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ABSTRACT
DNS is one of the fundamental and ancient protocols on the Internet
that supports many network applications and services. Unfortu-
nately, DNS was designed without security in mind and is subject
to a variety of serious attacks, one of which is the well-known DNS
cache poisoning attack. Over the decades of evolution, it has proven
extraordinarily challenging to retrofit strong security features into
it. To date, only weaker versions of defenses based on the principle
of randomization have been widely deployed, e.g., the randomiza-
tion of UDP ephemeral port number, making it hard for an off-path
attacker to guess the secret. However, as it has been shown recently,
such randomness is subject to clever network side channel attacks,
which can effectively derandomize the ephemeral port number.

In this paper, we conduct an analysis of the previously over-
looked attack surface, and are able to uncover even stronger side
channels that have existed for over a decade in Linux kernels. The
side channels affect not only Linux but also a wide range of DNS
software running on top of it, including BIND, Unbound and dns-
masq. We also find about 38% of open resolvers (by frontend IPs)
and 14% (by backend IPs) are vulnerable including the popular DNS
services such as OpenDNS and Quad9. We have extensively vali-
dated the attack experimentally under realistic configuration and
network conditions and showed that it works reliably and fast.

CCS CONCEPTS
• Security and privacy→ Network security; Operating systems
security; •Networks→Cross-layer protocols;Naming and ad-
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1 INTRODUCTION
Domain Name System (DNS) is one of the most important infras-
tructures of the modern Internet. It translates the human-readable
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domain names into machine-readable IP addresses. This basic func-
tionality has also now been used by various security services such
as email authentication [35], routing security (e.g., RPKI [42]), and
even certificate issuance where proof of domain ownership is the
common method to acquire certificates [5] . As a result, compro-
mising DNS can lead to catastrophic security failures with a wide
range of consequences [20] (e.g., man-in-the-middle attacks and
fake TLS certificates being issued [13]).

Despite its critical role, DNS has been a fragile part of the security
chain. Historically, efficiency was the primary consideration of DNS,
leading to the design of a single query and response over UDP,
which is still the primary mechanism used today. Although security
features like DNSSEC and DNS cookies have been standardized,
they are not widely deployed due to backward compatibility. This
led to a series of DNS cache poisoning attacks [33, 36, 45] that allow
an off-path attacker to poison a DNS cache with a malicious record
to map a domain to an arbitrary IP address. The earliest such attack
dates back to 1997 [58]. In 2008, Dan Kaminsky identified a way to
bypass the standard bailiwick checks [36]. Recently, a side-channel
based DNS cache poisoning attack [45], dubbed SADDNS [1, 45],
was developed that can effectively derandomize the ephemeral port
in a DNS query.

In SADDNS, the key insight is that a shared resource, i.e., ICMP
global rate limit shared between the off-path attacker and victim,
can be leveraged to send spoofed UDP probes and infer which
ephemeral port is used. Unfortunately, it is unclear how many more
such side channels exist in the network stack. In this paper, we
explore a non-conventional type of port scan packets, i.e., ICMP
packets which are by design error messages and cannot solicit
any explicit response. This is distinct from SADDNS where it has
considered UDP packets which are conventional port scan packets.
Even though it is known that ICMP can interact with UDP/TCP [4,
48], e.g., shutting down a socket (with an ICMP port unreachable
message), it is not immediately obvious how ICMP probes can allow
an off-path attacker to infer the ephemeral port number selected
for a UDP socket. Surprisingly, we uncover novel side channels
that have been lurking in the Linux network stack for over a decade
and yet were not previously known.

The successful exploitation of these side channels in the context
of DNS hinges on the subtle interactions among three different
layers, i.e., ICMP, UDP, and application. Interestingly, due to the
lack of documentation and awareness, such interactions are often
neglected and misconceived, leading to many exploitable scenarios.
In addition to novel side channels, we also find that ICMP messages
can be used to DoS DNS transactions, indirectly assisting the cache
poisoning attack.

We have comprehensively characterized the impact of the side
channels. They affect the most popular DNS software including
BIND, Unbound, and dnsmasq running on top of Linux. In addition,
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we estimate that they affect 13.85% of open resolvers. Finally, we
evaluate the end-to-end attack on the latest BIND resolver and a
home router and find that it is reliable and takes only minutes to
succeed. To mitigate the attack, we suggest setting proper socket
options, randomizing the caching structure, and rejecting specific
ICMP messages when possible.

We summarize our contributions as the followings:
• We discovered novel side channels that allow us to use ICMP
probes to scan UDP ephemeral ports.

• We thoroughly analyzed the root cause of the discovered side
channels and developed powerful DNS cache poisoning attacks
based on that.

• We measured their impact in the real world and proposed corre-
sponding mitigations.

2 BACKGROUND
In this section, we will introduce the necessary background re-
garding the two types of UDP ephemeral ports that an attacker
would want to scan to conduct the DNS cache poisoning attack. We
will then introduce the ICMP messages that interact with UDP in
interesting ways.

2.1 Public-facing and Private-facing UDP Ports
Traditionally, port scans refer to scanning server ports as the inten-
tion is to infer which services are running. However, in the context
of DNS cache poisoning attacks, the goal is to scan ephemeral
ports instead (more details are provided in §3). Interestingly, as
well summarized in [45], unlike TCP, UDP ephemeral ports can
be further divided into two types: (1) public-facing and (2) private-
facing. This is due to the stateless nature of UDP, as stated in RFC
8085 [41]. Specifically, if a client sends a UDP packet by invoking
sendto() with a specific remote IP as an argument, the client OS
will in fact accept packets from “any IPs” when it subsequently
invokes recvfrom(). Therefore, by default, any UDP ephemeral
port will become public-facing. Only if the client explicitly invokes
connect() will the OS reject packets from all but the one “con-
nected” remote IP [41]. This effectively makes the ephemeral port
private-facing.

As shown in the prior work [45], public-facing ephemeral ports
are generally easier to scan. Interestingly, whether an ephemeral
port is public-facing also has ramifications with regard to the new
side channels we identify. We will describe them later in §4.4.

2.2 ICMP Messages and Impact on UDP
As first introduced in RFC 792 [48], ICMP is a diagnostic protocol
used to signal errors during the delivery of IP packets. This can
happen, for example, when a router discards the packet and return
an ICMP TTL expired message back to the source after it detects
that the TTL of the forwarded packets reaches zero. To allow the
source to distinguish which packets have encountered errors, a
partial copy of the packet is embedded in the ICMP message, which
includes the source and destination address, source and destina-
tion port. According to recent RFCs [27], the source should accept
such messages only if the wrapped four-tuple matches an existing
socket. Upon validating the correctness of such an ICMP message,

depending on the nature of the error and the socket options set
by the application, the source may ignore the error, remedy the
situation by taking actions in the OS kernel (e.g., updating routing
entries) and/or reporting the error to the application layer through
the socket interface.

Below we describe a few relevant ICMP message types that have
interesting interactions with UDP:
• Fragment Needed Such messages are typically sent by a router
to signal the source that the size of its packet has exceeded the
MTU of the next hop [4, 47]. Specifically, they are called “frag-
mentation needed and DF set” or “packet too big” for IPv4 and
IPv6 respectively. The desired MTU is included in the message
so that the source OS can take actions, e.g., updating its PMTU
cache for the corresponding destination, and reducing the size
of all future packets with the same destination address.

• Redirect Redirect messages [48, 56] are usually sent back to
the source by the next-hop router (e.g., gateway) to signal a
shorter route to a destination. After the source receives such
a message, it will update its routing table and route all future
packets to that destination through the new gateway, which is
specified in the redirect packet. This message is only supposed to
be sent by the gateway, and therefore, the OS of the source usually
checks the source IP of the ICMP message before accepting the
redirection [56].

• Host/Port Unreachable Such messages are used to signal the
source that the original packet was sent to the wrong host or port
and thus cannot be delivered [4, 48]. According to RFCs [4, 12],
upon receiving suchmessages, the OSmust notify the application
as long as a socket is found based on the embedded four-tuple in
the ICMP message.

Stub Resolver Forwarder Resolver Authoritative
Name Server

= Cache

Figure 1: DNS Hierarchy

3 THREAT MODEL AND WORKFLOW
In this section, we will describe the general threat model used in
DNS cache poisoning attacks.
DNS Hierarchy and Attack Targets. Figure 1 shows a typical
DNS Hierarchy. The stub resolver (usually provided by OS) runs
on an individual client and acts as a proxy—it only forwards the
query to the upstream DNS server without resolving the query
itself. The sole purpose of the stub resolver is to provide the local
cache to speed up DNS queries from the same host. In the next layer
up, DNS forwarders are also caching proxies—common in home
and business gateways (e.g.,Wi-Fi router) [6, 40, 54], but they serve
multiple clients in a LAN. At the highest layer, DNS resolvers finally
perform the real name resolution task by recursively consulting
the name servers, where the actual DNS records are stored. Re-
solvers are usually operated by ISPs or tech companies (e.g., 8.8.8.8
operated by Google) and generally serve many more clients. As
a result, DNS resolvers are the most prolific and impactful attack



targets. Furthermore, some resolvers, e.g., those offered by Google
and Cloudflare, are even open to the public and are accessible by
everyone, making them more accessible to attackers as well.

