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Abstract

Direct policy search serves as one of the workhorses in modern reinforcement
learning (RL), and its applications in continuous control tasks have recently at-
tracted increasing attention. In this work, we investigate the convergence theory
of policy gradient (PG) methods for learning the linear risk-sensitive and robust
controller. In particular, we develop PG methods that can be implemented in a
derivative-free fashion by sampling system trajectories, and establish both global
convergence and sample complexity results in the solutions of two fundamental
settings in risk-sensitive and robust control: the finite-horizon linear exponential
quadratic Gaussian, and the finite-horizon linear-quadratic disturbance attenuation
problems. As a by-product, our results also provide the first sample complexity
for the global convergence of PG methods on solving zero-sum linear-quadratic
dynamic games, a nonconvex-nonconcave minimax optimization problem that
serves as a baseline setting in multi-agent reinforcement learning (MARL) with
continuous spaces. One feature of our algorithms is that during the learning phase,
a certain level of robustness/risk-sensitivity of the controller is preserved, which
we termed as the implicit regularization property, and is an essential requirement
in safety-critical control systems.

1 Introduction

Recent years have witnessed the rapid development of reinforcement learning (RL) methods in
handling continuous control tasks [1, 2, 3]. Central to the success of RL are policy optimization
(PO) methods, including policy gradient (PG) [4, 5, 6], actor-critic [7, 8], and other variants [9, 10].
Progress reported in the literature has clearly shown an increasing interest in understanding theoretical
properties of PO methods for relatively simple baselines such as linear control problems [11, 12, 13,
14,15, 16, 17, 18, 19, 20, 21]. However, the theory of model-free PO methods on risk-sensitive/robust
control remains underdeveloped in the literature. Since risk-sensitivity and robustness are important
issues for designing safety-critical systems, it is natural to bring up the questions of whether and how
model-free PO methods would converge for these continuous control tasks.

Our work in this paper is motivated by the above concern, and studies the sample complexity
of model-free PG methods on two important baseline problems in risk-sensitive/robust control,
namely the linear exponential quadratic Gaussian (LEQG), and the linear quadratic (LQ) disturbance
attenuation problems. The former covers a fundamental setting in risk-sensitive control, and the
latter is an important baseline for robust control. Based on the well-known equivalence between
these problems and LQ dynamic games [22, 23, 24, 25, 26], we develop a unified PO perspective
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for both. A common feature for the above two problems is that their optimization landscapes are
by nature more challenging than that of the linear quadratic regulator (LQR) problem, and existing
proof techniques for model-free PG methods [11, 17, 18, 19] are no longer effective due to lack
of coercivity of the objective functions. Specifically, when applying PG methods to LQR, the
feasible set for the resultant constrained optimization problem is the set of all linear state-feedback
controllers that stabilize the closed-loop dynamics. The objective function of LQR is coercive on
this feasible set and serves as a barrier function itself [14], guaranteeing for the PG iterates to stay in
the feasible set and converge to the globally optimal controller. For the LEQG and LQ disturbance
attenuation problems, the risk-sensitivity/robustness conditions have reshaped the feasible set in a
way that the objective function becomes non-coercive, i.e. the objective value can remain finite while
approaching the boundary. The objective is no longer a barrier function, and new proof techniques
are needed to show that model-free PG iterates will stay in the feasible set. This is significant for
safety-critical control systems with model uncertainty, as the iterates’ feasibility here is equivalent to
risk-sensitivity/robustness of the controller (cf. Remark A.8), and the failure to preserve robustness
during learning can cause catastrophic effects, e.g., destabilizing the system in face of disturbances.

The most relevant result was developed in [16], which proposes implicit regularization (IR) arguments
to show the convergence of several PG methods on the mixed H,/H, control design problem (which
can be viewed as the infinite-horizon variant of the LQ disturbance attenuation problem studied in
this paper). The main finding there is that two specific PG search directions (with perfect model
information) are automatically biased towards the interior of the robustness-related feasible set. In
[16], it is emphasized that IR is a feature of both the problem and the algorithm, contrasting to that
the stability-preserving nature of PG methods for LQR problems is based on the barrier function
property of the objective and hence is algorithm-agnostic. Although the idea of IR is relevant to PO
problems with non-coercive objective functions, the arguments in [16] only apply to the setting with a
known model, since they rely on a specialized perturbation technique which may potentially generate
arbitrarily small “margins". However, in the model-free setting, a uniform margin is required for
provable tolerance of statistical errors. See a detailed comparison of the literature in §A.1.

In this paper, for the LEQG and LQ disturbance attenuation problems, we overcome the above margin
issue and obtain the first IR result in the model-free setting. This enables the first model-free PG
method that provably solves these control problems with a finite number of samples. We highlight
our contributions as follows.

Contributions. We provide the first sample complexity results for model-free PG methods for
solving linear control problems with risk-sensitivity/robustness concerns (the LEQG and LQ distur-
bance attenuation problems), which were viewed as important open problems in the seminal work
[11]. From the robust control perspective, one feature of our algorithms is that, during the learning
process, a certain level of robustness/risk-sensitivity of the controller is proved to be preserved. This
has generalized the results in [16] with a known model, and has thus enabled the finite-sample
convergence guarantees of PG methods for risk-sensitive/robust control design. Our algorithms and
sample complexity results also address two-player zero-sum LQ dynamic games in the finite-horizon
time-varying setting, which are among the first sample complexity results for the global convergence
of policy-based methods for competitive multi-agent RL. Second, in the context of minimax opti-
mization, our results address a class of nonconvex-nonconcave minimax constrained optimization
problems, using zeroth-order multi-step gradient descent-ascent methods. Finally, part of our results
provide the sample complexity analysis for PG methods that solve the finite-horizon time-varying
LQR problem with system noises and a possibly indefinite state-weighting matrix.

