Helping Students See
Inside the “Black Box”
with Insight Maker

From User
o Creator

AMANDA GONCZI, CHUCK PALOSAARI,
ALEX MAYER, AND NOEL URBAN

32 | Scienceleacher | Januarv/FesruARY 2022

omputational modeling and thinking skill sets were previ-
Cously relegated to computer scientists and programmers.

As a result, computational tools are largely unfamiliar to
K—12 science teachers and students (Yasar and Veronesi 2015).
However, Janet Wing (2006) highlighted how computational
thinking is not unique to the computer science field. Rather,
it is inherent to many science and engineering disciplines as
well as everyday activities. In the current digital age we are all
consumers of computational products such as simulations and
models that predict everyday events, including weather, dis-
ease transmission, and economic growth. These products aren’t
magical—students should understand how they are developed,
their limitations, and their capabilities. As a result of these con-
siderations, Using Mathematical and Computational Thinking
and Developing and Using Models were included in the Next
Generation Science Standards (NGSS) as core science and engi-
neering practices (SEPs) (NRC 2012).

The NGSS lays out a progression for Using Mathematical
and Computational Thinking that, in elementary school, in-
cludes familiar activities such as making quantitative compari-
sons, creating graphs, and using computer simulations. By high
school, students should advance and be able to create or revise
simulations using algorithms—mathematical and computa-
tional tasks that are far less familiar to both students and teach-
ers (NGSS Lead States 2013). Similarly, there is a progression
from using to developing computational models (NGSS Lead
States 2013).

The lesson that follows is designed to assist students and
teachers to move from the familiar (simulation user) into less-
explored territory (simulation creator). The lesson was imple-
mented in a high school STEM elective course and consists of
four 55-minute class sessions that help students develop great-
er proficiency in the two targeted SEPs. The lesson uses two

open-source software tools: Concord Consortium and Insight
Maker. Students first #se a computational representation to il-
lustrate the relationships among Earth systems and how those
relationships are being modified due to human activity (HS-
ESS3-6) and then (2) develop a model based on evidence to
illustrate the relationship between systems or components of a

system (HS-LS2-5).

Day 1. Using a simulation to develop a
conceptual model

The lesson is introduced through student use of an open-source
simulation from Concord Consortium that addresses Earth
science content; specifically, the simulation supports students’
ability to answer the research question, “How does Earth’s at-
mosphere affect the radiation energy balance?” Students are
guided through simulation use via software-embedded ques-
tions and instructions. During this part of the lesson, students
work in pairs and share a computer. To avoid aimless clicking,
students should have instructional support (guiding questions
and teacher guidance) during simulation use to help them focus
on germane information that supports conceptual understand-
ing (Goncezi and Chiu 2016). Teachers should circulate through
the room and ask students probing questions including, “What
relationships are you observing? What components of the at-
mosphere seem to affect Earth’s energy balance? How could
human behavior change the atmosphere and affect the energy
balance?”

Following simulation use, students consider whether they
can use the simulation to create a conceptual model of Earth’s
radiation energy balance. In pairs, students create conceptual
models on whiteboards to facilitate comparison and discussion
between groups (Figure 1).

FIGURE 1

Three student-generated conceptual models of radiation balance on the Earth.

?‘\,T v
AW g

JIN

| 33

www.nsta.org/highschool

After students complete this step, the teacher guides students
to consider the following questions: How could conceptual mod-
els be used to inform the development of a simulation? How
are simulations and conceptual models similar? How are they
different? Appropriate answers to the questions include the fol-
lowing: Both types of models can help make sense of scientific
phenomena and evaluate claims; conceptual models emphasize
connections but do not account for mathematical relationships;
simulations can account for mathematical and predictable rela-
tionships between variables that support a user’s ability to make
predictions and test hypotheses. While this part of the lesson can
be done as a whole-class discussion, teachers may want to have
students record their answers to the prompts so that students
can revisit and revise them at the end of the lesson.

Day 2. Computational models and Insight Maker
The goals for this part of the lesson are for students to realize
that (a) computer simulations are produced through computa-
tional modeling, and (b) the final simulation is only as good as
the conceptual and computational models that shape it.

For students to begin computational modeling, they must
know the language of modeling; here we use terms (stocks,
flows, variables—all primitives or system model components)
used within the Insight Maker software. After reviewing the
definitions in Table 1, groups classify Day 1 conceptual model
components as either astock, flow, or variable before being intro-
duced to Insight Maker.

