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Abstract—Wireless sensor networks are widely expected to
play a key role in the emerging Internet of Things (IoT)-based
smart cities in which a large number of resource-constrained
sensor nodes collect data about our physical environment to
assist intelligent decision making. Since blindly forwarding all the
sensed data to the base station may quickly deplete sensor nodes’
limited energy, secure data aggregation has been considered as
a key functionality in wireless sensor networks that allow the
base station to acquire important statistics about the sensed
data. While many secure data aggregation schemes have been
proposed in the literature, most of them target simple statistics
such as Sum, Count, Min/Max, and Median. In contrast, a
quantile summary allows a base station to extract the ¢-quantile
for any 0 < ¢ < 1 of all the sensor readings in the network
and can provide a more accurate characterization of the data
distribution. How to realize secure quantile summary aggregation
in wireless sensor networks remains an open challenge. In this
paper, we fill this void by first evaluating the impact of a range
of attacks on quantile summary aggregation using simulation
and then introduce a novel secure quantile summary aggregation
protocol for wireless sensor networks. Detailed simulation studies
confirm the efficacy and efficiency of the proposed protocol.

I. INTRODUCTION

Wireless sensor networks are widely expected to play a key
role in emerging Internet of Things (IoT)-based smart cities in
which a large number of sensor nodes continuously sense the
physical environment and generate data to assist intelligent
decision making [1], [2]. Since sensor nodes are typical-
ly resource-constrained with limited computation capability,
memory, and energy, blindly forwarding all the sensed data
to a base station may quickly deplete sensor nodes’ limited
energy. Data aggregation has been widely considered as a
key functionality [3] for reducing data redundancy, improving
energy efficiency, and prolonging the lifetime of wireless
sensor networks, in which sensed data are aggregated enroute
by intermediate sensor nodes, which allow a base station to
acquire important statistics about the sensed data.

Secure data aggregation is necessary to safeguard the aggre-
gation process from malicious attacks. Resource-constrained
sensor nodes in unattended environments are subject to phys-
ical capture and may be compromised by attackers. Once
compromised, a sensor node may carry out a wide range
of attacks under the attacker’s instruction. For example, a
compromised node may change the intermediate aggregation
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results that can significantly deviate the final aggregation
result at the base station. As another example, a compromised
node may drop the data from its children nodes to prevent
them from reaching the base station. As a result, secure data
aggregation has been investigated extensively over the past to
allow the base station to acquire statistics about the sensed
data in the presence of attacks [4]-[14]. Unfortunately, all
existing solutions target simple statistics such as Sum, Count,
Min/Max, and Median.

Quantile summary aggregation allows a base station to learn
a more accurate distribution of the sensed data than simple
statistics functions. Specifically, a quantile summary allows
one to extract the ¢-quantile for any 0 < ¢ < 1 of all the
sensor readings in the network and thus can provide a more
accurate characterization of the data distribution. Given a set
of n distinct data values with a total order, the ¢-quantile is
the value x with rank r(x) = [¢n] in the set, where r(x) is
the number of values in the set smaller than x. Since a quantile
summary that can provide the exact quantiles must contain the
all n values in the worst case, an e-approximate ¢-quantile is a
value with rank between (¢—e)n and (¢+e¢)n is usually sought
in the literature. While several quantile summary aggregation
protocols [15]-[18] have been proposed in the past, none of
them were designed to withstand potential attacks. How to
realize secure quantile summary aggregation in wireless sensor
networks thus remains an open challenge.

In this paper, we fill this void by introducing SecQSA,
a novel secure quantile summary aggregation protocol for
wireless sensor networks. SecQSA is built upon the non-
secure quantile summary aggregation protocol proposed by
Huang et al. [17], which we choose because it can guarantee a
constant individual node communication cost independent of
network size even for the nodes close to the base station with
many decedents. We observe that the key for securing quantile
summary aggregation is to ensure the integrity of sample
readings of the quantile summary as well as the correctness of
the operation that merges multiple local quantile summaries
into one. SecQSA achieves these two goals using efficient
cryptographic primitives. Our contributions in this paper can
be summarized as follows.

o To the best of our knowledge, we are the first to study

secure quantile summary aggregation in wireless sensor



networks.

o We introduce SecQSA, a novel secure quantile summary
aggregation protocol based on efficient cryptographic
primitives.

o We confirm the efficacy and efficiency of the proposed
protocol via detailed simulation studies.

