworks and OSes. Both academia and industry
have looked at the challenges of IoT software stacks for smart
homes with heterogeneous IoT devices. HomeOS [19] pro-
poses a unified PC-like platform to manage all local devices.
Commercial IoT frameworks emphasize their security offer-
ings and ease of management for third-party developers. Mi-
crosoft Azure Sphere [48], Particle OS [53], and AWS Green-
grass [4] all provide services to manage device library updates
on behalf of developers. These frameworks also include native
support for application-level over-the-air upgrades, reducing
the barrier for developers to patch bugs. Samsung Smart-
Things Device SDK [62] reduces the developer burden of
managing library updates by directly offering high-level APIs
in the SDK (e.g., MQTT services). Developers do not need
to worry about patching libraries, as long as they regularly
update the SDK runtime.

While these frameworks help alleviate some of the devel-
opers’ burden of library management, Capture offers several
additional benefits. First, Capture has a secure isolation mech-
anism to protect against local malicious devices. Existing
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frameworks cannot offer isolation since they manage devices
from public cloud backends. Second, Capture devices can
install custom libraries on devices’ firmware based on their
requirements. Even if these libraries are vulnerable, attackers
cannot exploit these libraries due to the isolation we provide.
Third, as an open system, Capture’s integration approaches
are cross-platform and do not require device vendors to lock
in to specific embedded system OSes and chipsets. Finally,
IoT frameworks (Particle Device OS, Azure Sphere) focus
on higher-end micro-controllers with bundled costs of cloud
services, which is not the norm. Most IoT vendors opt for
inexpensive chips and platforms, with standalone firmware,
which especially benefit from Capture’s design.

10 Conclusion

Similar to other complex software systems, modern IoT de-
vices suffer from the same security threats arising from poorly-
managed outdated third-party libraries. We show that even
the most popular smart device vendors fall behind the update
schedules of critical libraries by hundreds of days, exposing
users with even the latest device firmware to well-known vul-
nerabilities in the underlying libraries. These insights related
to the usage of common third-party libraries across devices
inspired the design of Capture, a software architecture for
IoT firmware development. Capture provides mechanisms for
centralized management of shared libraries by splitting func-
tionality into the firmware on the device and a corresponding
driver on a Capture Hub. Capture also provides strong isola-
tion and security protections across devices and their drivers.
Our evaluation results show that several example [oT devices
can be modified to use Capture using one of our three integra-
tion approaches to get the security benefits of Capture with
acceptable performance overheads.
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