Nevertheless, since stub resolvers, forwarders and resolvers are
all equipped with DNS caches, they are all potentially subject to
DNS cache poisoning attacks. [9, 32, 59] proposed the cache poi-
soning attacks that only work against DNS forwarders instead of
resolvers, because they exploited the unique position or design
goals of the forwarder. Specifically, [9, 32] assume the attacker is
under the same NAT gateway as the forwarder, however However,
resolvers are not usually behind NAT. [59] is based on the fact that
the forwarders rely on the resolvers to perform the bailiwick check
and thus become vulnerable. To our knowledge, there are only
two practical attacks [33, 45] that can work against the resolver
in the past decade and SADDNS [45] is the only one using side
channels to launch poisoning attacks (which no longer works as
the vulnerability is already patched). In this paper, we will intro-
duce novel side-channel-based cache poisoning attacks that affect
all DNS servers in the hierarchy. Our discussion focuses on DNS
forwarders and resolvers.
Assumptions. Generally, an attacker needs two main capabilities
to launch the attack:

(1) The ability to trigger one or more queries from the target
DNS server (forwarder or resolver). This is trivially satisfiable if the
DNS server is publicly accessible. In practice, there are hundreds of
thousands of them (see §5.2), including the popular ones such as
1.1.1.1 and 8.8.8.8. If the DNS server is private, the attacker would
need to join the network directly or indirectly. For example, there
are various open networks in coffee shops and airports which allow
an attacker to easily join. It is also possible that an attacker can
trick a victim client in a private network to visit a malicious website
where malicious scripts can execute and trigger DNS queries.

(2) The ability to send packets with spoofed IP addresses. This
is because the goal of the attack is to inject malicious records to
either the forwarder or resolver, and such rogue responses have to
come from a host that they contacted before, i.e., either the resolver
or the name server. This requirement is also not difficult to satisfy.
As shown in a 2019 report [44], there are still 30.5% and 32.1% of
ASes in the world that do not block packets with spoofed source
IPv4 and IPv6 addresses respectively, which renders the attack still
feasible today.
Workflow. Taking the resolver attack as an example, the attacker
is off-path, i.e., unable to modify or eavesdrop on the traffic between
the resolver and the name server. The first step of the attack is to
turn the resolver into a state where it is willing to accept responses
from the name server. This can be achieved by simply sending
a query to the resolver. After that, the attacker tries to forge a
response packet and send it back to the victim resolver to poison
the cache. However, in order for the rogue response to be accepted
by a modern DNS resolver, several things have to match (there are
additional defenses that may be optionally and rarely deployed as
we will discuss in §8.3): (1) The source IP of the response should be
the name server. Since the attacker controls the domain name in the
query, the corresponding name server can be easily looked up ahead
of time. (2) The 16-bit destination port number in the response has
to match the ephemeral port that is typically randomly generated

on the resolver. (3) The 16-bit transaction ID in the DNS payload
has to match the one randomly selected by the resolver [46].

If a rogue response with all the matching fields arrives before
the legitimate one sent by the name server, then the resolver will
accept and cache the rogue results. This can be an insurmountable
hurdle as an attacker needs to effectively enumerate all possible
32-bit values (equivalent to ~4 billion values) within a small time
window, i.e., the RTT between the resolver and name server. Even
if an attacker can repeat the attempts over many queries, it is still
a largely infeasible attack.

In summary, there are 6 steps of the attack.

(1) Identify the victim resolver, the domain to poison, and its name
server.

(2) Slow down name servers and prevent them from responding to
the victim resolver (§6.1); this gives the attacker more time.

(3) Start triggering the query on the resolver.
(4) Infer the ephemeral port of the query using our new side chan-

nels (§4).
(5) Once the port is known, inject 65,536 rogue responses with

different TxIDs to the victim resolver by spoofing the name
server’s IP.

(6) Check if the cache is poisoned. If not, go back to (3).

4 ICMP-BASED EPHEMERAL PORT SCANS
4.1 Prior Methods of UDP-Based Port Scans
Traditionally, UDP probes are used to determine whether a UDP
port (specified as the destination port number in the probe) is open
or closed. According to the RFCs [4, 48], if the destination replies
with an ICMP port unreachable message, it indicates that the port
is closed. This is traditionally used to probe server ports as shown
in Figure 2(a). In addition, as mentioned in §2.1, this can also be
used to discover public-facing ephemeral ports. It is obvious that
the presence or absence of the ICMP response is explicit feedback
on the UDP probe.
SADDNS. To scan private-facing ephemeral ports, UDP probes
must be sent using the source IP address of the remote peer, forcing
an off-path attacker to find an indirect way of performing the scan.
Based on this, in 2020, Man et al. [45] identified a global rate limit
on the ICMP responses to UDP probes, enabling an attacker to
send spoofed UDP probes and indirectly infer whether they have
solicited responses. Specifically, if a guessed port number (in a
spoofed UDP probe) happens to match the correct ephemeral port,
the resolver will not generate an ICMPmessage (otherwise it would).
This results in either a stationary limit counter or a decrement of the
counter. An attacker can then check whether the counter has been
drained by attempting to solicit ICMP responses with a UDP probe
from his real/non-spoofed IP. Fundamentally, this is a variant of
the traditional UDP-based scan because the goal is still to indirectly
infer the presence or absence of ICMP responses.

4.2 ICMP-Based Port Scans
In contrast with the traditional methods of UDP-based port scans,
in this paper, we investigate the ICMP-based port scans. As men-
tioned in §2.2, an ICMP message embeds the header of the original
packet from the source, including the source and destination port
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Figure 2: Ephemeral Port Scan

information. This opens up an opportunity to craft an ICMP mes-
sage embedding a guessed port number, which is used to match a
specific socket on the receiver end [4, 48]. However, the challenge
is that ICMP messages are by design error messages useful for di-
agnostic purposes only, which do not solicit explicit responses [12].
This means that regardless of whether a port number is guessed
correctly, the receiver will not provide any response, as shown in
Figure 2(b), making the ICMP-based port scans seem infeasible.

Surprisingly, we observe that an attacker does not necessarily
have to rely on the explicit feedback from an ICMP probe. Instead,
even if the processing of ICMP probes is completely silent, as long
as there is some shared resource whose state is influenced, we may
find ways (other probes) to observe the changed state of the shared
resource. This is a generalization of the prior probing methods that
rely on spoofed probes that by design can solicit responses from
the victim. In addition to SADDNS whose probes are designed to
solicit ICMP responses, it is also the case for the series of TCP side
channels [14, 17, 43]. Specifically, [14] leveraged TCP probes that
can solicit challenge ACKs; [17, 43] required TCP probes that can
solicit any response. In summary, it requires a leap of faith to realize
the potential of the ICMP-based probes to scan UDP ports.

In this project, we systematically investigated all types of ICMP
and narrowed them down to two that are useful for port scans: ICMP
fragment needed (or ICMP packet too big in IPv6) and ICMP redirect.
Next, we will describe their processing logic in the Linux kernel
and the corresponding shared resources that form side channels.

4.3 Analysis of ICMP Error Processing Logic
We use the ICMPv4 (ICMPv6 is similar) in the latest Linux ker-
nel (5.11.16 at the time of writing) as an example to illustrate this
(the logic is largely the same since 3.6). When the OS receives
an ICMPv4 message with an embedded UDP packet, it will in-
voke __udp4_lib_err() to handle the error. Here the four-tuple
in the wrapped UDP packet is first checked with the socket ta-
ble (__udp4_lib_lookup()) to verify the legitimacy of the ICMP
packet, i.e., it is indeed triggered by the packet the host sent before.
If it passes the check, the ICMP error will be handled according
to the type of error. Additionally, the ICMP error may optionally
be delivered to the application if the OS has received the proper
socket options (which will be described in §5.1).

To handle the ICMP frag needed and redirect, two corresponding
kernel functions are invoked respectively: ipv4_sk_redirect()
and ipv4_sk_update_pmtu(). Both of them will update a global
resource maintained in the routing module, called the next hop
exception (fnhe) cache. We refer to it as “exception cache” in short
from here on. It stores various states including the non-default MTU
for specific remote IPs (updated by ICMP frag needed messages),

and the non-default gateway IP for specific remote IPs (updated
by ICMP redirect messages). These exception cache entries affect
the routing decisions for all future outgoing packets destined to
the remote IPs in the entries. These entries are cached for some
time unless explicitly evicted due to a limit on the total number of
entries (details are provided in §4.5).

One thing worth noting is that the OS does not check the source
IP address of the ICMP frag needed messages. This is by design
as such messages can be generated by any router along the path.
And due to the dynamic nature of the Internet, the victim resolver
cannot easily verify if a given IP belongs to the routers along the
path. This has an interesting implication that the attacker’s probes
of ICMP frag needed messages, which we will describe next, do not
need to spoof the source IP address at all.

