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Abstract 

Convolutional neural networks for visual recognition require large amounts of train- 
ing samples and usually benefit from data augmentation. This paper proposes PatchMix, 
a data augmentation method that creates new samples by composing patches from pairs 
of images in a grid-like pattern. These new samples are assigned label scores that are 
proportional to the number of patches borrowed from each image. We then add a set of 
additional losses at the patch-level to regularize and to encourage good representations at 
both the patch and image levels. A ResNet-50 model trained on ImageNet using Patch- 
Mix exhibits superior transfer learning capabilities across a wide array of benchmarks. 
Although PatchMix can rely on random pairings and random grid-like patterns for mix- 
ing, we explore evolutionary search as a guiding strategy to jointly discover optimal 
grid-like patterns and image pairings. For this purpose, we conceive a fitness function 
that bypasses the need to re-train a model to evaluate each possible choice. In this way, 
PatchMix outperforms a base model on CIFAR-10 (+1.91), CIFAR-100 (+5.31), Tiny 
Imagenet (+3.52), and ImageNet (+1.16). 

 
1 Introduction 
Deep convolutional neural networks (CNNs) have pushed forward significant progress in 
many computer vision tasks [19, 20, 30, 31, 39]. These high-capacity models tend to 
memorise their training data to some extent, therefore, they might lead to suboptimal gen- 
eralization. Recent work has proposed various data augmentation techniques to alleviate 
this issue by smoothing out the input space, the output space, or both.   Relevant liter- 
ature falls roughly into two groups: (1) Data augmentation from individual input sam- 
ples e.g. [27, 29, 46], and (2) Data augmentation that creates new samples by interpolating 
pairs of samples e.g. [14, 28, 43]. Our paper focuses on the second line of work and pro- 
poses to interpolate two samples via patch-level compositions in a grid pattern. Figure 1 
shows examples of using data augmentation strategies to create samples. 
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Figure 1: Examples of different data augmentation techniques. Our proposed method ex- 
ploits patch-based image compositions that allows flexible combinations for data augmenta- 
tion. PatchMix allows training a model that can be used as a fitness function of an evolu- 
tionary search pipeline to find optimum mask configurations and sample pairs. The numbers 
below each image correspond to the new labels, which are associated with the proportion in 
which each class has been mixed. 

 
Multiple successful strategies have been proposed for combining pairs of samples to reg- 

ularize deep learning models such as Mixup [43], Cutmix [42], and Cutout [3, 12, 33]. These 
studies have shown patch-level perturbations and augmentation strategies to be beneficial for 
robust feature representation learning in vision. Our method, we call PatchMix, provides two 
novel designs when compared to the recent works. First, PatchMix uses a grid mask to de- 
compose the image space into a regular grid of patches. Image compositions via a grid 
mask allows for greater diversity in making the augmented samples (as shown in Figure 1). 
We also add an auxiliary patch-level supervision on top of the image-level supervision to 
encourage better and more robust representation learning (refer to Figure 2). 

Second, different from the previous methods relying on heuristics to find patches to com- 
bine [1], we introduce a guided search strategy via genetic search to find the best set of cat- 
egory pairs to mix and to search for optimal category-dependent grid masks for combining 
pairs of images. Our search aims to find a set of category pairs (and corresponding masks) 
for interpolating pairs of image samples to create new samples, hoping to achieve improved 
model training and generalization. One main challenge when using genetic search for pair- 
wise sample interpolation is the expensive computation cost. This is because evaluating the 
fitness of each interpolation configuration requires training and evaluating a new model. We, 
instead, propose a computationally feasible approximation to calculate such a fitness cal- 
culation, avoiding the bottleneck of retraining the model for each potential configuration. 
While genetic search has been used for exploring single sample data augmentation, to the 
best of our knowledge, our work is the first to explore evolutionary techniques to find the 
best configurations over the space of interpolations between samples. 