The rest of this paper is structured as follows. Section II
discusses the related work. Section III introduces the network
and adversary models. Section IV evaluates the impact of
different attacks on quantile summary aggregation. Section V
introduces the design of SecQSA. Section VI reports the
simulation results. Section VII finally concludes this paper.

II. RELATED WORK

Secure data aggregation in wireless sensor networks have
been studied extensively in the past. Most of the existing solu-
tions target simple aggregation functions such as Sum, Count,
Average, and Min/Max. The resilience of different aggregation
functions under a single aggregator model was analyzed in [8].
Przydatek et al. [6] introduced a secure aggregation scheme
that can support Median, Min/Max, and Average aggregation.
In [4], Chan e al. presented a secure hierarchical additive
aggregation scheme, which was subsequently improved by
Frikken et al. with reduced communication cost [10]. A
commitment-based hop-by-hop aggregation scheme was intro-
duced in [9] which allows the base station to verify abnormal
aggregate via hypothesis testing. A secure hierarchical data
aggregation scheme based on synopsis diffusion was proposed
in [7], [13], which can support additive aggregation functions
such as Count and Sum against falsified sub-aggregate attacks.
In [11], Papadopoulos et al. introduced a secure aggregation
scheme for exact Sum aggregation. Chen and Yu presented a
scheme [19] that realizes secure approximate Sum aggregation
via secure Min aggregation, which was later shown to be
vulnerable to a special enumeration attack [14].

There are very limited efforts in developing secure aggre-
gation schemes to support Median and Percentile aggregation.
The techniques presented in [4], [6] can be used for verifying
the correctness of an alleged ¢-percentile via secure Count
aggregation by counting the number of readings that are
smaller than the alleged ¢-percentile. Roy et al. [5] extended
the secure Count aggregation scheme [4] to realize secure Me-
dian aggregation by recursively constructing an increasingly
accurate histogram. However, these solutions require the base
station to know the percentile of interest, i.e., ¢, in advance
and incurs a communication cost proportional to the number
of percentile queries.

Quantile summary [20] aggregation in wireless sensor net-
works has been studied. In [15], a quantile digest summa-
ry structure was introduced to realize quantile aggregation.
Greenwald et al. [16] introduced a distributed algorithm to
compute an e-approximate quantile summary of sensor data,
which was later improved by Huang et al. [17] to reduce
the maximum per node communication cost. More recently,
several efficient gossip algorithms were introduced in [18] to
compute exact and approximate quantiles in a fully distributed

fashion. Unfortunately, none of the above quantile aggregation
schemes have any security provisions. None of these works
consider possible attacks, and they cannot be applied to our
problem.

III. NETWORK AND ADVERSARY MODELS

In this section, we introduce our system and adversary
models.

A. Network Model

We consider a multi-hop wireless sensor network consisting
of a base station and s sensor nodes. Every sensor node senses
the environment and periodically generates readings at fixed
frequency. We assume that every sensor node ¢ has a set of
n readings denoted by D; and every reading is in the range
R ={1,...,Umax} it should be float numbers. It follows that
the total number of readings in the network is sn. As in [17],
we assume that all the readings in the sensor network are
distinct. While this assumption may seem restrictive, it can
be easily accommodated by imposing a total order among the
readings by taking node ID and the time at which a reading
is generated to break the tie.