4.4 Public-Facing Port Number Inference
We illustrate the basic idea of public-facing ephemeral port scan
in Figure 3(a) & 3(b). For ICMP frag needed, all we need to do is
to send an ICMP frag needed message with the attacker’s own IP
address (which is unchecked by the resolver as mentioned above).
The message embeds a UDP header with a guessed source port and
a destination port of 53. It is also supposed to contain the source
and destination IP addresses, which should be the resolver’s IP
and name server’s IP respectively. However, some popular DNS
software such as Unbound (IPv4 only) and dnsmasq produce public-
facing ephemeral ports as introduced in §2.1 (also called wildcard
sockets in the kernel terminology). It turns out that Linux (and
other OSes) treat such public-facing ports much more liberally and
accept any inner destination IP address in an ICMP message, as
long as the inner source address matches the resolver’s IP and inner
source port matches the ephemeral port. This effectively means that
against such public-facing ports, one can easily trick the resolver to
update the MTUs for any remote IPs (even though the resolver may
not have even talked to them before). Therefore, in the attacker’s
probe packets, we will use its own IP address to fill the destination
IP of the embedded packet such that the MTU for the attacker’s IP
will be lowered if the guessed ephemeral port is correct.

To observe the change in the cache, the attacker can simply
send a PING or any other packet (verification packet) that will
trigger a reply (verification reply) from the resolver, and observe
if the response will be fragmented as a result of the lowered MTU.
As shown in Figure 3(b), if ICMP redirect is used for probing, the
effect is that the victim resolver becomes unresponsive because the
traffic to the attacker will now be redirected to a wrong gateway IP
(potentially black hole) set in the redirect message.

4.5 Private-Facing Port Number Inference
Most DNS software (e.g.,BIND)will produce private-facing ephemeral
ports, rendering the previous method invalid. The first adjustment
we have to make is to set the inner destination IP address to the
IP of the name server. This is because __udp4_lib_lookup() will
check the complete four-tuple of the embedded UDP packet to lo-
cate the socket that has previously been “connected” to a specific
remote IP and port (See §2.1). The exception cache state change is
therefore also “private” to the name server and not directly observ-
able by the attacker. For example, even if the MTU for the name
server is reduced, an off-path attacker cannot directly observe the
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change because fragments will go towards the name server directly.
Interestingly, it turns out that there is another method to indirectly
observe the state change.

The key idea is to leverage the limited number of total slots
in the global exception cache. By default, Linux organizes such a
global exception cache as a 2048-bucket hash table which uses the
destination IP address as the key and has a linked list of length
5 and 6 slots (for IPv6 and IPv4 respectively) to solve collisions
for each bucket. When the linked list reaches the limit, the oldest
exception will always be evicted and replaced with a newly inserted
exception.

The requirement is that the attacker needs to create hash col-
lisions with the name server’s IP. As shown in Figure 3(c), the
attacker first needs to find 5 IPs (in the case of IPv6) that can be
hashed into the same bucket as the name server’s IP on the victim
resolver’s exception cache and control at least 1 IP C1 (the other 4
IPs can be spoofed). For now, we assume the attacker can find the
5 colliding IPs but will describe our tested strategy in §4.6.

As shown in Figure 3(c), once the colliding IPs are collected,
the attacker first fully occupies the 5 allowed slots in the linked
list using the 5 different IPs. This can be done by sending a series
of ICMP frag needed or ICMP redirect packets wrapping a PING
reply packet [26]. The kernel blindly accepts ICMP errors caused
by PING replies because they are sent by the kernel with no sockets
and therefore matching the socket before accepting is not possible.
Subsequently, the attacker would proceed with the ephemeral port
scan by probing different source ports with ICMP messages. If a
probe happens to hit the correct ephemeral port, a new exception
regarding the name server is to be inserted into the linked list
and evict the first exception (i.e., C1) prepared by the attacker. The
attacker can observe this by a verification packet, in the case of
MTU caches, checking the current MTU for C1.

4.6 Finding IPs that Cause Hash Collisions
Finding IP collisions has been studied before when leveraging IPID
side channels [8, 25], where they needed to find a single IP address
that collides within the same IPID bucket as the victim. [8] states

owning 10,000 IPs would bring the colliding rate to an arbitrary IP
over a 2048-entry hash table to more than 98%. Unfortunately, this
naive brute force does not transfer well to our attack. Specifically,
in order to observe a collision in the case of the exception cache,
we know that we need 5 or 6 IP addresses to fully occupy a bucket
entry. This means that we need to find at least 50,000 to 60,000 IPs
to have a good chance. This is still easily achievable in IPv6 because
ISPs often assign a /64 address block by default. However, for IPv4,
we consider it possible but a very strict requirement. We therefore
come up with an alternative strategy as follows.

Instead of finding the collision set directly, we choose to infer
the secret used in the keyed hash function that computes the index
into the 2048 buckets. First of all, the hash function is public (listed
in the kernel source code). Secondly, since the secret is only 32-bit
and persists until reboots, it is possible to crack it once and use it
subsequently to check which IPs collide with a given name server’s
IP. This allows us to target a resolver and potentially poison an
arbitrary domain name after a single cracking. To infer the secret,
the basic idea is to find some collision set (of 6 IPs in the case of
IPv4) that allows us to test which secret can produce the collision
set. The key is that in this process we no longer require a collision
with a specific IP, i.e., the IP of a name server, and therefore we
can benefit from the birthday paradox [55] — it is much more
probable to observe a collision at any bucket rather than a given
bucket. Based on our empirical evaluation, we only need 3,500 IPv4
addresses to reliably find one or more collision sets on some buckets.
In particular, we rented 3,500 AWS EC2 instances to acquire 3,500
different random public IPs. Given that each tiny instance only
costs less than one cent per hour, renting instances for sending
probing packets is cheap. In practice, we found that one round of
probing with 3,500 IPs is usually sufficient to find enough collision
sets that allow us to uniquely pinpoint the secret — this takes only
minutes computationally with 3,500 tiny CPU cores. In the rare
event that we fail, we can simply re-acquire another set of 3,500 IPs
and redo the probing. Finally, we also tested the same methodology
with IPv6 where only 1,500 addresses were needed to achieve the



same result because an IPv6 hash bucket has only 5 slots instead of
6.

4.7 High-Speed Scans
As one can expect, for either public-facing or private-facing ports,
an attacker can probe multiple source ports simultaneously to learn
if any of the guesses match the correct ephemeral port. We con-
firmed with small-scale experiments that both ICMP frag needed
and redirect messages are not rate limited on the Internet (see
Appendix B). We consider two options below.
Batch scan.We can probe many ports at once, and check whether
any of them has hit the correct port. If it does, we can then re-probe
a smaller sub-range (e.g., a binary search) to narrow down on the
exact port. In this strategy, every round of probes will incur at least
one round trip time between the attacker and victim (as is the case
in SADDNS [45]). Note that we will need to somehow reset the
exception cache state once we hit the correct port in a batch. This is
because we have already evicted one of the exceptions we planted
earlier. We will describe the methods in detail in Appendix C.
Single packet scan.An alternative strategy is to scan only a single
port in each batch (batch size equal to 1). This means that every
scan will be accompanied by an additional verification packet. Even
though this sounds like a sub-optimal strategy, we point out that the
probes can in fact be initiated in a pipeline, without having to wait
for feedback for previous probes. This is because our verification
packet can encode a unique ID (e.g., ping ID) that can differentiate
after which batch of probes, an update in the exception cache has
taken place. Of course, we can also use a larger batch size. However,
as mentioned, it will incur additional round trips to narrow down
the search. In contrast, the single packet scan (a batch size of 1)
will allow us to precisely pinpoint which port is open without the
additional round trips. The tradeoff is that for every ephemeral port
we scan, two packets need to be sent, i.e., one is the probe, the other
is the verification packet.

As the attack is highly time-sensitive, we favor fewer round trips
over higher bandwidth consumption. We wish to point out that
this allows us to scan at a much higher speed than 1,000 per second
which was the limit in SADDNS [45].

5 VULNERABLE POPULATION
In this section, we will first study the necessary conditions for the
vulnerability to be present and exploitable. Then we study the vul-
nerable combination of OS and DNS software. Interestingly, the
outcome is determined by both the OS and DNS software (some-
times either one). In addition, we also explored historical versions
of OS and DNS software because a large fraction of resolvers on the
Internet may not be running the latest software. We then conduct a
measurement study to measure the vulnerable population of open
resolvers on the Internet that satisfy the vulnerable conditions.
Due to measurement constraints, we also conduct a small-scale
experiment on ICMP redirect attack (see Appendix A).

5.1 Conditions of Successful Attacks
Below we summarize the key necessary conditions for a resolver
to be considered exploitable.

• 𝐶1: Must check the port number in the embedded UDP packet of
an ICMP error before processing it. [OS]

• 𝐶2: Must cache the MTU or next-hop information. [OS]
• 𝐶3: Must not ignore the ICMP fragment needed or ICMP redirect
messages in the kernel. [APP/OS]

• 𝐶4: Must not shutdown or retransmit the query after receiving
ICMP messages. [APP/OS]
For𝐶1&𝐶2, they form the basis of side channels in the kernel. As

mentioned earlier, the latest Linux kernel satisfies both conditions.
For 𝐶3, interestingly the latest Linux kernel allows applica-

tions to pass special socket options (either IP_PMTUDISC_OMIT or
IP_PMTUDISC_INTERFACE) which will cause the kernel to ignore
the frag needed messages for the corresponding sockets. However,
this feature was introduced in Linux kernel 3.15. Therefore, whether
or not the condition is satisfied depends on both the kernel and DNS
application. Nevertheless, ICMP redirect messages are not affected
by any socket option and are always processed in the kernel.