Empirically, we validate the effectiveness of PatchMix on the regular image classification 
task (via CIFAR [21, 22], Tiny Imagenet [23] and ImageNet [11]), on the weakly-supervised 
localization (WSOL) task (via CUB-200-2011 [37]), the object detection task (via Pascal 
VOC [13]), on the transfer learning task (via CUB-200-2011, SUN397 [40] and multi-label 
datasets: Pascal VOC and MS-COCO [25] and NUS [8]), and on the image captioning task 
(via MS-COCO). Finally, we show consistent robustness results on a model trained with 
PatchMix when tested against adversarial examples using the Fast Gradient Sign Method 
(FGSM) [16] white box attack. 
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2 Related Work 

2.1 Pairwise data augmentation 
Mixup [43] was the first work that proposed the idea of interpolating two images, and their 
ground truth labels to augment the training data. Mixup and its variants may suffer from 
the issue of object local ambiguity, also called manifold intrusion [17]. This occurs when 
the objects inside two image samples are interpolated in such a way that introduce visual 
confusion, and the true labels contradict the synthetic labels of the generated mixed sam- 
ple. However, this method has proved effective and general, almost always providing some 
improvement over a baseline that relies only on single sample data augmentation strategies. 
Recent literature has tried a set of mechanisms to deal with the manifold intrusion prob- 

lem [17] by proposing different data interpolation alternatives to Mixup. For example, Man- 
ifoldMixup [35] and PatchUp [14] interpolate the hidden states instead of the input space. 
MetaMixUp [28] proposes to use meta-learning to learn a mixing coefficient that could avoid 
a high frequency of cases of manifold intrusion. [10] train an extra neural network to antici- 
pate whether a particular combination of two images may suppress information or add man- 
ifold intrusions. [7] propose to force a balanced sampling from the training set for selecting 
the images to be interpolated. CutMix and variants create random binary masks to sample a 
patch and to apply the corresponding image interpolation [18, 42] only on a subregion. Our 
paper proposes a new strategy, PatchMix, that allows for sampling multiple patches from an 
image to interpolate with a second image. Moreover, we select optimal interpolations that 
are on average more challenging than random interpolations using genetic search. 
More recently, other methods [14, 38] such as GridMix [1], have explored patch-like 

masks to enable input samples interpolations along with their corresponding labels. In our 
proposed method, we take the last layer of the CNN and divide it as a matrix where each 
patch also corresponds to the Patch-Mask we use to mix the input samples. In our case, our 
patch-loss is equally weighted into the whole pipeline and we try to solve the manifold in- 
trusion problem during training. This issue happens when synthetic samples generated from 
interpolating two real samples are assigned a label that contradicts the individual samples. 
Additional analysis about the manifold intrusion could be found in the Appendix, showing 
its effect in the decision boundary for a three-way classifier on synthetic data when using 
different interpolations such as Mixup, CutMix, and our proposed PatchMix. 

 
2.2 Samplewise data augmentation 
Another popular group of data augmentation research explores ways to augment samples via 
individual one-to-one sample transformations. Multiple recent works apply random transfor- 
mations over an image to augment training data. These transformations range from random 
cropping, flipping, or rotating an image [34], to random erasing [12, 44], and even more 
complex random transformations [41]. More recently, researchers have proposed methods 
to automatically search for data augmentation policies with Reinforcement Learning (RL) 
or Evolutionary Algorithms [27, 29, 46]. This idea also relates to using RL systems to find 
state-of-the-art model architectures for image classification [47] using policy gradient opti- 
mization methods [32]. This setup is typically expensive due to the need to retrain the model 
for evaluating all sub-policies or configurations [9, 24]. Differently, PatchMix generates 
augmented images from pairs of samples and uses genetic search that is guided by a novel 
fitness criteria based on the difficulty of the chosen configurations. 
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3 Our Method 
PatchMix includes three components: (1) A patch mask that enables a grid-level compo- 
sition involving all patches from two images. We decompose the image space into a grid 
of regular-sized patches and design a binary mask on each patch position controlling the 
composition. (2) A new loss function that enforces patch-level label supervision, in addi- 
tion to the global image supervision. This loss enhances the regularization provided by our 
patch-based sample augmentation and provides a useful fitness function for evaluating what 
candidate patches to use. (3) A search strategy based on genetic search to find the best patch 
mask for combining pairs of image categories. 
 