2 Background

We first introduce two classic settings in risk-sensitive and robust control, namely LEQG, and LQ
disturbance attenuation, and their equivalence to zero-sum LQ dynamic games.

2.1 Linear Exponential Quadratic Gaussian

Consider the finite-horizon LEQG problem [22, 27, 28], with time-varying systems dynamics de-
scribed by x;,1 = A;x; + Biuy + wy, t € {0,---, N — 1}, where x; € R™ represents the system state;
u; € R? is the control input; w, € R” is an independent (across time) Gaussian random noise
with w; ~ A (0, W) for some W > 0; the initial state x, ~ A (0, X) for some X, > 0, which is



independent of {w;}; and A;, B; are time-varying system matrices. The objective function is given by
T () = Zlogl}Eexp[g( N e Quxy + 1 Ryuy) + x;]QNxN)], where Q;,Qn > 0and R; > 0
are symmetric weighting matrices; and g > 0 is a parameter capturing the degree of risk-sensitivity,
which is upper-bounded by some g* > 0 [23, 28, 29].

The goal in the LEQG problem is to find the .7-minimizing optimal control policy p; : (R™ x RY)! x
R™ — R? that maps, at time £, the history of state-control pairs up to time ¢ and the current state x;
to the control u,. It has been shown in [22] that yj has a linear state-feedback form pj(x;) = —Kx;,
where K € RY*™_ for all t. Therefore, it suffices to search K} in the matrix space R4™ for all
t€{0,---,N —1}, without losing any optimality. The resulting PO problem as well as its closed-form
objective function and PG are provided in §A.3.1.

2.2 LQ Disturbance Attenuation

Second, consider the LQ disturbance attenuation problem, with time-varying dynamical systems
described by x;,1 = A;x; + Bsu; + Dyw; and z; = Cyx; + E;uy, where x; € IR™ is the system state;
u; € R is the control input; w; € R" is the (unknown) disturbance input; z; € R! is the controlled
output; Ay, By, C;, Dy, E; are system matrices with appropriate dimensions; and xy € R” is unknown.
In addition, we assume that E// [C; E;] = [0 R,] for some R; > 0 for normalization, with no loss of
generality (see §3.5.1 of [25] for a simple procedure that can transform the general problem into a form
that satisfies this “normalization” assumption). Subsequently, we denote the £2-norms of the vectors
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W= [x(-)rC(-)r,w(—)'—,u-,w;\rffl] and z:= [za—,m,zp\}fl,x;\r]QN/ as ||w|| and ||z|| = {C({ut}, {wt})} ,

where Qpn > 0. Then, the robustness of a designed controller can be guaranteed by a constraint on
the ratio between ||z|| and ||w||. Specifically, the goal of disturbance attenuation is the following:

Given a y > y*, where y* = /(B*)"! > 0 is the optimal (minimax) level of disturbance attenuation
at the output and recall that §* is the upper bound for the risk-sensitivity parameter in LEQG

[23, 25], find a control policy p; = —K;x;, t € {0,--+, N — 1}, that solves miny,,; J ({¢(x;)}) subject

L0 SUPy 1w} {C({/,tt(xt)}, {wt})}1/2/||a)|| <y, where J ({p;(x;)}) is an upper bound of the LQG cost
[30]. We defer the precise formulations of the LQ disturbance attenuation problem to §A.3.2. Also,
see Remark A.3 for the challenges when addressing LEQG and LQ disturbance attenuation directly
using derivative-free PG methods.

2.3 An Equivalent Dynamic Game Formulation

To overcome the challenges spelled out in Remark A.3, we now introduce an equivalent dynamic
game formulation to the LEQG and the LQ disturbance attenuation problems due to that the natural
PGs of the objective function of the game can be directly sampled (as we will show in §4). Under
certain conditions to be introduced shortly, the saddle-point gain matrix of the minimizing player in
the dynamic game (if exists) also addresses these two robust/risk-sensitive control problems. We aim
to address these three classes of problems in a unified fashion.

Now, consider a two-player zero-sum LQ stochastic dynamic game (henceforth, game) with closed-
loop perfect-state information pattern, characterized by x;,1 = A;x; + Byu; + Dyw; + &;, where
x; € R™ is the system state, and u, := —K,x; € R? (resp., w; := —L,;x; € R") is the linear state-
feedback controller of the minimizing (resp., maximizing) player', which suffices to attain the
saddle point whenever exists [26]. The initial state x; and the additive process noises &; are drawn
independently from a distribution D and A;, B;, D, are system matrices. Further, we assume that D is
zero-mean, has a positive-definite covariance, and satisfies almost surely that ||x]|,||&|| < 9, for all
t€{0,---,N — 1} and some constant 9. The goal of the minimizing (resp. maximizing) player is to
minimize (resp. maximize) a quadratic objective function, namely to solve the game