For𝐶4, it is a necessary condition because the port scan assumes
the ephemeral port stays the same after it is successfully detected.
If an application decides to shutdown the connection or retransmit
the query after receiving an ICMP message (embedding the correct
ephemeral port), then the detected ephemeral port will be effectively
forfeited. Interestingly, this is again determined by the OS kernel as
well as the application. First of all, the OS kernel has to expose the
ICMP error messages to the application layer (again ICMP redirect
never gets exposed). Secondly, an application may choose to react
to such errors in different ways.

In Table 1, we summarize the vulnerable combinations of Linux
kernel and DNS software according to the above conditions. We
break down the Linux kernel versions into three groups, represent-
ing three major changes that affect the above conditions. Similarly,
we break down BIND into two groups because of some key changes
in behaviors. As we can see, 𝐶1 is always satisfied in all recent
kernel versions. Regarding 𝐶2, the Linux kernel since 3.6 is vul-
nerable in IPv4 because of the introduced exception cache. It took
Linux some time until 4.15 to port the same exception cache to IPv6.
Therefore, IPv6 redirect attacks, which only require𝐶1&𝐶2 to work,
are only exploitable on kernel versions newer than 4.15. Regarding
𝐶3, Since Linux 3.15, the socket options mentioned above become
available and BIND decides to use IP_PMTUDISC_OMIT since 9.12
for IPv4 sockets, leaving the condition satisfied for IPv6 sockets
only. For 𝐶4, since Linux 3.15 and BIND 9.12, IP_PMTUDISC_OMIT
on IPv4 sockets similarly causes the kernel to notify the application
regarding ICMP frag needed errors for sockets that have private-
facing ports (therefore does not apply to older Unbound versions
and dnsmasq). Furthermore, BIND will retransmit the query (with
a different ephemeral port) upon receiving such a notification. As
we can see, the interactions between the kernel and application
layer are very much inconsistent and evolving constantly. We will
discuss the reasoning behind them in §8.2.

In summary, for the latest versions of BIND and Unbound on the
latest kernels, their IPv6 sockets can be exploited for the ephemeral
port scan. In contrast, dnsmasq is always vulnerable as it does
not set any special socket option. Nevertheless, in practice, IPv6 is
gaining significant traction in deployment [28]. In fact, as we will



Table 1: Exploitability of Different DNS Software and Kernel Versions

Kernel Version 3.6-3.14 3.15-4.14 >4.15
DNS Software BIND BIND BIND BIND BIND BIND Unbound dnsmasq

Version 9.3-9.11 >9.12 9.3-9.11 >9.12 9.3-9.11 >9.12 >1.5.2 ANY
IP Version 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4/6

𝐶1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝐶2 ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Redir Vuln. 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣 ✗ ✗ ✗ 𝑉𝑝𝑟𝑖𝑣 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣
1 𝑉𝑝𝑢𝑏

𝐶3 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

𝐶4 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Frag Vuln. 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣 ✗ ✗ ✗ 𝑉𝑝𝑟𝑖𝑣 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣 ✗ 𝑉𝑝𝑟𝑖𝑣
1 𝑉𝑝𝑢𝑏

Vuln. in Any ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

1:𝑉𝑝𝑢𝑏 before 1.13.0. Note:𝑉𝑝𝑢𝑏 and𝑉𝑝𝑟𝑖𝑣 indicate vulnerable to public-facing or private-facing port scans respectively.

show in §5.2, half of the popular public DNS resolvers support IPv6.
Furthermore, our attack is fully capable of exploiting a dual-stack
(IPv4/IPv6) resolver, combined with techniques such as name server
muting (as will be discussed in §6.3).

Due to space constraints, we did not show the analysis results of
historic versions of dnsmasq and Unbound in Table 1. For dnsmasq,
it is vulnerable on all kernel versions since 3.6. For Unbound, it has
a similar road map as BIND and starts to use IP_PMTUDISC_OMIT
since 1.5.2. The only difference is that it used public-facing ports
in the past. This leads Unbound to be not only vulnerable in the
IPv4 of kernel versions between 3.15 and 4.14, but also IPv6 in the
same kernel ranges. This is because the public-facing ports can be
successfully scanned (as shown in Figure 3) as long as the MTU or
redirect information is stored somewhere in the kernel. In practice,
for kernel version 3.15 to 4.14, such info is stored in a tree which
can only time out as opposed to being forcefully evicted.
OtherOperating Systems.Wehave additionally analyzed FreeBSD
(whose networking stack is also used by macOS) andWindows with
regard to the previously described conditions.

For FreeBSD, it is not vulnerable because 𝐶1&𝐶2 are broken for
ICMP frag needed and redirect respectively. For ICMP frag needed
messages, even though the OS will check the embedded four-tuple
and act accordingly, it does not store any PMTU information in any
kernel-maintained data structure and thus breaking 𝐶2. Instead, it
simply forwards the error to the application layer. This is actually
not compliant with RFC1191 [47] which explicitly states that "the
IP layer should associate each PMTU value that it has learned
with a specific path" and "it (a host) should be able to cache a per-
host route for every active destination". For ICMP redirect packets,
surprisingly, FreeBSD will blindly accept them without checking
the embedded four-tuple and therefore breaks 𝐶1.

For Windows, we reverse-engineered tcpip.sys and ntoskrnl
of a Windows 10 copy. We found that there is a similar hash table
storing the path information (including the MTU). However, we
did not find any eviction algorithm and it will only stop inserting
new exceptions after the kernel runs out of memory. Although
the attacker can still leverage this as a side channel, due to the
large and different memory configurations, it is hard to do so in
practice. However, lacking a cap on memory consumption of the
hash table would lead to a potential DoS attack on the entire system.
Interestingly, although this breaks the private-facing port scan, a
public-facing port scan is nevertheless feasible onWindows because

it does not rely on being able to evict exception entries in any shared
resources (See §4.4). OnWindows Server 2019, the built-inMicrosoft
DNS server uses public-facing ports which makes it vulnerable.

5.2 Open Resolvers
Now we move on to measure the vulnerable population in the
real world. Note in this section we focus on the attack leveraging
ICMP frag needed messages only. This is because ICMP redirect
based attacks require IP spoofing even for port scans, and we are
concerned that it is invasive to conduct such a large-scale IP spoof-
ing experiment. Instead, we defer to Appendix A for a small-scale
measurement of the conditions of the redirect-based attacks.
Setup and Dataset. Open resolvers represent hosts that provide
recursive DNS lookup services to the public. We obtain a list of
open resolvers from Censys.io [22], which contains 1.84M IPv4
addresses, serving as the dataset used in our measurement. Unfor-
tunately, the list does not contain IPv6 open resolver addresses.
Nevertheless, these IPv4 addresses only correspond to the fron-
tend IPs. In practice, most open resolvers will go through backend
servers that conduct the actual DNS query on behalf of the fron-
tend. Therefore, we design a method to solicit queries from IPv6
backend servers. Specifically, we control two domain names whose
NS records point to an IPv4 and an IPv6 address respectively. For
each frontend IP, we always send two queries asking for the IPv4
and IPv6 domain names respectively. For the domain where its NS
record points to an IPv6-only address, it will force a backend server
to use its IPv6 address to contact our name server. In the end, we
are able to receive 129,196 queries from IPv4 addresses and 27,541
from IPv6 addresses.
Methodology. When a backend server (either IPv4 or IPv6) con-
tacts our name server, we will perform the following four tests
that approximately correspond to the four conditions we discussed
earlier.

T1: The rejection of the ICMP error when the embedded source
port is incorrect. To verify 𝐶1 in §5.1, we first send a PING to the
resolver and record the reply. Then we craft an ICMP fragment
needed packet wrapping the DNS query we received to signal that
the PMTU is lowered. Before we send it, we deliberately change the
source port of the embedded UDP packet to a different random value
to check whether the resolver will blindly accept ICMP packets
without checking the port number. After sending that forged packet,
we send another PING and check if the ICMP is accepted. If the



PING reply is not fragmented, we consider the resolver rejects the
ICMP error and thus meets 𝐶1.

T2: The existence of the next hop exception cache. To verify 𝐶2
in §5.1, ideally we would want to directly test the existence of an
exception cache. However, as described in §4.6 this will require us
to find 5 or 6 IPs that would be hashed into the same bucket, causing
the hash collision. Although it is a one-time effort, targeting every
single open resolver will require sending a large amount of traffic
which can be overly invasive. Therefore, we decide to resort to nmap
to fingerprint the OS version of the resolver and check whether the
cache exists according to the OS version discussed in §5.1. Note
that nmapmay not be perfect, especially when considering backend
servers may not always have open TCP ports, through which most
of the fingerprints are extracted by nmap. Nevertheless, we can use
the distribution obtained from resolvers that do have open ports
and extrapolate to those that do not. To minimize the impact, we
sampled 20 out of 8,141 backend resolver IPs that have a valid nmap
signature and performed the collision test using 3,500 rented IPs
following the methodology described in §4.6. Note that this is still
an intrusive test (we do slow down the packet speed to about 1,000
pps to minimize any disruption) and thus cannot scale. The results
show 16 out of 20 servers support nmap’s conclusion and therefore
we estimate the accuracy of nmap 80%.