LO 
~y = λyi+ (1−λ)yj 

  
 
 

LP 

Convolutional Network 

 
Figure 2: Overview of PatchMix. We first create a binary mask M with PxP number of 
patches using our proposed PatchMix strategies: Guided PatchMix and its variation Random 
PatchMix (see Section 3 for details on how to obtain the mask). This mask is then used 
to interpolate two random images which will create a new image sample. This generated 
sample is used to train the model, a CNN with the last convolutional layer modified to create 
PxP patches of equal size. In this way, we are able to output the values corresponding to the 
input patches corresponding to each image, and the mixed output of the whole new image. 
 
3.1 Binary Patch-Mask M 
Let x RW×H×C denote a training image and y be its corresponding label. The goal of 
PatchMix is to synthesize additional training samples by interpolating pairs of inputs. For 
example, for samples xi, x j and their corresponding labels yi, y j, we use a patch mask matrix 
M ∈ {0, 1}W×H  to create a new sample (x̃, ỹ): 

x̃ = M 0 xi +(1 − M) 0 x j, (1) 
ỹ = λ yi +(1 −λ )y j, (2) 

where λ = ∑W 
 
H 
t=1 M(s, t)/(W ×H).  More specifically, we divide the mask M into P2 

patches, resulting in each patch region of size W/P H/P. We additionally constrain the 
values M(s, t) in each patch region to be the same values. In this way, we force the two input 
images to be interpolated using patches of the same size, with 2P×P possible configurations. 
This process is illustrated in Figure 2 (on the left side) for a given Patch-Mask with P = 4. 
 
3.2 Patch-level Supervision 
The key intuition of PatchMix is that image patches provide strong supervisory signals. 
We, therefore, design mechanisms to exploit such weak supervisions for each of the im- 
age patches. We design a Convolutional Neural Network, that takes as input x˜, so that its 
last convolutional layer produces a set of feature region vectors corresponding to each of 
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the input P2 patch regions. In this way, we force the network to output P2 additional class 
predictions corresponding to labels for each individual patch. Thus, we adopt the following 
objectives for each generated sample: 

C 

LO = ∑ y ĩ log(y î), (3) 
i=1 
P2    C 

LP = ∑ ∑ y˜in log(yˆin), (4) 
n=1 i=1 

LT = (LO +(LP/P2))/2, (5) 

where C is the number of classes, LO corresponds to the cross entropy loss over the image- 
level label vector ỹ, LP corresponds to a sum of the cross entropy losses for each patch with 
respect to patch-level (pseudo) labels.  Here we assume for the n-th patch, its label ỹn is the 
same as its image label. LT is the combined loss using both image-level and patch-level 
supervision. Figure 2 shows the full process of combining two images given a fixed patch 
interpolation mask for a pair of input images. 

 
3.3 Evolutionary Search over Interpolations 
In order to train a model well under PatchMix, we need to define the patch masks M for 
combining a pair of samples. In its most basic form we can train a model by selecting 
random pairs of images from two arbitrary categories under a mask M such that the entries 
for each patch region are sampled from a beta distribution B(α, α). We refer to this basic 
formulation as Random PatchMix. Further, we propose a better strategy to search for the 
optimal masks M that help us interpolate pairs of samples optimally. We refer to this as 
Guided PatchMix. In Guided PatchMix, we search for a specific mask Mi j for a pair of 
image categories (ci, c j). We propose a novel genetic search optimization to automatically 
identify a set of category pairs (ci, c j) that are good to interpolate, and the set of mask M·,· 
that determine how their images mix to generate new samples. 
We have two concrete search goals in Guided PatchMix. 
• (a) To identify what pairs of image categories are suitable for mixing. 
(b)  For  a  specific  category  pair  (ci, c j),  what  is  the  best  mask  M·,· that  allows  for 
their images to interpolate well so that they generate new samples resulting in some 
improved generalization. 