The base station aims to obtain a quantile summary of all
the readings generated in the network over a certain period.
A quantitle summary is a subset of readings along with
their (estimated) global ranks which can support value-to-rank
queries. Specifically, for any value v € R, the value-to-rank
query returns an estimated global rank 7(v). The ¢-quantile
of all the readings |J;_, D; is then the value x with rank
r(z) = |¢sn] for any 0 < ¢ < 1.

We assume that the aggregation is performed over an
aggregation tree, which is the directed tree rooted at the base
station formed by the unique path from every sensor node to
the base station. During network initialization, the base station
learns the topologies of the network as well as the aggregation
tree. We also assume that each sensor node ¢ shares a secret
key K; with the base station. We also assume that any two
nodes 4 and j can establish a shared key K ; using existing
techniques such as [21], [22].

B. Adversary Model

The attacker aims to mislead the base station into accepting
a modified distribution of an aggregated summary without
being detected in order to significantly shift any quantile query
result from its original position. We assume that the base
station is equipped with adequate computation and energy
resources and is safeguarded from any malicious attacks. In
contrast, sensor nodes are constrained in computation and
communication resources which make them susceptible to
compromising. Once a sensor node is compromised, all the
information stored at the sensor node such as cryptographic
keys is revealed to the attacker. The attacker can then instruct
compromised sensor nodes to carry out a wide range of
attacks.

Since the aggregated summary consists of a subset sampled
readings and their ranks, we consider the following two attacks
in this paper.



o A compromised node may forge its own readings, their
ranks, or both.

o A compromised node may deviate from protocol oper-
ations, which includes dropping other nodes’ readings,
replacing other nodes’ readings with its own, modifying
other nodes’ readings or their ranks.

IV. ATTACKS ON QUANTILE SUMMARY AGGREGATION

In this section, we first briefly review the sampling based
quantile summary protocol proposed by Huang er. al. [17],
which serves as the basis for SecQSA. We then evaluate the
impact of a range of attacks on the Huang’s protocol via
simulation studies.

A. Review of Huang’s Protocol [17]

Huang’s protocol [17] is designed based on random sam-
pling. Let Gy, . .., G}, be a family of sets of data values, where
GiNG; = 0 forall 1 < i < j < k. If we independently
sample each value in G; with probability ¢ to obtain a subset
S; C G, foralli =1,...,k. Denote by r(v, G;) its local rank
within the set G; for each sampled value v € S;. Given any
value x, we can estimate its local rank 7(x, G;) within G; for
all 1 <4 < k. Let p(x|S;) be the predecessor of value = in
S;. It has been shown that

#(z,Gy) = {T(p(xsi)vGi) +1/p, if p(x|S;) exists;

1
0 otherwise, M)
is an unbiased estimator of r(z, G;). The global rank of value
2 within G = Ule G can then be estimated as

k
iz) =Y #x,Gi) .
i=1

Under Huang’s protocol [17], every node ¢ first samples
each reading of its own independently to generate a local
quantile summary. All the nodes then participate in quantile
summary aggregations in which local quantile summaries are
forwarded and merged with others into one along the way
before reaching the base station. A key advantage of Huang’s
scheme [17] over prior solutions [15], [16] is that it can
guarantee an individual node communication cost of O(1/e)
even for those nodes close to the base station and have many
decedents by carefully designed merging conditions. We refer
readers to [17] for details of Huang’s scheme.

B. Impact of Attacks

We now evaluate the impact of several attacks on Huang’s
protocol [17], which will guide the design of SecQSA.

Several possible attacks can be launched by a compromised
sensor node. First, a compromised sensor node can arbitrarily
forge its own readings and their local ranks, which is fun-
damentally difficult to detect without any special assumption.
Moreover, since a quantile summary consists of a subset of
sample values with their local ranks, a compromised sensor
node can also modify the readings of its decedent nodes
and corresponding ranks. In addition, Huang’s protocol [17]
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Fig. 1. Comparison of ARE and MRE under different attacks.

requires that every reading is sampled independently during
merging operations, but a compromised node may not follow
by discarding all the readings from one or more of its decedent
nodes. Due to symmetry, we only consider the case in which
the attacker intends to inflate the estimated rank of any value
and consider the following three attacks.

o Attack I: Modity its own sampled values to the minimum
and their ranks to the maximum.

e Attack 2: Modify children nodes’ sampled values to the
minimum and their ranks to the maximum.

o Attack 3: Modify its own sampled values to the minimum
and their ranks to the maximum and drop all the children
nodes’ value from the quantile summary.