T3: The acceptance of the ICMP error. To verify 𝐶3 in §5.1, we
use a similar test to T1 but without modifying the port number
to verify if the resolver is willing to accept the ICMP packet at
all. Additionally, if there is no PING reply at all, we will send a
truncated DNS response to solicit the TCP query from the resolver.
If the MSS in the TCP header is decreased according to the PMTU
value indicated in our ICMP packet (which we verify to be the
behavior of modern Linux kernels), it also means the resolver has
accepted the PMTU value inside the ICMP packet. Besides, we will
conduct another test by changing the destination IP address in the
wrapped IP packet if we find the resolver accepts the original ICMP.
If the resolver also accepts the modified ICMP, it means its port is
open to the public, and otherwise, we consider its ephemeral port
as private-facing.

T4: The open-port status after receiving the ICMP error. To verify𝐶4
in §5.1, after the ICMP fragment needed is sent during T3, we follow
up with a “truncated response” (if it is not sent in T3) indicating
the response is too big which will cause the resolver backend to
switch to TCP. If we observe a TCP handshake, it indicates that
the ICMP error did not cause the resolver to close the original
ephemeral port, therefore supporting the attack. In the more rare
cases, even if we did not observe any TCP connection attempt, it is
still possible that the ephemeral port is open and it is simply due to
the resolver not supporting DNS over TCP. In such cases, we will
check whether the name server will receive a retransmitted query
(with a different ephemeral port) from the resolver immediately,
which potentially indicates that the ICMP has induced the DNS
software to close the ephemeral port and transmit another query.
To distinguish between the ICMP-induced retransmission and the
timeout-induced retransmission, we record the time delay between
the ICMP transmission and the time we received the retransmitted
query. Specifically, if the delay is close to RTT, which we collect in
T1 by measuring the time delay between the PING response and
the request, i.e., within a 10% margin of difference, we consider

the retransmission to be caused by the ICMP. Otherwise, if the
delay is larger than RTT, we will consider the retransmission to be
timeout-induced (and thus still supporting the attack).
Results. Overall, out of the 156,737 backend resolver IPs that reach
our name servers, 13.85% of them are estimated to be vulnerable.
If we count by frontend resolver IPs, out of the 1.84M, 37.72% are
estimated vulnerable. This is because a large number of frontend
IPs share the same backend. To further break down the total 13.85%
vulnerable population in the backend, we find that 13,914 (8.9%)
are clearly vulnerable to public-facing port scans. However, when
we count the vulnerable population regarding the private-facing
port scans, it requires a more accurate estimate of the Linux kernel
version from nmap. Unfortunately, as mentioned earlier, we find
nmap has a relatively low success rate of OS fingerprinting: only
63.26% for IPv4 addresses and 1.06% for IPv6 addresses.We therefore
use the distribution of kernel versions observed from the 63.26%
IPv4 hosts to estimate the total vulnerable population. In particular,
within these IPv4 hosts, we find that 58.66% of them have the IPv4
exception cache only or also the IPv6 exception cache. We then
apply the 58.66% to the 13,277 resolver backends that are suspected
to be vulnerable (passing all other tests), resulting in an estimate of
7,788 backends being vulnerable to private-facing port scans.

The results indicate that the majority of the vulnerable popula-
tion is not actually running BIND. Instead, they could be running
an older Unbound, dnsmasq, or other DNS resolver software that
we have not explicitly tested. Among the servers that are not vul-
nerable, most of them are simply because they do not accept the
ICMP frag needed messages (including cases that we cannot tell)
and fail in T3.
Public Resolvers. We also highlight the results of a few well-
known public DNS services and summarize the result in Table 2.
Overall, we find 6 out of 12 to be definitely vulnerable at the time
we performed the test, 3 in IPv4 and 3 in IPv6, including famous
providers such as OpenDNS and Quad9. Interestingly, although the
most popular DNS software BIND is not vulnerable in IPv4 in its
latest releases, there are still 3 public resolvers vulnerable in IPv4,
indicating that they are either running an older BIND version or a
different DNS software (we know Cloudflare runs Knot [2]). Note
that currently only 6 providers support IPv6 (others are marked as
N/A) and we expect more DNS services to be impacted as they start
supporting IPv6.

The most common reason for not being vulnerable is again be-
cause they failed T3, i.e., the ICMP fragment needed messages do
not appear to trigger the MTU to decrease. As we can see in Table 2,
there are still a few cases where we are unable to fingerprint the
kernel versions even after we tried testing a few custom fingerprints
in addition to nmap (marked with "?" in the T2 column). For such
cases, we simply mark them as "Possibly Vulnerable" (𝑃𝑝𝑟𝑖𝑣/𝑝𝑢𝑏 )
when they pass all other tests, since it is likely their public servers
are well-maintained and using a newer Linux kernel.

6 PRACTICAL CONCERNS
In this section, wewill describe a few practical considerations which
will influence the success and reliability of the attack.



Table 2: Vulnerable Status of Public Resolvers

Name Frontend IP IPv4 Backend IPv6 Backend
T1 T2 T3 T4 Vulnerable T1 T2 T3 T4 Vulnerable

Google 8.8.8.8 ✓ ✗ ✗ ✓ ✗ ✓ ? ✗ ✓ ✗

Cloudflare 1.1.1.1 ✓ ✓ ✓ ✓ 𝑉𝑝𝑟𝑖𝑣 ✓ ✗ ✓ ✓ ✗

OpenDNS 208.67.222.222 ✓ ? ✓ ✓ 𝑃𝑝𝑢𝑏 ✓ ✓ ✓ ✓ 𝑉𝑝𝑟𝑖𝑣

Comodo 8.26.56.26 ✓ ✓ ✗ ✓ ✗ N/A N/A
Quad9 9.9.9.9 ✓ ✓ ✗ ✓ ✗ ✓ ? ✓ ✓ 𝑉𝑝𝑢𝑏

AdGuard 94.140.14.14 ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ 𝑉𝑝𝑟𝑖𝑣

CleanBrowsing 185.228.168.168 ✓ ✓ ✗ ✗ ✗ N/A N/A
Neustar 156.154.70.1 ✓ ✓ ✓ ✓ 𝑉𝑝𝑢𝑏 ✗ ? ✓ ✓ ✗

Yandex 77.88.8.1 ✓ ✓ ✗ ✓ ✗ N/A N/A
Baidu 180.76.76.76 ✓ ✓ ✓ ✓ 𝑉𝑝𝑟𝑖𝑣 N/A N/A
114 114.114.114.114 ✓ ✓ ? ✓ ? N/A N/A
Ali 223.5.5.5 ✓ ✓ ✗ ✓ ✗ N/A N/A

6.1 Small Attack Window
By default, the attack window is only a round trip time (ranging
from tens to hundreds of milliseconds) between a resolver and a
name server, forcing the attack to finish both the port scan and the
injection of 65,536 fake DNS responses (brute-forcing the TxID)
in a small amount of time. Nevertheless, this does not represent a
fundamental hurdle as the attacker can simply repeat the attack
multiple times; as long as one of the attempts succeeds, the cache
will be poisoned. Specifically, in practice, we find an attack attempt
more likely to succeed if the correct ephemeral port is located at the
beginning of the port scan range (see numbers in §7). To circumvent
the wait of TTL for the legitimate record to time out in case of a
failed attack attempt, we use a previously proposed method [38, 45]
to improve the speed of the attack. The basic idea is to issue queries
with random subdomains and forging a response containing an
NS record, causing the resolver to cache the wrong name server
such that all future queries (including the target domain and all
subdomains) will be directed to the malicious name server. This
method is well documented in [38, 45] and works against both
BIND and Unbound.

To increase the attack window, an attacker can attempt to mute
a name server, i.e., preventing the name server from responding
to a resolver’s query. If successful, a resolver will keep increasing
its wait time, i.e., attack window, to typically 1-2s for BIND and
potentially larger than 30s for Unbound [45]. Specifically, it was
reported that the response rate limit (RRL) feature on name servers
can be abused for this purpose [45] where 18% of the Alexa top 100k
websites were shown to be affected. Alternatively, a DoS attack can
be launched to mute the name server.

Coincidentally, one of the ICMP messages, ICMP redirect, can be
also used for name server muting. The idea is to send the malicious
ICMP redirect to either the victim resolver or the name server to
reroute the traffic destined to each other to a black hole. Since
the query/response is lost after it reaches the wrong next hop, the
victim resolver would keep the ephemeral port open for responses
until the query timeouts (can be several seconds [45]) and therefore
creates a huge attack window.

6.2 Multiple Name Servers & Backend Servers
Multiple name servers. It is also quite common for domains to
have multiple name servers. Resolvers may choose to query these
name servers in a round-robin fashion (where the order is ran-
domized). In fact, this is considered a defense against DNS cache
poisoning attacks [45]. However, this defense has little impact on
our attacks for the following reasons.

For resolvers with private-facing ephemeral ports, we can in-
fer the ports specific to different name servers simultaneously
by running multiple scanning instances. Since it is unlikely the
name servers’ IPs will share the same hash bucket given that most
second-level domains (e.g., acm.org) only have three or fewer name
servers [45], the side channels can be independently leveraged
without self-interference.

For resolvers with public-facing ports, the attacker can just scan
the port as if there was only one name server since the kernel
does not check the destination IP address wrapped in the ICMP
probe. The only difference lies in the TxID brute-forcing, where
the attacker would inject multiple groups of 65,536 fake response
packets, where each group uses a spoofed IP of a different name
server. Due to the low number of name servers typically configured,
this additional load of packets is not really a fundamental hurdle.