We, therefore, represent an individual candidate solution in our search as follows: (a) 
It includes a set of active class combinations A = (ci, c j) and A <= N (here N is a hy- 
perparameter to tune). (b) For each active class pair (cia , c ja ) in the active set A, we have a 
mask matrix Ma of dimension P P to search for, presenting 2P×P possible configurations to 
combine images from class (cia and c ja ). Our population is initialized with I different indi- 
viduals. Each individual Ai is built from random pairing between classes and from assigning 
random binary values in each Ma. These individuals are evolved for approximately G gener- 
ations. We decided to limit the amount of active combinations to size N, in order to narrow 
down the growth of the search space; this decision helps the algorithm to converge faster 
and yield better compositions. We show one cycle of our genetic search implementation in 
Figure 3 in the Supplementary Material. 
One key component in using an evolutionary framework is to require a cost-effective 

fitness function for evaluating each “individual" candidate solution. For our search, we 

• 
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can evaluate whether a specific “individual" (i.e., a set of active class combinations and 
their interpolation masks) is effective or not by training a model that uses those for data 
augmentation. The resulting accuracy of such a model serves as a good fitness criterion. 
However, it is computationally too expensive to train models for each possible “individual" 
configuration, considering the vast search space for possible set A = {(ci, c j)} with size N 
plus the vast configuration space to search for each mask Mcia ,c ja . Instead, our fitness criteria 
uses the average of the patch-level scores (based on Equation 4) from fT on the validation 
set to choose “individual" solutions that are challenging and thus yielding potentially more 
informative interpolations than random patch selections. 
After evaluating the fitness scores on each individual in the current population, some 

of them are discarded. Then some pairs of individuals are combined using a crossover 
function. Our choice of crossover function combines corresponding masks Mi j from two 
different surviving individuals by copying the left and right half of each mask. Furthermore, 
some of these new offspring are transformed using a mutation operation with a low random 
probability. We define a set of possible mutation operations. Figure 4 in the Supplementary 
Materials shows examples of mutation operations. The search algorithm stops after a specific 
number of generations, or early stops if there is no further improvement. This last condition 
typically happens when the offspring in the current generation are almost the same as in the 
previous generation. 

3.4 PatchMix Training Workflow 
In summary, guided PatchMix trains a model as follows: 

First phase: We train Random PatchMix to define our fitness criteria fT by optimizing 
LT over a dataset of images and their corresponding labels. 
Second phase: We use genetic search to find the best set of masks Mi, j and active 
category pairs (ci, c j) that correspond to each of the discovered class combinations by 
using the fitness criteria induced by fT . 
Third phase: We use the best set of masks Mi, j learned by our evolutionary algorithm 
to create informative augmented training samples based on the class combinations 
(ci, c j) discovered in the second phase; 
Fourth phase: We train a final prediction network fO using the original training set, a 
randomly-augmented set based on random masks similar to the one described in the 
first phase, and the augmented set sampled in the third phase. We train this function 
by minimizing the sum of losses LO over these samples. 

 
4 Experimental Setup 

4.1 Implementation Details 
Evolutionary Search We adopt DEAP [15], an evolutionary computational framework, to 
work as our base genetic search data structure. This framework allowed us to define each 
individual in the population as a set of vectors, along with their grid mask configurations. 
The population is set to 500 individuals, which are evolved for 250 generations. Each in- 
dividual has a limited number of active combinations, we treat the total number of allowed 
active combinations (N) as a hyperparameter. In our experiments, we set this as equal to the 
number of classes in the dataset, along with the same class combinations (ci, ci) pairs that 
are forced to be always active. Since we set P = 4 in all our experiments, each combination 

• 

• 

• 

• 
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has 65, 536 possible configurations. We also set the crossover probability to 50% and the 
mutation probability to 30%. Since our fitness function is a model trained using Random 
PatchMix, we spawn 20 processes to work in parallel, each containing the trained network 
to evaluate each individual. These 20 processes ran on 5 servers, each with 4 NVIDIA GPUs 
(ranging from GTX1080, GTX1080 Ti and Titan X). 
PatchMix Training We train for 400 epochs, using mini-batches of 100 images. All the 

networks are optimized using Stochastic Gradient Descent (SGD) with Nesterov momentum. 
We use a weight decay regularization of 0.0005, a momentum factor of 0.9, and an initial 
learning rate of 0.1 which is updated using cosine annealing [26]. In all our experiments, we 
set P = 4 and α = 1. 
Baselines For both Mixup [43] and Cutmix [42], we use α = 1.0. A cropping region of 

16 16 is used for Cutmix which is sampled from a Gaussian distribution with mean at the 
image centre. We also train for 400 epochs, using mini-batches of 100 images, SGD with 
nesterov momentum, a weight decay regularization of 0.0005, a momentum factor of 0.9, 
and an initial learning rate of 0.1 which is updated using cosine annealing. 