We use the following two metrics to evaluate the impact of
the above three attacks on the accuracy of the final quantile
summary at the base station. Let r(v) and 7(v) be the true
rank and estimated rank of a value v, respectively, for all v €
{1,...,Umax}- The normalized average rank error (ARE) and
maximum rank error (MRE) are defined as

2ot IP(0) = r(v)]

2
Umax

ARE =

) 2

and .
MAXy= {1, vy} ([7(V) = 7(V)])

vmax

MRE =

3)

We simulate a wireless sensor network consisting of s = 62
sensor nodes which form an aggregation tree of height 6 where
each sensor node has two children nodes. We assume that each
node has n = 1000 readings. Every point in the following
figures is the average of 100 runs each with a distinct random
seed for the sampling process.

Figs. 1(a) and 1(b) compare the ARE and MRE under the
three types of attack as well as in the absence of attack
with the sampling probability varying from 0.01 to 0.I. As
we can see, both ARE and MRE decreases as the sampling
probability increases in the absence of attack. This is expected
as the higher the sampling probability, the more readings are
included in the final quantile summary received by the base
station, the more accurate the value-to-rank query results, the
lower ARE and MRE, and vice versa. In addition, the ARE
and MRE under Attack 1 are very close to those under no
attack. The reason is that a single compromised node forging
its own readings and local ranks has very limited impact on the
accuracy of final quantile summary. In contrast, the ARE and



MRE under Attack 2 and Attack 3 are significantly higher
than those under Attack 1. In particular, we can see from
Fig. 1(a) that the AREs under Attack 2 and Attack 3 are 0.24
and 0.42, respectively. Similarly, the MREs under Attack 2 and
Attack 3 are both around 0.5. These results clearly demonstrate
the severe impact of Attacks 2 and 3 on the final quantile
summary.

V. SECQSA: SECURE QUANTILE SUMMARY
AGGREGATION

In this section, we first give an overview of SecQSA and
then detail its design.

A. Overview

We find that the key to secure quantile summary aggregation
is to ensure the integrity of the readings and their ranks
during merging operations. Specifically, SecQSA is designed
to achieve the following goals.

1) Integrity of sample readings: every reading in the final
quantile summary must be generated by a sensor node
and has not been altered during the aggregation process.

2) Integrity of local ranks: as readings being aggregated
into different quantile summaries through the process,
their local ranks within quantile summaries must be
correctly computed according to [17].

3) Compliance of uniform sampling: when multiple quan-
tile summaries are merged, every reading should be
sampled independently according to [17].

We do not intend to defend against a compromised node
forging its own readings and their local ranks, which has
very limited impact on the aggregation results as shown in
Section IV-B.

SecQSA is designed to meet the above goals using efficient
cryptographic primitives. Under SecQSA, sensor nodes send,
receive, and merge local quantile summaries in a secure
fashion. Specifically, a quantile summary () is associated with
a ground set G and represented by

Q= ({ID,0,q),

where ID is the node that generates the quantile summary, O
is a set of sample objects, and ¢ is the sampling probability.
Every sample object o € O corresponds to one reading drawn
from the ground set G and has the form

0= <U7 Oinit; Ucurrent>~

where v is the reading, and o,y and oy rent carry the necessary
verification information about v in the quantile summary. More
specifically, the first component o+ carries the initial rank of
v and has the form

Oinit = (IDj,r(v, D;), Hg, (v||r(v, D;))),

where ID; is the ID of the node that generates reading v,
r(v, D;) is the initial local rank of v in node i’s set D;, K;
is the secret key node i shared with the base station, and

H. () denotes a message authentication code keyed with the
subscript. The second component o rent has the form

Ocurrent = <IDj7 T('Ua G)>,

where ID; is the ID of the node which merges value v into
the current quantile summary @, and 7 (v, G) is the local rank
of v in the current ground set G.