In addition to the above, there is an optional step called “name
server pinning” [45] that can further improve the success rate when
multiple name servers are encountered. In addition to previously
proposed techniques [45], we propose two new methods again
based on ICMP messages, i.e., either host/port unreachable or redi-
rect. In the case of BIND resolvers, every time when a query is
initiated, we can immediately flood 65,536 (representing the worst
cases. BIND uses only 23,232 ports by default) ICMP host/port un-
reachable messages containing all possible ephemeral ports with
a specific name server’s IP as the destination IP address in the
embedded IP header. This will cause BIND to give up a particular
name server in the duration of a query session (up to 10 seconds by
default [45]). This is because the OS will pass the host/port unreach-
able messages to BIND, which will make the subsequent decision to
forgo the name server (one of the 65536 guessed ports will match
the ephemeral port). Alternatively, we can apply targeted name



server muting as mentioned in §6.1 and targeted ICMP redirect to
achieve a similar effect.

In the case of Unbound, ICMP redirect can be used as described
above to mute specific name servers. This is because Unbound has
special logic to “blacklist” name servers that are non-responsive
repeatedly [45]. Therefore, the ICMP redirect will have a prolonged
pinning effect beyond a single query session.

Multiple backend servers. Finally, large DNS resolvers tend to
have multiple backend servers behind a single frontend IP — usually
an anycast one, e.g., 8.8.8.8. These backend servers are the actual
workers that talk to the name servers and they are the ones that
maintain DNS caches. Therefore the backend servers should be
the actual attack target. An attacker can map out the IPs of the
backend servers by setting up an attacker-controlled name server
and issuing a query of the attacker-controlled domain. This will
create an additional challenge to the attacker, as a particular query
may get routed to a randomly selected backend IP not known to the
attacker. This will mean that the attacker needs to target𝑚×𝑛 pairs
of resolver backends and name servers, where𝑚 is the number of
backend IPs and 𝑛 is the number of name servers. Otherwise, if the
attacker picks only a single backend server to attack, it will have
a reduced probability of 1

𝑚 (assuming the probability of choosing
backend servers is uniformly distributed) to succeed. Fortunately,
when𝑚 is large, it is typically a heavily distributed system that the
selection of the backend IPs is actually not random at all. Instead,
[45] indicates that it is typically based on location. In other words,
backend servers that are located closer to a name server will be
more likely to be picked for a given query (destined to the name
server). In such cases, the attacker only needs to target a small
number of backend servers simultaneously or even a single one
and is still able to achieve a decent success rate.

6.3 Dual-Stack Resolvers
As mentioned earlier in §5.1, the latest BIND and Unbound will
instruct the Linux kernel to ignore ICMP frag needed messages
for IPv4 sockets. Therefore, the vulnerability applies to only IPv6
sockets against them. In practice, both IPv4 and IPv6 are enabled
by default in recent Linux distributions (e.g., Ubuntu 20.04 and
Red Hat 7). Therefore, we need to understand how to target their
IPv6 sockets in the presence of IPv4 sockets. Specifically, BIND
and Unbound by default will query different name servers in a
round-robin fashion regardless of whether the IP address is IPv4 or
IPv6. As a result, we can apply the same strategy as outlined in §6.2
to handle them. Specifically, we can apply name server pinning to
cause the IPv4 name server to become non-responsive and never
(or rarely) used by a resolver.

6.4 Noises
Background traffic.There are two potential sources of background
traffic at the resolver that can influence the ephemeral port scan.
First, the victim resolver may have multiple outstanding queries at
the same time. During the port scan, it is possible that the ephemeral
port we find belongs to a different query. It is not a serious concern
for private-facing ports as they are “visible” to only specific name
servers, and there are typically few, if any, outstanding queries

towards the same name server (in addition to the one triggered by
the attacker). However, it can affect the public-facing ports because
the ephemeral port of any outstanding query to any name server
can show up during a scan. Nevertheless, we point out that any of
the strategies described in §6.1 that can extend the attack window
will automatically mitigate this concern. This is because the out-
standing query triggered by the attacker would then last for much
longer (possibly seconds) while other ordinary queries will only
last for hundreds of milliseconds at most. Therefore, we can simply
confirm that the port lives long enough before deciding to brute
force the TxID.

Another type of background traffic is the benign ICMP error
messages a resolver may receive during a port scan. They can
create additional entries in the exception cache. This has little
impact on public-facing ports because the attack requires only one
entry to be created in the cache and it is highly unlikely that there
are many naturally-occurring ICMP errors that will hash into the
same bucket as the attacker’s entry and evict it, during a short
time frame of an attack. For private-facing ports, the attack does
require all five exception entries in the same hash bucket to be
intact during the scan. However, it is still unlikely to have a hash
collision from benign ICMP messages during a short time period.
Even if it does occur in practice, it will just interfere with one attack
attempt (triggering a false positive) and the next attack attempt
will follow immediately.
Packet Losses. Although unlikely, if the probing ICMP containing
the correct ephemeral port happens to be lost, false negatives can
arise. In such cases, the attacker simply moves on to the next at-
tempt. If the loss is on the verification or verification reply packets,
it will not affect the attack since the attacker can easily notice and
retransmit the verification packet. This is because a verification
reply is always supposed to come back either fragmented or not
(depending on whether the ephemeral port is guessed correctly).
PacketReordering.Reordering can cause false negatives on public-
facing port scans and both false positives and false negatives on
private-facing port scans. Specifically, if the verification packet
accidentally arrives before the ICMP probe containing the correct
ephemeral port, it will fail to detect the exception cache change
and lead to false negatives. Furthermore, if the private-facing port
is being scanned, such a false negative would mislead the attacker
into continuing the scan despite the fact that one of the planted
exceptions has already been evicted. This is guaranteed to lead
to a false positive in the scanning of the next batch of ports, as
the eviction will be detected by the next verification packet. To
mitigate such problems, a small time gap can be inserted between
the probing and the verification packets. To mitigate the risk of
false positives and flooding the resolver with too many packets,
we always double-check whether a detected port is a true positive
before deciding to brute force the TxID.

7 EVALUATION
To evaluate the efficiency of our attacks without causing real-world
damage, we tested the attack in a controlled environment with
different server configurations and simulated network conditions.
Overall, our attacks can succeed in minutes and have a near-perfect
success rate. Note that inferring private-facing ephemeral ports



requires inferring the colliding IPs as described in §4.6. However,
since it is only a one-time effort for each resolver, the time used for
the attack does not include the time for inferring colliding IPs.

7.1 Resolver Attack
Attack setup. In this attack, we evaluate the power of the fragment
needed attack based on the private-facing port scan. There are 3
hosts involved in the attack: the attacker host, the victim resolver
and the name server, all of which are controlled by us. The attack
program is executed on the attacker host, which is a MacBook
running macOS (Darwin 19.6.0) and is connected to the victim
resolver via a wired router (1Gbps). The victim resolver is a PC (with
a single CPU of Intel Core i7-9700) running BIND 9.16.13 on Ubuntu
20.04 (Linux 5.11.16). The name server, where our domain’s records
are kept, is hosted on AWS and also running BIND 9.16.13. The
attacker’s host, and the victim resolver are at home and connected
to the name server via residential Internet and all of the traffic is
sent in IPv6. The goal of the attack is to poison the cache of the
victim resolver so that our own domain’s A record will be altered
in the cache.

We conducted 9 groups of experiments to evaluate the impact
of the different server configurations, network conditions, and lev-
els of background query traffic on our attack as shown in Table 3.
Specifically, we first performed a baseline (𝐵𝑎𝑠𝑒) attack, where the
attacking conditions are ideal. Then we changed one configuration
or network condition at a time to check how they would influence
the attack. Then, we tested the performance of our attack against a
more realistic configuration and network condition to simulate a
real-world scenario (𝑅𝑒𝑎𝑙 ). Finally, we introduced the background
query traffic to the resolver and evaluate how the interfering query
traffic affects our attack. Specifically, in 𝑅𝑒𝑎𝑙1, we followed the
workload on a production resolver reported in SADDNS [45] with
70M queries per day, averaging at 810 queries per second. To sim-
ulate the worst-case scenario, the domains in these queries are
randomly sampled from the Alexa top 1M to reduce the cache hit,
leading to more open ports. In 𝑅𝑒𝑎𝑙2, we added another 10 queries
per second asking for the same domain that the attacker is trying
to poison (which would cause confusion to our port scan).