N-1

{111<1f} sup Eyy g0y [ Z ] (Qs + K RVK, — LT RYLy)x; + X1, QNN |, 2.1)
ti {L4) =0

Hereafter we will use player and agent interchangeably. Also, restrictions to instantaneous linear state-
feedback policies do not lead any loss of generality, as the results of §2.3 hold for general square-integrable
policies, allowed to use the entire state history.



where Q;, Qn > 0, R}, RY > 0 are symmetric weighting matrices. Whenever the solution to (2.1)
exists such that the inf and sup can be interchanged, the value (2.1) is the value of the game, and the
corresponding policies are the saddle-point/Nash equilibrium policies. To characterize the solution to
(2.1), we first introduce the following time-varying Riccati difference equation (RDE):

Pl =Qi+A[ P/ A A, tel0, N -1), (2.2

where A; =1 + (Bt(Rff)’lBtT - Dt(R’t")’lDtT)P;rl and P;, = Qn. From [26], whenever a sad-
dle point exists, the saddle-point control policies are linear state-feedback (i.e., pj ;(h, ;) =
—K;x; and p,,(hy,;) = —Ljx;), and the gain matrices K; = (R¥)"'B/ P, ;A;'A; and L} =

t+1
~(R¥)"'D/[ P;, | A;'A; are unique, where P}, > 0 is generated by (2.2). Then, we introduce a

standard assumption that ensures the existence of the value of the game [25].

Assumption 2.1 RY —D, P/

1Dy >0, forall t €{0,---,N —1}, where P,

+1

> 0 is generated by (2.2).

Under Assumption 2.1, the value in (2.1) is attained by the sequence ({Kf 1, {L;}), where K; € R*™

and Lj € R™ are gain matrices at the saddle-point/Nash equilibrium. Thus, we can replace the
inf and sup in (2.1) with min and max, respectively. Some further notes on Assumption 2.1 are
provided in Remark A.5, showing that it is not restrictive and is in fact “quite tight”. Lastly, we state
the equivalences between three classes of problems, with its proof provided in §B.3.

Lemma 2.2 (Connections) For any fixed y > y* in the LQ disturbance attenuation problem, we can
introduce an equivalent LEQG problem and an equivalent zero-sum LQ dynamic game. Specifically,
if we set ﬁ‘II,Rt, C;Ct,W in LEQG, yZI,Rt, CtTCt,DtDtT in the LQ disturbance attenuation
problem, and RY, R}, Q;, D; D, in the game to be the same, for all t € {0,---,N —1}, then the optimal
gain matrices in LEQG, the gain matrix in the LQ disturbance attenuation problem, and the Nash
equilibrium gain matrix for the minimizing player in the game are the same.

By Lemma 2.2 and Remark A.3, we will hereafter focus on solving the game formulation in §2.3
using PG methods. As a result, the minimizing controller we obtain solves three classes of problems
introduced above altogether.

3 Policy Gradient Methods

For ease of analysis, we define

_[,T T, [, T T 1., [T T 1T ¢ _[,T «T T 1To= s
x=[xg, x| u=ug, ] w=lwg e wl ] £=[xg,60 60 ] Q= diag(Qo-n),

P N OmaN | o gigas )
= . ) = . , = . B =dia X
diag(Ao—(N-1)) OmNxm diag(Bo_(N-1)) diag(Do_(n-1)) 8 Ro—(N-1)
RY = diag(Ry_ (y_y)), K:[diag(KO—(N—l)) Odem]r L= [diag(LO—(N—l)) OnNXm]. (3.1

where diag(X,_p) denotes the block-diagonal matrix with Xy, -, Xy on the diagonal block entries.
Some other notations are introduced in §A.2. Now, using the compact notations, we develop
PG methods with exact PG accesses that provably converge to the Nash equilibrium of the game,
(K*,L*) € §(d,m,N) x S(n,m,N), where S(d,m,N) and S(n,m,N) are the subspaces that we

confine our searches of K and L to, respectively. In particular, we only search over K € RN@x(N+1)m

and L € RN™WN+1m and K, L satisfy the sparsity patterns in (3.1), without losing any optimality.
Then, for any (K, L), the objective function G(K, L) is given by

G(K,L) = Eg[& e L] = Tr(B,L%0) = Tr((Q + KTR“K - LTRVL)Sk L) (3.2)
where Py 1 := diag(Px,r,, "+ Pxy,1y) @nd Pk, 1,, t €{0,--, N — 1}, solves the Lyapunov equation
Pk, 1, = (Ay—BKy = DiLy) TPk, 1., (At — BiKy — DyLy) + Q¢ + K RY Ky — L] RY'Ly, (3.3)

with Px,, 1, := Qn. Moreover, Fg 1, Xk 1 are the solutions to the Lyapunov equations
P¢1=(A-BK-DL)"Px(A-BK-DL)+Q+K"R*K-LTRYL, 3.4)
Yk,L=(A-BK-DL) g 1(A-BK-DL)T+%g, $o:=F [diag(xoxg, S0&d  EN-1&3 1 )] >0, (3.5)



where ¥ > 0 is full-rank because x, &g, -+, En_1 are drawn independently from D which has a
positive-definite covariance matrix. The solutions to (3.4) and (3.5) always exist and are unique
because (3.4) and (3.5) are recursive formulas in blocks. Since ||xo]l, ||£;]| < 9 almost surely, for all ¢,
||diug(x0x0T,50£0T,-~- féN—lgngl )||F < (N +1)92almost surely. Next, define the following notations:

co:=(N+1)8%,  dy:=m*(N+1),  ¢:=Anin(%0)>0, Hgp:=RY-DTPR D,
Exp:=(-R"+D"PD)L-D P (A-BK), Fgp:=(R*+B"PB)K-B"P(A-DL), (3.6)
G, k) =R"+B B x)B, P pk) = Benk) + P ra)P(RY =D B 1x)D) ' DT B k). (3.7)