As a reading v moves through the aggregation process,
the first component i, remains unchanged and will allow
the base station to verify the integrity of the reading and
compliance of random sampling of any intermediate node.
In contrast, the second component ocyrent Will be updated
whenever reading v is merged into a new quantile summary.

In what follows, we detail how quantitle summaries are
generated by individual sensor nodes and merged through the
aggregation process.

B. Initialization

To initiate a quantile summary aggregation process, the base
station broadcasts a command with a random seed d using a
proper broadcast authentication protocol such as p-Telsa [23].

On receiving the command, each sensor node ¢ first gen-
erates a local quantile summary (); with respect to its set of
readings D;. Let H(-) be a cryptographic hash function that
maps any input to an integer in the range {0,...,A—1}. Node
1 samples every reading v € D; with probability ¢i,i, where
Ginit 1S @ system parameter that determines the accuracy of the
quantile summary and communication overhead. Specifically,
every reading v is selected to be included in the local quantile
summary @; if

H(IDi||r(v, Di)[|d) < ginieA - €

It is easy to see that each reading is sampled independently
with probability gi,i. We subsequently denote by S; C D, the
subset of readings included in @;.

For each selected sample reading v € S;, node ¢ constructs
a sample object as 0 = (v, Tinit, Ocurrent)» Where

Oinit = Ocurrent = <IDia ’I“(’U, Di)7 HKi (UH’I“(’U, Dl))> :

C. Secure Quantile Summary Aggregation

All the nodes then participate in the quantile summary
aggregation based on the aggregation tree. Specifically, every
leaf node 7 of the aggregation tree sends its local quantitle
summary (); to its parent node, say j, as

Qi = (ID;, O;, Ginir, Hr, ; (info)) ,

where O; = {o|v € S;} is the set of sample objects and info =
ID;||O;||gini is the concatenation of all the prior information.

On receiving a local quantile summary @; from one of its
children nodes, node j first verifies its integrity by checking
Hk, ,(info) using the shared key Kj ;. If succeed, node j
checks if local quantile summary (; exhibits any inconsisten-
cy. Specifically, node j checks if the reading in every sample
object is in the range R. Without loss of generality, suppose
that O; = (o01,...,0,), where 0, = (V;, Cinit, Ocurrent) and



vy < +-+ < v;. Node j checks if r(vy, D;) < « -+ < r(vg, D;).
If so, node j considers quantile summary @; valid.

Node j then processes (); in one of the two possible ways.
In the first case, node j directly forwards @); to its parent node,
say k, by sending

j =k <IDi7Oi7q7HKj,k(info)> )

which allows node k& to verify its integrity. In the second case,
node j merges (Q; with one or more other local quantile sum-
maries to produce a single quantile summary if the conditions
specified in [17] are met. In what follows, we use an example
to illustrate how multiple local quantile summaries are merged
at an intermediate node.

Suppose that node j intends to merge [ local quantitle
summaries (1, ...,Q; into one local quantile summary Q.
Each local quantitle summary

QZL’ = <IDanxaqgc> 3

is sampled from a ground set GG, with sampling probability
q. independently for all x = 1,...,[. The resulting quantile
summary @, = (ID;,0,,q) corresponds to the ground
set G = Uizl G, where every reading in G is sampled
independently with probability q.

The merging operation involves four steps. First, node j
resamples every reading in Q1,...,(; to obtain the set of
readings to be included in (). Specifically, for each quantile
summary Q,, 1 < x <[, node j samples every sample unit
o € O, independently with probability ¢/q,. In particular,
each sample object o € O, is selected if

A
H(ID,||r(v, Gy)||d) < ‘; 5)

It follows that each reading v in the ground set GG, is selected
to be in ) with probability

Pr(v e Q) =Pr(o € Qv € Q.)Pr(v € Q)
_4q
= —Qz
qx
= q .