5 Experimental Results 
5.1 Supervised Image Classification 
We evaluate PatchMix using both the random patch selections and our guided sampling 
strategy found using genetic search. Table 1 shows the top-1 accuracy and comparison 
against Mixup, Manifold Mixup and Cutmix, which are now standard techniques for data- 
augmentation and regularization on CIFAR-10 and CIFAR-100. Table 2 shows the top-1 
accuracy and comparison against Mixup and Cutmix on Tiny-Imagenet and ImageNet. Ran- 
dom PatchMix outperforms a model trained without any data augmentation in all scenarios 
and is comparable to Mixup and Cutmix. Guided PatchMix outperforms all models trained 
using the other regularization approaches. 

 
CIFAR-10 

Model Base Mixup Manifold 
Mixup 

Cutmix Rand 
PatchMix 

Guided 
PatchMix 

MobileNetV2 
ResNet32 
ResNet50 
ResNet56* 
   ResNet164*         

90.55 ± 0.04 
92.61 ± 0.03 
93.70 ± 0.06 
93.95 ± 0.04 
94.06 ± 0.07  

91.39 ± 0.02 
93.40 ± 0.02 
94.75 ± 0.03 
94.42 ± 0.06 
95.12 ± 0.03  

91.79 ± 0.11 
94.14 ± 0.05 
95.24 ± 0.06 
94.15 ± 0.03 
95.55 ± 0.08  

91.93 ± 0.04 
93.92 ± 0.06 
94.89 ± 0.05 
93.92 ± 0.07 
95.72 ± 0.07  

92.64 ± 0.02 
94.13 ± 0.07 
95.04 ± 0.08 
94.62 ± 0.09 
95.81 ± 0.12  

93.85 ± 0.07 
94.93 ± 0.03 
95.48 ± 0.02 
94.80 ± 0.07 
96.06 ± 0.04  

CIFAR-100 
MobileNetV2 
ResNet32 
ResNet50 
ResNet56* 
ResNet164* 

66.55 ± 0.21 
68.52 ± 0.38 
71.37 ± 0.27 
71.60 ± 0.37 
72.43 ± 0.22 

68.45 ± 0.38 
69.12 ± 0.31 
71.99 ± 0.31 
72.43 ± 0.29 
74.14 ± 0.34 

68.97 ± 0.41 
70.82 ± 0.39 
72.65 ± 0.40 
73.21 ± 0.47 
75.07 ± 0.49 

69.14 ± 0.39 
71.32 ± 0.30 
72.91 ± 0.36 
74.02 ± 0.35 
76.97 ± 0.31 

69.18 ± 0.38 
71.09 ± 0.49 
73.02 ± 0.48 
74.56 ± 0.32 
76.39 ± 0.44 

70.05 ± 0.37 
72.83 ± 0.26 
73.63 ± 0.31 
75.26 ± 0.38 
78.16 ± 0.47 

 
Table 1: Results on supervised classification datasets. Base refers to each model trained 
without any interpolation technique. The asterisk (*) refers to PreAct-ResNet. All experi- 
ments were run 3 times, we report their mean and standard deviation. 

 
5.2 Weakly Supervised Object Localization and Object Detection 
We also evaluate PatchMix on the weakly supervised localization task, which aims to find 
a target object using only the image-level label as supervision. In particular, we use the 
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Tiny-Imagenet ImageNet 
Model Base Mixup Cutmix Random 

PatchMix 
Guided 
PatchMix 

Base Mixup Cutmix Random 
PatchMix 

Guided 
PatchMix 

ResNet50 61.18 63.04 63.36 62.94 64.70 76.27 77.01 77.41 77.38 77.43 
 

Table 2: Results on supervised classification on ImageNet and Tiny-Imagenet. Base refers 
to each model trained without any interpolation technique. 
 