Our goal is to solve the minimax optimization problem ming maxy G(K, L) such that G(K*,L) <
G(K*,L*) < G(K,L*) for any K and L. Some properties of G(K, L) are presented in the following
lemmas, with their proofs being deferred to §B.4 and §B.5, respectively.

Lemma 3.1 (Nonconvexity-Nonconcavity) There exist zero-sum LQ dynamic games such that the
objective function G(K, L) is nonconcave in L for a fixed K, and nonconvex in K for a fixed L.

Lemma 3.2 (PG & No Spurious Local Minimum) The PGs of G(K,L) can be computed as
VkG(K,L) = 2Fk 1Yk 1 and Vi G(K,L) = 2Eg 1 Y 1. Also, if at some stationary point (K, L) of
G(K,L) (i.e., where VkG(K,L) = 0and V  G(K,L) = 0), it holds that B¢ p > 0 and RY ~D " B¢ 1 D >
0, then (K, L) is the unique Nash equilibrium.

3.1 Double-Loop Scheme

We introduce a double-loop update scheme. Specifically, we first fix K, and solve for the optimal
L, denoted as L(K), whenever exists, by maximizing G(K,-) over L € §(n,m, N ). Then, we update
K to minimize G(K, L(K)) over K € §(d, m,N). For each fixed K, the inner-loop is an indefinite
LQR problem where —Q — KT R*K is not positive semi-definite (p.s.d.). Our goal is to find, via
PG methods, the maximizing gain matrix L(K) whenever the objective function G(K,-) admits a
finite upper bound value. We formally state the precise condition for the solution to the inner-loop
maximization problem to be well-defined as follows, with its proof being deferred to §B.6.

Lemma 3.3 (Inner-Loop Well-Definedness Condition) For the Riccati equation
P k)= Q+K R"K +(A-BK)"F 1(k)(A-BK), (3.8)
define the following set of outer-loop gain matrices K :
K :={K € 8(d,m,N) | (3.8) admits a solution B k) >0, and R* =D B¢ x)D > 0}. (3.9)

Then, K € K is sufficient for the inner-loop solution L(K) to be well defined. Also, L(K) is unique,
and takes the form of:

L(K) = (-RY + DT B¢ 1(x)D) "' DT B¢ 1(k)(A - BK). (3.10)
Moreover, K € K is also almost necessary, in that if K ¢ E where
K:= {K € S(d,m,N)|(3.8) admits a solution P¢ (k) > 0, and R" —DTI}CL(K)D > 0}, (3.11)

then the solution to the inner loop is not well defined, i.e., the objective G(K,-) could be driven to
arbitrarily large values. Lastly, the solution to (3.8) satisfies Px 1 (k) = Pk,1, YL in the p.s.d. sense.

Note that /C is nonempty due to Assumption 2.1, but it might be unbounded. Also, every K € K is
equivalent to a control gain matrix that attains a y-level of disturbance in the original disturbance
attenuation problem (cf. Lemma 2.2). Then, by Lemmas 3.1 and 3.3, the inner-loop maximization
problem for a fixed K € K is nonconcave in L and always admits a unique maximizing solution.
Thus, applying a variant of the Danskin’s theorem [31] yields that max; G(K, L) is differentiable with
respect to K and Vg {max; G(K,L)} = Vg G(K, L(K)). The outer loop is then a nonconvex (as we will
show in Lemma 3.5) constrained optimization problem in K, expressed as ming¢x G(K, L(K)). Then,
the PG of the outer loop is computed as Vg G(K, L(K)) = 2Fk (k) Xk, (k)- Lastly, we comment on
the double-loop scheme we study in Remark A.7.
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Figure 1: Left: Optimization landscape of LQR,
where the dashed line represents the boundary of
the stabilizing controller set. Right: Optimiza-
tion landscape of the outer loop, with the dashed
line representing the boundary of K. The solid
lines represent the contour lines of the objective
function, K denotes the control gain of one iter-
ate, and ¥ is the global minimizer.
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O:Byv_1—DYy_,QNDn_; >0

O:R.— D/ Px;,, 1(x;,,)De > 0
A : Pgi(k;) > 0 exists & Pk r(k;) < Pk,r(k,)

Figure 2: Proof idea for Theorem 3.7: For any
K € K, denote the gain matrix after one-step PG
update as K’. We construct an iterative argument
to find a constant stepsize such that Pg; (k) =0
exists and satisfies Pg; 1 (k;) < Pk, (k,) for all £.
Specifically, any K] satisfying = also satisfies
A. Moreover, ¢ is enforced by Assumption 2.1.
Combined, K’ € K is ensured.

3.2 Optimization Landscape
For a fixed K, we present the optimization landscape of the inner-loop and defer the proof to §B.7.