Second, node j computes the local rank of every reading
in the quantile summary Q. Let O) C O, be the subset
of sample objects in (), selected to be included in @ for
all 1 < zx < [. Consider a sample unit o € Og- as
an example where 0 = (v, 0init, Ocurrent) and Ocyrrent =
(ID,,r(v,Gy), Hk_(v||r(v,Gy))). It follows that v is ranked
r(v,G,) within the ground set G. Its local rank within the
new ground set G = Ul _1 G can then be estimated as

where

r(v,Gy) = {T(p(vOy), Gy) +1/qy,

0 otherwise,

if p(v|O,) exists;

and p(v|O,) is the predecessor of value v in O,. It has been
shown that r(v, G) is an unbiased estimator of v’s local rank
within G [17].

Third, node j updates each sample object in (). Specifically,
for each 0 = (v, Ginit, Ocurrent) Selected, node j updates ocyrrent
to

Ocurrent = <IDjaT(va G)> .

Next, node j, its children nodes, and its parent node k
execute a protocol whereby node j’s children nodes verify and
endorse the new local rank of each sample object in G. Among
the [ local quantile summaries )1, . . ., (;, there is at most one
local quantile summary generated by node j itself. Without
loss of generality, suppose that local quantile summary @); is
generated by node j itself and that each quantile summary
@ is received from children node y for all y = 1,...,[ and
y#J.

Node j first broadcasts the quantitle summary as

j— (@ Hk, ,(Q))

where Q = (ID;,0,q) and O is the set of sample objects.
This message will be received by both node j’s parent node
k and all the children nodes as they are all in node j’s
transmission range. On receiving the message, node k verifies
its integrity using the shared key Kj .

Node j then seeks its children nodes’ endorsement for
the new quantile summary (). Since every children node y
knows (), it sent earlier and also overheard the quantile
summary @, it knows the subset of sample object O, C O,
being included in Q. Each node y first verifies whether node
j faithfully perform random sampling for O, according to
Eq. (5). Moreover, node y also checks whether node j correctly
computes the new local rank r(v,G) of each sample object
o € O. Specifically, for each sample object 0 € O where
0 = (U, Ginit, Ocurrent ), NOde j broadcasts the following message

T(U7 Gl)7 q,

Without loss of generality, consider sample object 0 € O; C
O, and @, was sent by child node y. Node y first verifies
whether

j — k1 U77"(717G1)7Q1»7"(U7G2)»(]27 ey

z=1,z7y
If so, node y sends its endorsement to node j as
T _>J : HKy’k(Q) )
where K, ;. is the shared key between node y and j’s parent
node k. Similarly, every other children node z (z = 1,...,1,

z # y, and z # j) which sent @, finds p(v|O,), i
predecessor of v in O,, and verifies whether

r(v,Gz) = r(p(v]02),Gz) + 1/q- .

If so, node z sends its endorsement to node j as

(@)

e., the

y—J:Hg



On receiving the endorsement from each of its children,
node j sends an aggregated endorsement of () to its parent
node k

l
i—k: P Hg,,(Q).

y=1,y#j

Since the parent node j has previously verified the integrity
of Q using Hp,, (Q), it further verifies the aggregated en-
dorseme.nt @;zlﬁy# Hg, ,(Q) using the keys sha.red With
each children node y (y = 1,...,0). If all the verifications

succeed, node k accepts (Q as a valid quantile summary.

D. Final Verification at the Base Station

At the end of the aggregation process, the base station
receives one or multiple quantile summaries from its children
nodes. For every quantile summary it receives, the base station
verifies the quantitile summary in the following steps.

First, for each sample object 0 = (v, Oinit, Ocurrent) Where
Tinit = (ID;, (v, D;), Hg, (v||r(v, D;))), the base station first
verifies v’s integrity by recomputing H, (v||r(v, D;)) using
the shared key K.