To stay stealthy, we limit the rate of our packets to 7k pps (in-
cluding both the probes and verification packets), which is 3.5k
ports scanned per second. Note that 7k pps applies to the port scan
phase only. During the TxID brute-forcing phase, we limit our brute
force speed to 40 kpps and 70 kpps for 𝑅𝑒𝑎𝑙1 and 𝑅𝑒𝑎𝑙2 (to compete
with the background traffic). We simulate varying degrees of packet
losses, jitters, and delays according to the representative numbers
reported on the Internet [19, 24]. Besides, we also evaluated how
the name server muting level and the number of name servers affect
our attack. Although the name server can be completely muted (i.e.,
100% muting level) using ICMP redirects as mentioned in §6.1, we
also evaluate the scenario where it is difficult to completely mute a
name server (e.g., leveraging response rate limit). As mentioned in
§4.7, we also studied the impact on the attack performance when
using different batch sizes (i.e., the number of ports scanned in a
batch).
Results. Overall, we find our attacks can succeed on average in 1.3
to 15.6 minutes, depending on the setup. Note that we consider a test

Table 3: Resolver Attack Results

Exp. Pkt.
Loss

RTT
range
/ms

NS
Mute
Level

#
of
NS

Batch
Size
(N)

Bg.
Noise

Avg.
Time
/s

Succ.
Rate

Base 0% 0.3-1.2 100% 1 1 0 80 20/20
Loss 0.20% 0.3-1.2 100% 1 1 0 83 20/20
RTT 0% 37-43 100% 1 1 0 149 20/20
ML 0% 0.3-1.2 50% 1 1 0 713 5/6
NS 0% 0.3-1.2 100% 3 1 0 347 20/20

Batch 0% 0.3-1.2 100% 1 1024 0 496 5/5
Real 0.20% 37-43 80% 2 1 0 410 20/20
Real1 0.20% 37-43 80% 2 1 810 659 10/10
Real2 0.20% 37-43 80% 2 1 810+10 933 10/10

failed if it still does not succeed after an hour. In both baseline (𝐵𝑎𝑠𝑒)
and packet loss (𝐿𝑜𝑠𝑠) experiments, the attack succeeds in around
80s, indicating theminimal impact of moderate packet losses. This is
expected as discussed in §6.4. In the 𝑅𝑇𝑇 experiments, we found the
delay and jitter do affect our attack. Under such unstable networks,
the attack may experience false positives as the verification packet
may be received before the probe. Fortunately, our attack can still
succeed because we have inserted time gaps to minimize reordering
(see §6.4).

For name server muting levels, we find they do have a significant
impact on our attack but are much smaller compared to the impact
on SADDNS [45]. Under the same muting level (50%), our attack
(𝑀𝐿) is 10x faster than SADDNS. This should be attributed to the
substantially faster scan speed and the fact that we do not need
to perform iterative probes to narrow down the search space. As
a result, this allows our attack to fare better under smaller attack
windows. Experiment 𝐵𝑎𝑡𝑐ℎ further confirms this. With N=1024,
the average success time increased by five times compared to the
baseline where N=1. Note in𝑀𝐿, there is one attack attempt that
failed (after an hour) likely due to a link-layer issue that we are
unable to reproduce.

We also notice it would take ~4x the amount of time to poison a
domain with 3 name servers (𝑁𝑆). This is due to the limit of 7k pps
packet sending rate, which forces us to scan for each name server
at 1/3 of the total rate. However, if an attacker scans with 3 times
the bandwidth, the result would have been close to the baseline.

In the real world scenario experiments (𝑅𝑒𝑎𝑙), we succeeded
in 410s on average, which is 2x the speed of SADDNS with the
same setting, despite the fact that our test is against BIND which
is known to have a much smaller attack window (about only 2s as
experienced in our experiments) than Unbound (more than 30s as
reported in SADDNS [45]).

Finally, for the background query traffic experiment 𝑅𝑒𝑎𝑙1, we
found random domain queries do not significantly impact the attack
performance. As expected, we do not find our scan being confused
by the additional open ephemeral ports because they are all private
ports and not visible to the name server which hosts the target
domain name (see §6.4). Instead, we find that the increase of time-
to-succeed is mostly attributed to the machine being slowed down
in processing these query packets. Compared to 𝑅𝑒𝑎𝑙1, 𝑅𝑒𝑎𝑙2 expe-
rienced worse results because the additional 10 queries per second
can generate ephemeral ports that are visible to the target name
server, therefore creating confusion to our scan. Looking into the



detailed logs, we see that 𝑅𝑒𝑎𝑙2 experiences 22 failed TxID brute
force attempts on average whereas 𝑅𝑒𝑎𝑙1 experiences only 11. The
majority of the additional failed brute force attempts are due to the
failure in inferring the correct port number.

In general, we make two additional general observations on the
results. First, the overall attack time is spent predominantly on
repeated port scans (starting from the smallest port to the largest),
accounting for 96% to 98% of the time. The remaining time is spent
on brute-forcing the TxIDs. Second, the time-to-succeed varies
significantly depending on how close the correct port is to the
beginning of the port scan. In many cases, we see the time-to-
succeed being a few seconds, whereas in the worse case (especially
when noise is introduced), it can take 30 minutes to find the port
and succeed in brute-forcing the TxIDs.

7.2 Other Attacks
Forwarder Attack. To evaluate the performance of the public-
facing port scan, we launched the attack against an ASUS AX6600
Wi-Fi router which has a built-in DNS forwarder. We used a simi-
lar setup as the 𝐵𝑎𝑠𝑒 experiment in the resolver attack where the
attacker is a LAN machine that can trigger DNS queries on the
forwarder. In this attack, we used the IPv4 network and set the up-
stream resolver as 8.8.8.8, which the attacker needs to spoof when
brute-forcing the TxIDs. Finally, the attack succeeded in 13s.
Redirect Attack. Similar to 𝐵𝑎𝑠𝑒 , we launched the redirect-based
attack under the same settings, with the only change of replacing
IPv6 with IPv4, to demonstrate the private port scan under different
IP versions. Finally, the attack succeeded in ~150s.

8 DISCUSSION
8.1 Comparison with SADDNS
Ephemeral port inferencemethod.Asmentioned in §4, the first
and foremost difference is the use of ICMP probes in our attack. By
design, ICMP messages are considered errors that should not solicit
any responses [12]. This makes them an unlikely avenue to probe
any secret. Nevertheless, we demonstrate a superior understanding
of the nature of side channels, making ICMP probes a successful
entry point in UDP ephemeral port scans.
Side channel type. Our side channel leverages the space resource
limit (i.e., the space for storing the next hop exception cache is
limited) while SADDNS’ side channel leverages the time resource
limit (i.e., ICMP error generating rate is limited). Moreover, our side
channel arises when processing incoming ICMP packets (and this
is why we can still infer the ephemeral port despite no reply to the
ICMP probing packet is sent) while SADDNS’ side channel arises
when processing outgoing ICMP packets.
Port scan speed. Thanks to the novel space-constraint side chan-
nel arising in the packet receiving path, the ICMP-based ephemeral
port scan rate can be theoretically unlimited. In practice, the at-
tacker can also adjust the scan rate and strategy flexibly to achieve
a higher success rate according to different network conditions.
SADDNS, however, only allows the fixed 1000 pps slow port scan
due to the nature of the time-constraint side channel it uses. The
slow scan rate leads directly to a lower success rate when racing
against legitimate DNS responses.

Resistance to thenoise.Unlike the global counter used in SADDNS,
which is shared across all remote IPs, the exception cache used in
our side channel is a hash-based structure and is only shared with
a smaller range of IPs, which reduces the noise level of our side
channel — it is less likely to be interfered with by background
traffic associated with random IPs. Besides, SADDNS requires a
strong 50-ms time block synchronization, which can be hard to
achieve with noise. In contrast, our attack does not have such a
strict synchronization requirement.
Preparation of the attack. Compared to SADDNS, our attack
requires an additional step of inferring colliding IPs that hash into
the same bucket. Nevertheless, as described in §4.6, it is only a
one-time effort for each resolver we target.

8.2 PMTUD and DNS
It has been a controversial decision to enable Path MTU Discov-
ery (PMTUD) on DNS packets. Historically, [10] indicates ICMPv6
packet too big messages could benefit the responsiveness of DNS
queries while [30] argues the opposites claiming that it could lead
to fragmentation-based DNS cache poisoning attacks. As a result,
we see DNS software (especially BIND) changing back and forth
regarding its socket options related to PMTUD.

Recently, there appears to be a convergence as both BIND and Un-
bound start to set the socket option of IP_PMTUDISC_OMIT, which
instructs the kernel to never reduce the MTU. This is mostly in
fear of the fragmentation-based DNS cache poisoning attacks that
rely on tricking the name server to fragment its responses [30].
Interestingly, this option is now enabled for the sockets on both the
name servers and resolvers (even though the concern was mostly
on name servers). In addition, both BIND and Unbound decide to
enable this option for IPv4 sockets only and leave IPv6 unchanged.

The reason for leaving IPv6 sockets unchanged is likely that
fragmentation can be avoided most of the time as the minimum
MTU is increased to 1280. This means that any link carrying IPv6
datagrams must be able to handle at least 1280 bytes of payload.
This is large enough to transmit most DNS packets and makes the
fragmentation-based attacks unlikely to succeed.

8.3 Existing Defenses
There are already a number of additional DNS security solutions in
addition to the randomization of ephemeral ports that can defend
against DNS cache poisoning attacks. However, they are not widely
deployed due to various reasons.
DNSSEC adds the data origin authentication and data integrity to
DNS [52] and therefore by design prevents any attacker without
holding the correct key to inject any records. However, only 1.85%
of Alexa Top 10k websites enable the DNSSEC, and only 12% of
open resolvers actually validate the record integrity if provided [18].
During our experiment, we found famous websites like Google,
Facebook, and Twitter do not even have DS records on the parent
zone, which is a necessary record for DNSSEC to function.
0x20 Encoding is proposed to randomize the upper and lower
case of the letters in the domain name (of both the query and
response), thus introducing additional entropy beyond the TxID
and ephemeral port [57]. The amount of entropy increases as the
length of the domain name increases. Unfortunately, it is found



recently [45] that the 0x20 encoding has compatibility issues (since
it requires support from the name server) and 12 out of 14 popular
public DNS resolvers tested do not use it (which we also confirm to
remain true at the time of writing). Famous resolvers like 8.8.8.8
only enable 0x20 encoding for whitelisted domains.
DNS Cookie is yet another secret exchanged between a resolver
and name server, designed to defeat any form of off-path response
injection [3]. Similar to DNSSEC, DNS cookie requires support from
both the resolver and name server to work properly. However, only
5% of open resolvers enable this by default and some may even
reject queries with DNS cookie, as reported in recent studies [21,
45], indicating compatibility is still a serious concern. Moreover,
DNS cookie is only a solution during the transitioning period into
DNSSEC (as it is strictly weaker than DNSSEC), which can be
another reason why it is not being widely deployed.