Lemma 3.4 (Inner-Loop Landscape) There exists K € K such that G(K, L) is nonconcave in L. For
afixed K € I, G(K, L) is coercive (i.e., G(K,L) — —oo as ||L||p — oo), and the superlevel set
Lx(a) ::{LeS(n,m,N)lg(K,L)Za} (3.12)
is compact for any a such that L (a) = @. Moreover, there exist some I 1,k 1,px,L > 0 such that
G(K,L)is (Ig 1, px,1) locally Lipschitz and (P 1, px,1) locally smooth at (K, L). Further, there exist
some g 4,k o > 0 such that G(K, L) is I ,-globally Lipschitz and Yk ,-globally smooth over L (a).
Lastly, G(K, L) is pug-PL for some pg > 0 which depends only on K and the problem parameters.

The optimization landscape of the inner loop is similar to that of the finite-horizon stochastic LQR
[32] (which is an independent work that appears concurrently to our work). However, we allow the
state-weighting matrix to be indefinite, while [32] requires Q to be positive-definite. For both our
inner-loop problem and the LQR problem in [32], independent process noises (together with the
random initial state) with a positive-definite covariance matrix guarantee the non-degeneracy of the
state covariance matrix X g y at any time, which leads to the stationary point of the inner-loop objective
function G(K, L) also being the unique optimum (cf. Lemma 3.2). Further, the non-degeneracy of
Yk 1 also ensures that G(K, L) is PL (cf. Lemma 3.4). These two properties together are essential for
establishing the global convergence of PG methods in our nonconvex-nonconcave setting.

Subsequently, we analyze the optimization landscape of the outer loop (proved in §B.8), subject to
KC defined by (3.9). Note that K is critical, as by Lemma 3.3, it is a sufficient and almost necessary
condition to ensure that the solution to the associated inner-loop subproblem is well defined. More
importantly, from a robust control perspective, such a set K represents the set of control gains that
enjoy a certain level of robustness, which share the same vein as the celebrated H,-norm constraint.
Indeed, they both enforce the gain matrix to attenuate a prescribed level of disturbance. This level of
robustness also corresponds to the level of risk-sensitivity of the controllers in LEQG problems.

Lemma 3.5 (Outer-Loop Landscape) There exist zero-sum LQ dynamic games such that G(K, L(K))
is nonconvex and noncoercive on K. Specifically, as K approaches the boundary of IC, G(K, L(K))
does not necessarily approach +oo. Moreover, the stationary point of G(K, L(K)) in K, denoted as
(K*, L(K™)), is unique and constitutes the unique Nash equilibrium of the game.

Lack of the coercivity brings up challenges for convergence analysis, as a decrease in the value of
the objective function cannot ensure feasibility of the updated gain matrix, in sharp contrast to the
LQR problem [11, 14]. We illustrate the difficult landscape of the outer loop in Figure 1. To address
this challenge, we will show next that the natural PG (NPG) and Gauss-Newton (GN) updates, with
some stepsize choices, can automatically preserve the feasibility of the iterates on-the-fly, termed the
implicit regularization (IR) property.



3.3 Update Rules and Global Convergence

We use I, k > 0 to represent the iteration indices of the inner- and outer-loop updates, respectively,
and introduce three PG-based update rules as follows:

PG:  Liyy =Ly +nVLG(Kg, L), (3.13) Ky+1 = Ky —aVgG(Ky, L(Kg)), (3.16)
NPG: Lj1=L;+4Ek, 1, (3.14) Ki+1 = Ky — aFg, 1(k;) (3.17)
GN: Ly =Li+nHg, | Exor,  (3.15) Kis1 :Kk—aGI‘(LL(Kk)FKk,L(Kk), (3.18)

where 77, & > 0 are constant stepsizes for the inner loop and the outer loop, respectively. We first
present the convergence results for three inner-loop PG updates.

Theorem 3.6 (Inner-Loop Global Convergence) For a fixed K € KC and an arbitrary L that induces
a finite G(K, Ly), we define a superlevel set L (a) as in (3.12), where a < G(K, L) is arbitrary. Then,
iterates L of the updates (3.13), (3.14), and (3.15) with stepsizes satisfying

PG: 11 <1/¢g e NPG: 1 <1/(2Hk,,ll), GN:1<1/2,
converge to L(K) with globally linear rates, where ) , is the smoothness constant of G(K, L) over
Ly (a). Moreover, with 1 = 1/2, GN (3.15) converges to L(K) with a locally Q-quadratic rate.

In contrast to the standard convergence proof for first-order methods in nonconvex optimization
problems where the objective function is PL, the proof of Theorem 3.6 is more involved since we do
not have the global smoothness property in our control setting. A careful analysis that addresses this
issue has been carried out in §B.9. For the outer loop, we require the iterates of K to stay within
in order for the solution to the associated inner-loop subproblem to be well defined. To meet this
requirement, we introduce the IR property for the NPG (3.17) and GN (3.18) updates in Theorem
3.7, with its proof being provided in §B.10.

Theorem 3.7 (IR) Let Ky € K and let the stepsizes satisfy
NPG: a < 1/”GK0,L(K0)”' GN: a <1.

Then, the iterates Ky € K for all k > 0. In other words, the sequence of solutions to (3.8), {Fg, L(k,)}>
exists, and for all k > 0, B, 1(k,) always satisfies the conditions in (3.9). Furthermore, the sequence
{Px, L(k,)} is monotonically non-increasing and bounded below by Fg- (k+), in the p.s.d. sense.