Second, the base station verifies if every node that per-
formed merging operations have faithfully followed random
sampling. Since the base station knows the number of read-
ings each node has and the aggregation tree structure and
the random sampling performed at each node is based on
each reading’s initial rank, the ID of the node that performs
sampling, and the seed d, the base station can emulate the
entire aggregation process to predict (1) the subset of readings
sampled in each initial local quantile summary, (2) the number
of quantile summaries received at each intermediate node
and their corresponding sizes, (3) which nodes should have
performed merging operations, and (4) the subset of read-
ings that should have been selected in each merged quantile
summary. Specifically, for each node i and every possible
local rank 1,...,n, the base station verifies if (1) for every
initial rank that is supposed to survive the entire aggregation
process, the corresponding reading is indeed included in the
final quantile summary, and (2) if there is any reading in the
final quantile summary received should have been dropped by
any intermediate node.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of SecQSA via
simulation.

A. Simulation Setting

We again consider a wireless sensor network consisting of
5 = 62 sensor nodes which form an aggregation tree of height
6 where each sensor node has two children nodes. Every point
in the following graphs is the average of 100 runs, each with
a distinct random seed for the sampling process. We adopt the
SHA-256 for the message authentication code which results
in a 32 bytes code. Also, we assume that each reading is of
16 bits, and each local rank is of 32 bits.

Since there is no prior solution for secure quantile summary
aggregation, we compare the proposed protocol with two
baseline schemes.

o Baseline I: every node independently samples its readings
with probability ¢ and then submits the sampled readings
along with their associated ranks and a MAC to the base
station. The base station verifies the integrity of each
reading and answers value-to-rank queries according to
Eq. (D).

e Baseline 2: every node independently samples its readings
with probability ¢ and then submits the sampled readings
along with a MAC to the base station with no ranking
information. On receiving all the sample readings, the
base station broadcasts all the readings to all the sensor
nodes. Finally, all the nodes participate in multiple paral-
lel secure SUM aggregations according to [11] to allow
the base station to obtain the global rank of each reading,
whereby to answer value-to-rank queries according to
Eq. (D).

Besides the ARE and MRE, we also use total communication
overhead and maximum per node communication overhead
to evaluate the performance of proposed scheme and the two
baseline schemes.

B. Simulation Results

Figs. 2(a) to 2(d) compare the ARE, MRE, total commu-
nication overhead, and maximum per node communication
overhead of SecQSA and the two baseline solutions, respec-
tively, with sampling probability varying from 0.01 to O.1.
We can see from Fig. 2(a) and 2(b) that both ARE and
MRE decrease as the sampling probability ¢ increases under
all three schemes. This is expected because the higher the
sampling probability, the more readings we sample, the more
accurate the rank estimation, and vice versa. Moreover, we
can see from Fig. 2(a) that the AREs of all three schemes are
close to zero if the sampling probability exceeds 0.02. Similar
trend can be observed for the MRE in Fig. 2(b) for the same
reason. We can see that the accuracy of SecQSA is comparable
to the two baseline schemes. On the other hand, Fig. 2(c)
shows the total communication overhead under SecQSA and
the other two baseline schemes. Generally speaking, the total
communication overhead increases as the sampling probability
increases, which is expected. Moreover, we can see that
Baseline 2 has the largest communication overhead among the
three because multiple parallel secure SUM aggregations need
to be performed to obtain the global rank for every reading
in the quantile summary. In contrast, neither Baseline 1 nor
SecQSA involve such operations. Moreover, SecQSA incurs
less total communication overhead than Baseline 1 because
of the merging operations in SecQSA. Finally, Fig. 2(d) plots
the maximum per node communication overhead for each of
the three schemes. We can see that the maximum per node
overhead increases under all three schemes as the sampling
probability increases, which is anticipated. Most importantly,
SecQSA beats both Baseline 1 and Baseline 2 with significant
margins because of its merging operations.
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Figs. 3(a) to 3(d) compare the ARE, MRE, total com-
munication overhead, and maximum per node communication
overhead under SecQSA, Baseline 1 and Baseline 2 with the
number of readings per node varying from 400 to 2000. We
can see from Figs. 3(a) and 3(b) that both ARE and MRE
decrease as the number of readings per node increases under
all three schemes. The reason is that the more readings each
node has, the more readings are included in the final quantile
summary, and the higher accuracy of the final quantile summa-
ry. Also, we can see from Fig. 3(a) that the ARE is almost the
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Comparison of SecQSA and the baselines with the number of children per node varying from 2 to 4.