8.4 New Defenses Against Our Attack
In addition to the existing defenses, we also propose a set of or-
thogonal and near-term solutions to mitigate our attack. We will
further discuss the generalized defense against the network side
channels in Appendix D.
Set proper socket options. The most direct way is to use the
socket option IP_PMTUDISC_OMIT, which instructs the OS not to
accept the ICMP frag needed messages and therefore eliminates the
side-channel related processing in the kernel. However, legitimate
ICMP frag needed messages can be sent by a router which will be
ignored also. In such cases, we recommend that the application can
retransmit the query using TCP to avoid failing to transmit a UDP
query due to real problems with the MTU.
Randomize the caching structure. Similar to the solutions to
other network side channel attacks [14–16, 45, 51], sufficiently
randomizing the shared resource would make the side channel
practically unusable. With regard to the exception cache, we rec-
ommend a few places where randomization can take place: (1) the
max length of the linked list used for solving hash collisions, (2) the
eviction policy (currently the oldest will always be evicted), (3) the
secret of the hash function, i.e., we can re-key periodically (every
few seconds or tens of seconds).
Reject ICMP redirects. Redirects are originally designed for a
network with multiple gateways (similar to a router with multiple
next-hop options). If a DNS server has only one default gateway, the
administrator should consider ignoring ICMP redirect messages to
prevent redirect-based attacks, which can be configured via sysctl
(see Appendix A).

8.5 Ethical Concerns
We conduct our experiments with ethics as a top concern. During
the measurement of the vulnerable population in the wild, we
attempt to minimize the impact of our probes by (1) querying our
own domain and (2) at a mild speed for each resolver (under 1,000
packets per second). Also, we avoid sending suspicious-looking
packets, e.g., an excessive number of ICMP packets or packets with
spoofed IPs that can potentially trigger firewall alerts.

In the evaluation section, since it requires flooding fake DNS
responses to finish the end-to-end attack, we refrain from attacking
any real resolver and performed the attack in the local setup instead.

Responsible disclosure. We have reported our findings to the
key stakeholders in the DNS community, including BIND, Cloud-
flare, and Linux. Linux has applied two patches on both IPv4 and
IPv6 stacks to randomize the depth of the linked list storing the
exceptions. BIND also begins to set IP_PMTUDISC_OMIT on IPv6
sockets from 9.16.20 concurrent to our study.

9 RELATED WORK
DNS Cache Poisoning Attacks The off-path DNS cache poison-
ing attack was first popularized by Dan Kaminsky in 2008 [36].
After the ephemeral port number was randomized, fragmentation
attacks [13, 33] were invented to eliminate the need for guessing
the source port by replacing the second fragment of the original
DNS response. However, these attacks usually have some strong
assumptions like predicting the IPID of the packet or running a
puppet on the victim resolver. Port exhaustion attacks [9, 32] de-
randomize the ephemeral port number by exhausting all but one
available ephemeral port, leaving the DNS resolver only one fixed
port to use. These attacks also require the puppet to work. In 2020,
SADDNS [45] was invented as the first side-channel based DNS
cache poisoning attack. However, this attack is slow and usu-
ally takes tens of minutes to finish. At the same time, Zheng et
al. ports the fragmentation attacks to the forwarder and found
the attack much easier when using the attacker-controlled name
server to force the fragmentation [59]. Jeitner et al. present a novel
way to poison DNS caches by exploiting domain parsing ambigui-
ties [35]. Amit Klein uses the IPID value to predict the random UDP
ephemeral port number by exploiting the cryptographic properties
of the shared random number generator [37].

Overall, unlike other works, our attacks are based on another
unique side channel in ICMP and provide another way to poison
the DNS cache using the fast ICMP-based port scan.
Side Channel Attacks Side channels have been leveraged in net-
work attacks [7, 39, 43, 50]. Specifically, [23] leverages IPID global
counter to probe open ports. [49] utilizes the stateful firewall to
infer the TCP sequence number. [14] uses global challenge ACK
counter to infer the TCP sequence number and hijack the TCP con-
nection off-path. Besides, Cao et al. presents an automated tool for
finding side channels in the TCP stack using model checking and
found several other side channels inside the Linux TCP stack [16].

10 CONCLUSION
This paper presents novel side channels during the process of han-
dling ICMP errors, a previously overlooked attack surface. We find
that side channels can be exploited to perform high-speed off-path
UDP ephemeral port scans. By leveraging this, the attacker could
effectively poison the cache of a DNS server in minutes. We show
that side channels affect many open resolvers and thus have serious
impacts. Finally, we present mitigations against the discovered side
channels.
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A ICMP REDIRECT ATTACKS
We performed the following small-scale experiments to measure
the four conditions (outlined in §5.1) for redirect-based attacks.
University network experiment.We verified the conditions of
successful attacks against resolvers in a university network. Since
we are able to craft ICMP redirect messages with the spoofed IPs
inside the university network, we target 9 resolvers by redirecting
the packets destined to our test machine to an IP that is considered
nearby of the resolver. The result shows 3 out of 9 resolvers are
vulnerable, (i.e.,meeting𝐶1−𝐶4). Most resolvers are not vulnerable
because they do not accept ICMP redirect packets at all, which
breaks𝐶3. In practice, the acceptance of redirects can be configured
via sysctl on Linux and the default value varies on different Linux
distributions. Two resolvers are not vulnerable because they run
FreeBSD which blindly accepts redirects and invalidates 𝐶1.
Delivery of ICMP redirect on the Internet. Since ICMP redi-
rects are potentially dangerous [31], one concern is that such mes-
sages may be dropped on the Internet and only work in local net-
works. We therefore performed a small-scale experiment by having
8 vantage points (corresponding to 8 ASes) distributed across the
world (i.e., in five continents) to send ICMP redirect messages to
each other. Specifically, our vantage points reside in AWS (multiple
continents), Google Cloud Platform, China educational network,
US university campus network, and China residential network. The
result shows ICMP redirects can successfully traverse the Internet
in all pairs of experiments.

B ICMP RATE LIMIT
ICMP traffic is generally considered as control-plane traffic and it
has been proposed that the source should rate-limit the generation
of such packets [11, 53]. If such traffic is rate limited not only at
the source but also during transit (for ICMP PING [29]), the port
scan speed can be significantly hampered. As a result, we conduct
a small-scale experiment using the same setup as mentioned in
Appendix A and send ICMP frag needed or redirect messages to
each other at a rate of 10k pps.We find that none except one Chinese

residential host showed packet losses, which confirms rate-limiting
in the transit network is not a popular policy. Even for the Chinese
residential host, we find that the losses seem to be affected by the
nationwide slowdown effect as reported recently [60]. We had the
suspicion because UDP packets destined to the same residential
host experienced similar losses also.

C RESETTING THE EXCEPTION CACHE
STATE

Since the search of the ephemeral port we conduct requires multiple
rounds of probes, the attacker has to reset the cache state after
getting a positive response (i.e., a probing packet in a batch hitting
the correct open ephemeral port or the false positive caused by
noises). Generally speaking, this can be done similarly to the cache
planting phase in the private-facing port scan where the attacker
finds 5 hash-collision IPs (note these can be done via IP spoofing
instead of direct ownership) to evict the cache entry containing his
primary scanning IP. Note that an easier method exists specifically
for the public-facing port scans using ICMP frag needed messages.
This is because when a correct port is hit, the resolver will reduce
the MTU for the attacker’s host to that specified in the ICMP frag
needed message. The attacker can continue to lower the MTU
in future rounds of probes. Each time the MTU is decreased, an
attacker can simply send a PING verification packet to infer if the
new MTU is now in effect. Note that it is not possible to raise the
MTU using this method according to the specification [34, 47]. As
a result, if the minimum MTU is reached, the attacker would have
to fall back to the general method (i.e., replanting the cache).

D SYSTEMATIC MITIGATIONS ON NETWORK
SIDE CHANNEL ATTACKS

Both this work and SADDNS [45] showed a significant threat
against DNS security. Since they arise from the kernel network
stack, other protocols (e.g., QUIC or RTP) could suffer from the
side-channel-based port scan as well.

To mitigate unknown side channels, we suggest a careful design
on any use of shared resources and minimize sharing unless it is
absolutely necessary. To verify if a specific sharing is safe, we need
to model the side channel threat properly and can apply automated
reasoning techniques, e.g., static analysis and model checking [16]
to verify whether any leakage of information can occur.

Beyond the above analysis, which can be tricky to do correctly,
a universal best practice is to randomize the limit or use of the
shared resource. This can substantially increase the difficulty of a
side channel attack even if there is a vulnerability. Indeed, this is
exactly what the patches do against prior TCP side channels [15]
and SADDNS [45].
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