A key step of the proof for Theorem 3.7 is to ensure the existence of a solution to (3.8) along
the iterations, by carefully controlling the stepsizes of cerfain descent directions. We provide an
illustration of the proof idea in Figure 2. In particular, the IR property holds for NPG and GN
directions because they can ensure matrix-wise decrease of I, 1 (k). While other descent directions
(e.g., vanilla PG) can only decrease G(K, L(K)), which is a scalar. We highlight the importance of
IR in Remark A.8, and establish the convergence result for the outer loop in the following theorem.

Theorem 3.8 (Outer-Loop Global Convergence) Suppose Ky € K and let the stepsizes satisfy
NPG: a < 1/(2”GK0,L(K0)”)' GN: a <1/2.

Then, the sequence of average natural gradient norm squares {k™! Zi;lo ”FKK,L(KK)”]Z:}r k>1, con-
verges to 0 with O(1/k) rate. Moreover, this convergence is towards the unique Nash equilibrium.
Lastly, the NPG (3.17) and GN (3.18) updates enjoy locally linear and Q-quadratic rates, respectively,
around the Nash equilibrium.

The proof of Theorem 3.8 is deferred to §B.11. In the derivative-free setting where PGs are estimated
through samples of system trajectories, if we can uniformly control the estimation bias using a fixed
number of samples per iterate, then Theorems 3.6 and 3.8 together imply that the global convergence
to the Nash equilibrium also holds. We will substantiate this in the next section.

4 Derivative-Free Policy Gradient Methods

We present the sample complexity of our double-loop algorithm, when the exact PG is not accessible,
and can only be estimated through samples of system trajectories. In particular, we propose a
zeroth-order NPG (ZO-NPG) algorithm with a (zeroth-order) maximization oracle that approximately
solves the inner-loop subproblem (cf. Algorithms 1 and 2). In Remark A.9, we comment on how to
construct Algorithms | and 2 when explicit knowledge on the system parameters is not available.



Algorithm 1 Inner-Loop Zeroth-Order Maximization Oracle

1: Input: gain matrices (K, L), iteration L, batchsize M;, problem horizon N, distribution D,
smoothing radius r;, dimension d; = mnN, stepsize #.

2: for/=0,---,L-1do

3 fori:O,m',Ml—ldo‘ ' '

4: Sample L; = L; + r U/, where U} is uniformly drawn from S(n,m, N) with ||[Uj|[r = 1.

5 Simulate (K,L;) and (K, L;) for horizon N starting from x;’g,x;’(l) ~ D, and collect the

empirical estimatesa(K Li): e Oclt,):K L _dzag[xlo xlo ,---,x;}\](xlN ] where

{c; ?} is the sequence of stage costs following the trajectory generated by (K,L?) and {xl ; }
is the sequence of states following the trajectory generated by (K, L;), for t € {0,---,N},
under independently sampled noises El L élltl Dforall t €{0,---,N —1}.
6: end for
. M;-1d = M-1w
7:  Obtain: V;G(K,L;) = Z =4 g(K LU/, Xgp, = MLI Yo ):K L

= -1
8: Update: PG: L,+1=Ll+17VLg(K,Ll), NPG: L,+1=Ll+17VLQ(K,Ll)ZK’Ll.
9: end for
10: Return Lj.

4.1 Inner-Loop Maximization Oracle

Sample complexities of zeroth-order PG algorithms for solving standard infinite-horizon LQR have
been investigated in both discrete-time [11, 19, 33] and continuous-time [17] settings. Our inner-
loop maximization oracle extends the sample complexity result to finite-horizon time-varying LQR
with system noises and a possibly indefinite state-weighting matrix. In particular, we show that

zeroth-order PG and NPG with a one-point minibatch estimation scheme enjoy 5(61_2) sample
complexities, where €, is the desired accuracy level in terms of inner-loop objective values, i.e.,

G(K,L(K)) > G(K,L(K)) - €, for the L(K) returned by the algorithm. The two specific zeroth-order
PG updates are introduced as follows:

ZO-PG: Liy1 = L1 +nVLG(K, L)), (4.1)  ZO-NPG: Ly =L +qViG(K, L)Tx,, (4.2)

where 1 > 0 is the stepsize to be chosen, | > 0 is the iteration index, V.G(K,L) and EK,L are the
noisy estimates of V;G(K,L) and Xk , respectively, obtained through zeroth-order oracles. We
establish the sample complexity of Algorithm | in the following theorem.

Theorem 4.1 (Inner-Loop Sample Complexity) Let the desired accuracy level be €1,01 € (0,1), and
parameters of the minibatch zeroth-order oracle (cf. Algorithm 1) satisfy

Minibatch Size: My ~ 5(€I2), Stepsize: 1 ~O(1), Smoothing Radius: r] ~ ©(+/e1).
Then, with probability at least 1 — 61 and L ~ (’)(log(el_1 )) steps, updates (4.1) and (4.2) output some
L(K) := L; satisfying G(K,L(K)) > G(K,L(K)) — €; and |IL(K) - L(K)||p < \/A;I}m(HK,L(K)) “€].