same for SecQSA and the two baselines for the similar reason.
Similar trend can be observed for MRE in Fig. 3(b), which
is of no surprise. We can also see from Figs. 3(c) and 3(d)
that both the total communication overhead and maximum per
node overhead produced by the three schemes increase as the
number of reading per node increases. In addition, Fig. 3(c)
shows that Baseline 2 incurs the highest total communication
overhead among the three and SecQSA incurs the lowest
total communication overhead due to its merging operations.
In contrast, Fig. 3(d) shows that SecQSA incurs the lowest



maximum per node communication overhead among the three
and outperforms the other two by large margins.

Figs. 4(a) to 4(d) compare the ARE, MRE, total com-
munication overhead, and maximum per node communication
overhead under SecQSA, Baseline 1, and Baseline 2 with the
hight of the aggregation tree varying from 6 to 10. As we can
see from Figs. 4(a) and 4(b), both ARE and MRE decrease
as the hight of the aggregation tree increases under all three
schemes. This is expected as the higher the aggregation tree,
the more sensor nodes, the more the sampled readings, the
more accurate of the final quantile summary, and vice versa.
We can also see from Fig. 4(a) that the ARE under SecQSA
is similar to that of the other two baselines. Moreover, the
MREs produced by the three schemes in Fig. 4(b) are pretty
close as expected. Moreover, we can see from Figs. 4(c) and
4(d) that the total communication overhead and maximum per
node overhead produced by the three schemes both increase
as the height of the aggregation tree increases. The reason is
that, the more levels of the aggregation tree, the more sam-
pled readings to be collected, and the higher communication
overhead. Once again, we can see that SecQSA incurs the
lowest communication overhead among the three because of
its merging operations.

Figs. 5(a) to 5(d) show the ARE, MRE, total commu-
nication overhead, and maximum per node communication
overhead produced by SecQSA, Baseline 1 and Baseline 2
with the number of children per node varying from 2 to 4. As
we can see, Figs. 5(a) and 5(b) show that both ARE and MRE
decrease as the number of children increases in the network
tree for all three schemes. This is anticipated as the more
children nodes each non-leaf node has, the more sensor nodes
in the network, the more readings collected in the final quantile
summary, and the more accurate it is. Moreover, we can see
from Fig. 5(a) that the ARE for SecQSA and each of the
two baselines are almost matching and close to zero as we
discussed before. Fig. 5(b) plots the MREs produced by the
three schemes which appears to be also quite matching as
expected. In addition, Figs. 5(c) and 5(d) show that the total
communication overhead and maximum per node overhead
produced by the three schemes both increase as the number
of children per node increases. Finally, Figs. 5(c) and 5(d) once
again confirm that SecQSA incurs the lowest communication
overhead among the three because of its merging operations.

VII. CONCLUSION

In this paper, we have initiated the study of secure quantile
summary aggregation in wireless sensor networks. After ex-
amining the impact of different attacks on quantile summary
aggregation via simulation, we introduced the design and
evaluation of SecQSA, the first secure quantile summary
aggregation protocol for wireless sensor networks. Built upon
efficient cryptographic primitives, SecQSA can ensure the
integrity of sampled readings and their ranks in the final
quantile summary. Detailed simulation results have confirmed
significant advantages of SecQSA over alternative solutions.
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