Insight Maker (hztps://insightmaker.com) is an open-source
modeling tool designed to be accessible to the general public
(Fortmann-Roe 2014). Anyone can create a free account that al-
lows them to make “Insights,” or computational models. The
website has a variety of help tools including a user manual and
videos. When a student builds an “Insight,” the screen is split
into two parts. On the left-hand side, users build conceptual
models with stocks, flows, and variables. Computational ad-
ditions are shown on the right-hand side of the screen in the

configuration panel. The size of each panel can be adjusted by

dragging the gray bar that divides them (Figure 2).

We recommend building a simple “bathtub” model with the
whole class to introduce students to Insight Maker’s interface
and improve students’ familiarity with relevant vocabulary. A
bathtub model is first built by identifying primitives from the
dropdown menu in the top left of the screen (Figure 2). A very
basic model would have the bathtub as the stock, a faucet as a
flow input, and a drain as a flow output. Characteristics of each
of these components are defined by variables. For example, in
Figure 2 you can see that the tub has two variables, “tub height”
and “tub length.” Similarly, the faucet has a “faucet flow rate”
and the drain has a “drain rate.” Variables are defined by click-
ing on the equal sign in each primitive, opening the equation
editor, and inputting values or mathematical expressions in the
configuration panel. All primitives can be connected by drag-
ging the arrow inside the center of each to the one you want to
connect with.

TABLE 1

Definitions and examples of computational model components.

Model component Definition

Example from radiation
balance conceptual model

Stock Stocks are the amount of resource present. They may be thought of | Sun
as a container that indicates the amount of the resource.
Flow Flows either add to your stock (inputs) or subtract from your stock Energy transfers from Sun
(outputs). to atmosphere, ground to
atmosphere, clouds back to
space (arrows)
Variable Variables modify one of the other primitives. It can be a single value, | Cloud cover
range of values, or an equation.

34 |

Scienceleacher | JANUARY/FEBRUARY 2022

FROM USER TO CREATOR

FIGURE 2

Sample argumentation discussion.

tnsaghl Acsees | Datebs Isighi

'E.-:' FAudd Prmitive Flows/Transitions Links & Sellings

Computational Model Canvas

A

I N B Edit Info =] fwla]+]
' %
Equation Edltﬂl’ - ; " % Bathiub height
e Surface area L 06
Bothiub height). _ _ . Fauce! Flow rate
Bathtub e s
| .I Configuration Panel
Flow " Drain] Variable
.]r Stock T

—Link

lnlcn Maw lnsight | Clone irsgs | & Ster | Fead Morw insgtas | |

Samulate Edit Style E

“*._Panel Sizing Bar

In the whole-class demonstration of building a bathtub
model, we initially have the bathtub filling indefinitely by pro-
gramming the model such that the drain has a stopper (no water
outflow) and a constant water inflow from the faucet. This out-
come is graphically displayed by hitting the “simulate” button
on the tool bar (Figure 3).

FIGURE 3

Graphical display of data based on
computational model in Figure 2.

020 B 100 140 1BD X0 250 300 34D A0 420 45 S0

Tiws | Sasconda)

> &

As a class, we discuss the problem with the model in Figure 2
based upon the output and brainstorm how the “plumbing sys-
tem” might be redesigned to change the constant filling, which
would ultimately lead to a flooded bathroom. One change is to
have an overflow drain that is programmed with an “If, then,
else statement” (Figure 4).

Insight Maker provides the basic syntax for basic program-
ming commands so that users can simply input values within
the given syntax. In this case, we told the overflow drain that the

FIGURE 4

Programming the overflow drain with an
“if, then, else” statement.

[T # S R S] T A R 1 P i Gele el iy B
= IfThenElse{[Water Height]<[Bathtub
Height], @, [Foucet Flow H.u'.¢|b C

www.nsta.org/highschool | 35

IfThenElse function is needed, where “if” the value of a stock
or variable meets certain conditions, “then” modify the flow by
a certain value. In Figure 4, the If ThenElse function compares
the height of the water in the tub to the height of the bathtub.
If the value of the water height is less than that of the tub, then
the flow through the overflow drain will be zero. If the value
of the water height is greater than the bathtub height, then the
rate of flow out of the tub from the overflow will be equal to
the rate of flow into the bathtub from the faucet flow rate. With
this change, when the program runs, the graph shows the water
level rising until it reaches the height of the bathtub at which

FIGURE 5

IfThenElse overflow drain function
results.

Simulation Results 5
Wy Add Desplay Configure
0 -
or4
oG +
E 05
&
2 04
5
%l"-\j
|

point the output drain flow equals the faucet flow and the tub
stops filling, as demonstrated by the horizontal line (Figure 5).

Following this whole-class demonstration and discussion,
students work on individual computers to create a working
“bathtub” model. The student model can be the same one that
was built as a group—or students may improve upon it. The
purpose of this lesson segment is for students to show a basic
ability to use the software to the extent it was modeled as a class.
The teacher should move around the room to monitor progress
and encourage collaboration among students.