Complete versions of Theorem 4.1 for PG and NPG updates (4.1) and (4.2) are given respectively in
§B.12 and §B.13, along with their proofs. The total sample complexity of both (4.1) and (4.2) scales

asM;-L~ 0(61_2 log(o7] 1)), where the logarithmic dependence on €, is suppressed. In contrast to
[11], our Algorithm 1 uses an unperturbed pair of gain matrices to generate the state sequence for
estimating X . This modification avoids the estimation bias induced by the perturbations on the
gain matrix, while only adding a constant factor of 2 to the total sample complexity.

4.2 Outer-Loop ZO-NPG

With the approximate inner-loop solution L(K) obtained from Algorithm 1, the outer-loop ZO-NPG
algorithm approximately solves mingcx G(K, L(K)), with the following update rule:

= - =1
ZO-NPG: Ky, =Ki - aVKg(Kk,L(Kk))):Kk’Z(Kk), 4.3)



Algorithm 2 Outer-Loop ZO-NPG

1: Input: initial gain matrix K, € K, number of iterates K, batchsize M,, problem horizon N,
distribution D, smoothing radius r,, dimension d, = mdN, stepsize a.
fork=0,---,K-1do _

Find L(Kk) such that G(Ky, L(Ky)) > G(Kj, L(Ky)) -

for j = -+ Mp—1do

Sample Kk =Ki+1; Vk" where V] is umformly drawn from S(d, m, N) with ||ij||F =1.
Find L(K]) such that g( ,L(K )) > g( ,L(K )) €1 using Algorlthm 1.

Simulate (K J L(K )) and (K 1 L(Ky)) for horlzon N starting from x,]( g, xy o ~ D, and collect
— ; =j 1 7,0
Q(K]](,L(K])) flockt, Z dzag[xko xko) ,---,x{(N(ka ] where {th}ls

the sequence of stage costs followmg the trajectory generated by (K k,L(K]]{)) and {xk t} is

A O S

the sequence of states following the tra]ectory generated by (K k,L(K ©)), fort €{0,---,N},
under independently sampled noises &/ k t,cf ¢ ~ Dforall t€{0,---,N —1}.

end for
M,-1

M,-1 i i = <J
9 Obuin: VgG(Ky, L(Kp) = - 1% 2G(KL LKD)V, T 1k = 75 Lo Tk Ly

(o]

10:  NPGupdate: Ky, = Kk—aVKQ(Kk, (Kk))ZKk L(K;)
11: end for
12: Return Kg.

where @ > 0 is the stepsize, k > 0 is the iteration index, and Vg G(K,L(K)) and EK,Z(K) are the
estimated PG and state correlation matrices, obtained from Algorithm 2. Similar to the modification
in §4.1, we estimate the correlation matrix ¥(K, L(K)) using the state sequence generated by the

unperturbed gain matrices, (K, L(K)), to avoid the estimation bias induced by the perturbations on
the gain matrices. In the following theorem (Theorem 4.2), with its complete version and proof being
deferred to §B.14, we have that the IR property in Theorem 3.7 also holds in the derivative-free
setting, with high probability. We provide here a sketch of the proof of Theorem 4.2.

Theorem 4.2 (IR: Derivative-Free Setting) For any K € K, define the following strict subset of K:

Amin (HK, L(Ky)) }

K= {K | (3.8) admits a solution P (k) >0, and P (k) < Pk,,L(K,) + 2D

Let 0, € (0,1) and parameters of the minibatch zeroth-order algorithm (cf. Algorithm 2) satisfy

Minibatch Size: My ~ 5(1(4), Stepsize: a ~O(1), Smoothing Radius: ry ~ O(Kil),
Inner-Loop Accuracy: €1 ~ O(K_z), o1 ~ O(ézMgl k! ).

Then, it holds with probability at least 1 — 6, that Ky, € Kc Kforallke{l,---,K}.

Proof Sketch. Due to lack of coercivity, the objective function of the outer loop cannot act as a barrier
function to guarantee that the iterates of PG updates stay in C (cf. Figure 1), and thus new candidates
are needed. To this end, we construct two compact sets K and ICy for a given Ky € K, as shown in
blue and red in Figure 3, respectively, where K := {K | K € K, and B¢ (k) < B(O’L(KO)}' Clearly,
Ky € dK and a sequence of iterates {K}} that stays in K or ICy is also uniformly separated from
K _ (dashed lines in Figure 3). Denote the gain matrix after one step of the exact NPG update (3.17)
as K;. Then, under an appropriate stepsize, Theorem 3.7 demonstrates that Py, 1k,) = 0 exists and

satisfies PIZ LK) < Ik, 1(k,) almost surely, implying K, 1 € K¢ almost surely. In contrast, when the

model is not known, one step of the ZO-NPG update (4.3) using estimated gradients sampled through
system trajectories could drive the gain matrix outside of /Cj (even worse, outside of ) due to the
induced statistical errors. Moreover, these errors accumulate over all the iterations, raising significant
challenges to find a uniform “margin” that is needed to safely select the parameters of Algorithm 2.



Figure 3: Illustrating the proof idea for The-
orem 4.2. For any K, € K, we construct two

compact sets K and K shown in blue and red,
T 6& respectively, that are independent of the con-
oK tour lines of the objective function. Our analy-
OKo  sis proves that the iterates following (4.3) stay
e Ko * K*  within /IC with high probability, thus uniformly

separated from dXC, with high probability.