Class Activation Mapping (CAM) [6] to extract the attention maps, and then we compute the 
maximal box accuracy, which is the bounding box accuracy and the Intersection over Union 
(IoU) of the proposed boxes, following the WSOL framework and evaluation benchmark 
recently proposed in [5] referred to as MaxBoxAccV2 1. 
PatchMix excels in this setting due to the patch-level supervision, which seems to give 

additional cues to the be considered by the scoring function. We show results on the CUB- 
200-2011 dataset trained on ResNet-50, VGG-16 and Inceptionv3 backbones. Random 
PatchMix outperforms other interpolation techniques as well as the baseline CAM. We show 
our results on Table 3, and qualitative results in the supplementary materials (section A.2). 
 

Method ResNet50 VGG16 Inceptionv3 
Baseline (CAM) [45] 63.0 55.6 56.7 
Mixup 55.8 51.9 53.4 
Cutmix 62.8 54.9 57.4 
PatchMix 63.9 57.3 57.7 

Table 3: Results for the Weakly Supervised Object Localization task on the CUB-200-2011 
dataset using three different backbones. The baseline is using the class activation mapping 
(CAM) without any data augmentation. We then apply Mixup, Cutmix and PatchMix, and 
report the MaxBoxAccV2 [5]. 
 

5.3 Transfer Learning Capacity 
Table 4 presents results for various models pretrained on the ImageNet ILSVRC dataset and 
finetuned on seven different downstream tasks, including food recognition (Food-101[2]), 
bird classification (CUB-200-2011 [37]), scene recognition (SUN397 [40]), multi-label ob- 
ject classification (Pascal VOC [13], COCO [25], and NUS [8]), and image captioning 
(COCO Captions [4]). Our results include the performance for a base ResNet-50 model, a 
ResNet-50 model trained with CutMix and a ResNet-50 model trained with Random Patch- 
Mix. PatchMix shows the largest transferability across these tasks with the best performance 
scores in 7 out of 8 tasks. 
 

5.4 Robustness 
We perform studies on the FGSM [16] white box attack on ImageNet using ε = 0.1, 0.2, 0.3. 
The aim of this test is to create adversarial samples by fixing the perturbation on a pixel to 
be of a fixed size (i.e. ε). As shown in Table 5, PatchMix consistently outperforms previous 
methods in 2 out of 3 attacks. 
 

1https://github.com/clovaai/wsolevaluation 
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ImageNet 
Pretrained 

Food-101 
top-1 acc 

CUB-200 
top-1 acc 

SUN397 
top-1 acc 

VOC 
mAP 

COCO 
mAP 

NUS 
mAP 

MS-COCO NIC [36] 
BLEU-1 BLEU-4 

RN 87.70 76.30 60.41 92.13 79.64 80.19 61.4 22.9 
RN+M 87.82 78.91 60.16 91.80 81.20 81.72 61.6 23.2 
RN+CM 88.02 77.77 58.48 92.41 79.68 80.53 64.8 24.9 
RN+PM 87.95 79.17 61.08 92.42 81.27 82.45 66.8 26.3 
RN+GPM 87.50 79.50 60.99 92.39 83.21 82.95 65.5 25.5 

 

Table 4: Transfer learning results on different datasets. We use a ResNet-50 model pre- 
trained on ImageNet via four different training strategies. The first row corresponds to nor- 
mal training without data-pair interpolations. RN+M, RN+CM, RN+PM and RN+GPM 
refers to finetuning a ResNet-50 model with Mixup, CutMix, PatchMix and Guided Patch- 
Mix respectively. 

 
ε Base Mixup Cutmix Random 

PatchMix 
Guided 
PatchMix 

0.1 15.96 28.42 29.26 30.62 31.88 
0.2 9.12 20.45 19.92 21.07 21.68 
0.3 5.87 15.31 13.65 14.29 14.57 

Table 5: Results on the FGSM white box attach on ImageNet: we report the top-1 accu- 
racy a ResNet-50 model trained with ImageNet using all techniques. The ε indicates the 
perturbation level of the adversarial images generated. 