Days 3 and 4: Using a real-world data set to
build a computational model

At the end of the lesson students take what they learned the pre-
vious days and build a computational model of a real-world sys-
tem in Insight Maker. This lesson was implemented in Michigan,
where the predator-prey relationship between wolf and moose on
Isle Royale is well studied and familiar to students. To determine
the extent students could apply what they learned, they were pro-
vided the instructions and links to real-world data (see Appendix
A). We had students work on individual computers, although
collaboration with peers was encouraged to troubleshoot difficul-
ties. Figure 6 shows one students’ model and simulated results.

Assessment

Students are summatively assessed using the rubric in Table
2 (see Online Connections) by evaluating whether their wolf/
moose models work and by their responses to the questions on
the worksheet (Appendix Aj; see Online Connections). In ad-
dition to this summative assessment, formative assessment can
occur throughout the lesson and during small-group work as
the teacher circulates and talks to students.

FIGURE 6

Students’ model of wolf and moose populations with graphical output.

— T
T e o, o skt >
—t (ot e} i
l k 4
- wean
=]
- =
" P e uia . —
— { it s v}
i e
o
w =y ¢

e

B Eat iy onooo

ke

iotess

binste Eath a0

ViR daaT rate

L LF

bhonirir detar P et ane

® Ful Soesd

Vo ST e wakom

JANUARY/FEBRUARY 2022

36 | Scienceleacher |

FROM USER TO CREATOR

Implementation considerations and
troubleshooting

The targeted SEPs were contextualized in familiar Earth and
life science content. This was done so that students could focus
cognitive energy on understanding the similarities and differ-
ences between computational and conceptual models, identify
the affordances and limitations of each, and learn the basics
of programming using Insight Maker. However, teachers can
modify the lesson to introduce new content. Also, any system
can be modeled within any science discipline.

We have found that students are accustomed to having soft-
ware tell them—and sometimes even fix—text-related errors.
However, Insight Maker does not fix students’ mistakes like
Google Docs and other software. This poses a unique challenge
to students; they have to troubleshoot their own work and debug
what can be small, hard-to-find mistakes (such as syntax errors)
that keep their models from functioning. As a result, we have
found the bathtub model to be essential in giving students a first
chance to be successful. We have also found it helpful to remind
students they will need to pay attention to detail and not give up
if the model doesn’t work right on the first try. In fact, model
failures are not student failures, but opportunities to learn!

Conclusion

This lesson is designed to give teachers a blueprint for intro-
ducing and using the computational modeling software Insight
Maker within their instruction to support proficiency in rel-
evant performance expectations, especially those that include
Developing and Using Models and Computational and Math-

ematical Thinking. The lesson provides students opportunities

to formulate algorithms from conceptual models, turn algo-
rithms into syntax, and make model improvements—all com-
ponents of computational thinking. It also demonstrates that
students and teachers can—without any previous computer sci-
ence instruction—Ilearn to use computational tools and include
them within instruction to provide novel opportunities for their
students to move from user to creator of simulations and gain
deeper understanding of underlying science phenomena. B

ONLINE CONNECTIONS

Table 2. Assessment rubric: https:/bit.ly/3dCJiTv
Appendix A. Insight Maker instructions: https:/bit.ly/3DFyoa4

REFERENCES

Fortmann-Roe, S. 2014. Insight Maker: A general-purpose tool for web-based
modeling and simulation. Simulation Modelling Practice and Theory 47, 28-45.

Gonczi, A., and J. Chiu. 2016. WISEngineering Hydroponics: A Technology-
Enhanced, Life Science Engineering Design Unit. Science Scope 39 (9): 3-9.

National Research Council (NRC). 2012. A framework for K~12 science education:
Practices, crosscutting concepts, and core ideas. Washington, DC: National
Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states.
Washington, DC: National Academies Press. www.nextgenscience.org/next-
generation-science-standards.

Yasar, 0., and P. Veronesi. 2015, March. Computational pedagogical content
knowledge (CPACK): Integrating modeling and simulation technology into
STEM teacher education. In Society for Information Technology and Teacher
Education International Conference (pp. 3514-3521). Association for the
Advancement of Computing in Education (AACE).

Wing, J.M. 2006. Computational thinking. Communications of the ACM 49 (3):
33-35.

Amanda Gonczi (algonczi@mtu.edu) is an Associate Research Scientist at Michigan Technological University, Houghton, MI; Chuck Palosaari is a
science teacher in Adams Township School District, Painesdale, Ml; Alex Mayer is a Professor at The University of Texas at El Paso, El Paso, TX;
and Noel Urban is a Professor at Michigan Technological University, Houghton, MI.

| 37

www.nsta.org/highschool