To overcome this challenge, we establish some arguments stronger than that in Theorem 3.7, i.e., K},

stays in /C, for all k, with high probability. We first show that with polynomial samples, the estimated
NPG could be accurate enough such that Ky, the iterate after applying one step of (4.3), is close to
K 1, and thus stays in XC, with high probability. The same arguments could be iteratively applied to all
future iterations, because starting from any K € K and choosing an appropriate stepsize, Theorem
3.7 guarantees that the iterates following the exact NPG direction are monotonically moving toward
the interior of K. Also, there exist parameters of Algorithm 2 such that the NPG estimates could be
arbitrarily close to the exact ones. These two properties together imply that we can control, with high
probability, the rate under which the iterates following (4.3) is moving “outward”, i.e. toward JK.
Therefore, we manage to demonstrate that even in the worse case, the iterates of the ZO-NPG update
will not travel beyond JK (the blue line), with high probability. Since K is compact, we can then
safely choose the parameters of Algorithm 2 when analyzing the convergence rate of (4.3). [

Theorem 4.2 appears to be the first IR result of PO in robust control in the derivative-free setting,
with previous work [16] focusing only on the case with exact PG accesses. With Theorem 4.2 at
hand, we now present the sample complexity of ZO-NPG (4.3), deferring its proof to §B.15.

Theorem 4.3 (Outer-Loop Sample Complexity) For any Kq € IC, let € < ¢/2, 05,€1,01, My, 15,
in Algorithm 2 have the same order as the requirements introduced in Theorem 4.2. Then, it holds
with probability at least 1 — 6, that the sequence {Ki}, k € {0, ---, K}, converges with O(1/K) rate in

the sense that K1 ZkK;()l ”FKk,L(Kk)”12f <ewithK = Tr(l}(O,L(KO) - f}(*rL(K*))/[a(;[)Ez].

Hence, ZO-NPG converges to the €;-neighborhood of the Nash equilibrium with probability at least
1 - 6,, after using M, - K ~ 0(655 . log(ég1 )) samples. Moreover, the convergent gain matrix Ky
also solves the LEQG and the LQ disturbance attenuation problems (cf. Lemma 2.2).

Compared with the 5((—:_2) rate of PG methods for solving LQR [19] and our inner-loop (cf. Theorem

4.1), the 0(6’5 ) rate of ZO-NPG for solving our outer-loop is less efficient, due to the much richer
landscape presented in Lemma 3.5. In particular, the objective function of LQR is coercive (leading
to the “compactness” of sub-level sets and the “smoothness” over the sub-level sets, and enabling
the use of “any” descent direction of the objective to ensure feasibility) and PL. In contrast, none of
these properties hold true for the objective function of our outer loop, and a descent direction of the
objective value may still drive the iterates out of X, which will lead to unbounded/undefined value.

To guarantee that the ZO-NPG iterates will stay within K (which is necessary for the iterates to
be well-defined), we need to use large number of samples (O(e ) in € and polynomial in other
parameters) to obtain a very accurate approximation of the exact NPG update (3.17), similar to what
has been done in [11], to ensure that F 1(k) is monotonically non-increasing in the p.s.d. sense with
a high probability along iterations. For LQR, any descent direction of the objective value, which
is a scalar, suffices to guarantee that the PG iterates will stay in the feasible set. Therefore, for
LQR, the O(e?) rate is expected for the smooth (since the iterates will not leave the feasible set,
which is compact) and PL objective functions; while for our robust control setting, due to the more
stringent requirements on the estimation accuracy and the non-PL objective function, the O(e ) rate
is reasonable. In fact, to our knowledge, there is no sample complexity lower-bound applicable to
our outer loop (stochastic nonconvex optimization with no global smoothness nor coercivity nor PL
condition, with an inner-loop oracle).
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] As an initial attempt, we focus
on the fundamental LQ settings and do not optimize the dependencies with respect to
various parameters in our sample complexity bounds. Based on the intricate analysis
established in §4, we expect that accelerated algorithms with sharper rates could be
developed. Despite the above limitations, we believe that our results and insights for
these LQ robust control settings help pave the way for future investigations into whether
and how model-free PO methods converge for general safety-critical controller designs.
More importantly, our results bridge the gap between classical robust control concepts
and modern policy-based RL theories, pushing forward the development of RL for
safety-critical controller designs in the broader community of learning for control.
Based on this robust control perspective, researchers could potentially improve the
robustness of existing policy-based RL algorithms, and also develop new model-free
RL algorithms with strong safe on-the-fly robustness guarantees.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] we do not
believe our work will cause any potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The only
assumption that we have made is Assumption 2.1, which is standard in the literature.
(b) Did you include complete proofs of all theoretical results? [ Yes] The proofs are deferred
to the supplementary material, see the first page of our appendix for an outline.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] All code and
data are included in the supplementary material.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See §D of our appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? For the exact PG updates (3.13)-(3.18), randomness
enters only when we are randomly searching for an initial Ky € K in S(d, m, N), where
S(d,m,N) is defined in §3. For a given K, € K fixed, exact PG updates are deter-
ministic and thus not affected by varying random seed. For the zeroth-order updates
(4.1), (4.2), and (4.3), randomness enters into the optimization process in addition to
initialization. However, we utilize mini-batch gradient estimators with large batchsizes
to sample PGs at a high accuracy, thus the effects of random seeds are minimal.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See §D of our appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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