 
5.5 Ablation Studies 
Given the flexible capabilities our grid-mask design allows, we conduct a thorough set of 
experiments to determine whether the patch-level loss is helpful or not, and to what extent 
the number of patches impact the overall performance. To examine all of these possibilities, 
we run a set of experiments on CIFAR-10 using ResNet-32 as the base network. For these 
experiments we keep the same hyperparameter selections we use to report our results in 
section 5. We vary the size of P by a factor of 2, which affects the Grid Mask and the 
patch-level loss LP. We also investigate the effect of activating or deactivating the full image 
supervision LO on each possible combination. 
We report the results of these experiments in Table 6. Our proposed patch-level loss 

gives the additional supervision that is necessary for the network to stabilize and converge, 
mitigating the noise from the data interpolations. In addition, this patch-level supervision 
enables a form of visual representation learning, and the combination of it along with the 
image-level supervision yields the best performance. Furthermore, when evaluating the value 
of P, we found that a grid of 4    4 yield the best performance. We note that incrementing 
the value of P hurts the performance dramatically. This may occur due to the significant 
level of freedom added by a 8 8 grid-mask, where the patch-level supervision is not able to 
mitigate the noise introduced. We also experimented on adding a hyperparameter to balance 
both losses but found out that giving the same weight performs better. 

 
5.6 Fitness Function Analysis. 
We also evaluate how the fitness function impacts the performance of the combinations dis- 
covered by our genetic algorithm. After a network is trained using our Random PatchMix 
approach, it can be used as a function approximation of the underlying distribution generated 
by the image-pair interpolation along with their corresponding new labels. Thus, we can use 
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Grid Image-level 
loss LO 

Patch-level 
loss LP 

Top-1 Acc 

2 × 2 
2 × 2 
2 × 2 

!"
!"
  

!"
  
!"

93.78 
93.30 
92.80 

4 × 4 
4 × 4 
4 × 4 

!"
!"
  

!"
  
!"

94.10 
92.73 
92.02 

8 × 8 
8 × 8 
8 × 8 

!"
!"
  

!"
  
!"

92.50 
91.94 
92.02 

 

Table 6: Ablation analysis: Top-1 accuracy on CIFAR-10 when varying the grid size, and 
the effect of using image and patch level supervision using ResNet-32 as the base network. 

 
this network to assess the patch mask Mi, j configurations and class activations (ci, c j), by 
computing the LP loss over these masks and image pairs. We show our results in Table 7. 
We evaluate the how the patch-level accuracy of the validation set affects our genetic search. 
First, we show the result of using the configurations that yield the highest patch-level scores. 
Then we show the results of using the configurations that yield the lowest patch-level scores. 
We observe that using the configurations with the lowest patch-level accuracy yield better 
results. This means that the genetic algorithm is able to find challenging configurations for 
the model trained with random masks. Thus, our guided version allows the model to benefit 
from this information, leading to better results. 
 

Fitness 
Function 

Allow Same Class Pairs? 
Yes No 

max LP 94.80 95.42 
min LP 95.97 96.32 

Table 7: Top-1 accuracy on CIFAR-10 when applying different fitness functions and the 
effect of using the same class combinations. We use PreAct-ResNet-164 as the backbone 
network architecture. 
 
6 Conclusion 
Our paper introduces PatchMix a novel interpolation method for augmenting the available 
number of samples during training by combining pairs of samples. Unlike previous meth- 
ods that rely on patch-level interpolations our method allows for a more significant degree 
of flexibility regarding possible combinations by using a grid-like pattern. Moreover, an 
evolutionary search method for optimally selecting combinations that lead to increased ex- 
ploration of critical areas of the input space was devised. We also found a fitness criteria 
that requires no model training by leveraging a pretrained PatchMix model that is trained 
by selecting random patches. We posit that PatchMix can serve as a regularizer that can 
complement other single sample data augmentation methods. 
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