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Abstract—Wireless sensor networks are widely expected to
play a key role in the emerging Internet of Things (IoT)-based
smart cities in which a large number of resource-constrained
sensor nodes collect data about our physical environment to
assist intelligent decision making. Since blindly forwarding all the
sensed data to the base station may quickly deplete sensor nodes’
limited energy, secure data aggregation has been considered as
a key functionality in wireless sensor networks that allow the
base station to acquire important statistics about the sensed
data. While many secure data aggregation schemes have been
proposed in the literature, most of them target simple statistics
such as Sum, Count, Min/Max, and Median. In contrast, a
quantile summary allows a base station to extract the φ-quantile
for any 0 < φ < 1 of all the sensor readings in the network
and can provide a more accurate characterization of the data
distribution. How to realize secure quantile summary aggregation
in wireless sensor networks remains an open challenge. In this
paper, we fill this void by first evaluating the impact of a range
of attacks on quantile summary aggregation using simulation
and then introduce a novel secure quantile summary aggregation
protocol for wireless sensor networks. Detailed simulation studies
confirm the efficacy and efficiency of the proposed protocol.

I. INTRODUCTION

Wireless sensor networks are widely expected to play a key

role in emerging Internet of Things (IoT)-based smart cities in

which a large number of sensor nodes continuously sense the

physical environment and generate data to assist intelligent

decision making [1], [2]. Since sensor nodes are typical-

ly resource-constrained with limited computation capability,

memory, and energy, blindly forwarding all the sensed data

to a base station may quickly deplete sensor nodes’ limited

energy. Data aggregation has been widely considered as a

key functionality [3] for reducing data redundancy, improving

energy efficiency, and prolonging the lifetime of wireless

sensor networks, in which sensed data are aggregated enroute

by intermediate sensor nodes, which allow a base station to

acquire important statistics about the sensed data.

Secure data aggregation is necessary to safeguard the aggre-

gation process from malicious attacks. Resource-constrained

sensor nodes in unattended environments are subject to phys-

ical capture and may be compromised by attackers. Once

compromised, a sensor node may carry out a wide range

of attacks under the attacker’s instruction. For example, a

compromised node may change the intermediate aggregation

results that can significantly deviate the final aggregation

result at the base station. As another example, a compromised

node may drop the data from its children nodes to prevent

them from reaching the base station. As a result, secure data

aggregation has been investigated extensively over the past to

allow the base station to acquire statistics about the sensed

data in the presence of attacks [4]–[14]. Unfortunately, all

existing solutions target simple statistics such as Sum, Count,

Min/Max, and Median.
Quantile summary aggregation allows a base station to learn

a more accurate distribution of the sensed data than simple

statistics functions. Specifically, a quantile summary allows

one to extract the φ-quantile for any 0 < φ < 1 of all the

sensor readings in the network and thus can provide a more

accurate characterization of the data distribution. Given a set

of n distinct data values with a total order, the φ-quantile is

the value x with rank r(x) = �φn� in the set, where r(x) is

the number of values in the set smaller than x. Since a quantile

summary that can provide the exact quantiles must contain the

all n values in the worst case, an ε-approximate φ-quantile is a

value with rank between (φ−ε)n and (φ+ε)n is usually sought

in the literature. While several quantile summary aggregation

protocols [15]–[18] have been proposed in the past, none of

them were designed to withstand potential attacks. How to

realize secure quantile summary aggregation in wireless sensor

networks thus remains an open challenge.
In this paper, we fill this void by introducing SecQSA,

a novel secure quantile summary aggregation protocol for

wireless sensor networks. SecQSA is built upon the non-

secure quantile summary aggregation protocol proposed by

Huang et al. [17], which we choose because it can guarantee a

constant individual node communication cost independent of

network size even for the nodes close to the base station with

many decedents. We observe that the key for securing quantile

summary aggregation is to ensure the integrity of sample

readings of the quantile summary as well as the correctness of

the operation that merges multiple local quantile summaries

into one. SecQSA achieves these two goals using efficient

cryptographic primitives. Our contributions in this paper can

be summarized as follows.

• To the best of our knowledge, we are the first to study

secure quantile summary aggregation in wireless sensor



networks.

• We introduce SecQSA, a novel secure quantile summary

aggregation protocol based on efficient cryptographic

primitives.

• We confirm the efficacy and efficiency of the proposed

protocol via detailed simulation studies.

The rest of this paper is structured as follows. Section II

discusses the related work. Section III introduces the network

and adversary models. Section IV evaluates the impact of

different attacks on quantile summary aggregation. Section V

introduces the design of SecQSA. Section VI reports the

simulation results. Section VII finally concludes this paper.

II. RELATED WORK

Secure data aggregation in wireless sensor networks have

been studied extensively in the past. Most of the existing solu-

tions target simple aggregation functions such as Sum, Count,

Average, and Min/Max. The resilience of different aggregation

functions under a single aggregator model was analyzed in [8].

Przydatek et al. [6] introduced a secure aggregation scheme

that can support Median, Min/Max, and Average aggregation.

In [4], Chan et al. presented a secure hierarchical additive

aggregation scheme, which was subsequently improved by

Frikken et al. with reduced communication cost [10]. A

commitment-based hop-by-hop aggregation scheme was intro-

duced in [9] which allows the base station to verify abnormal

aggregate via hypothesis testing. A secure hierarchical data

aggregation scheme based on synopsis diffusion was proposed

in [7], [13], which can support additive aggregation functions

such as Count and Sum against falsified sub-aggregate attacks.

In [11], Papadopoulos et al. introduced a secure aggregation

scheme for exact Sum aggregation. Chen and Yu presented a

scheme [19] that realizes secure approximate Sum aggregation

via secure Min aggregation, which was later shown to be

vulnerable to a special enumeration attack [14].

There are very limited efforts in developing secure aggre-

gation schemes to support Median and Percentile aggregation.

The techniques presented in [4], [6] can be used for verifying

the correctness of an alleged φ-percentile via secure Count

aggregation by counting the number of readings that are

smaller than the alleged φ-percentile. Roy et al. [5] extended

the secure Count aggregation scheme [4] to realize secure Me-

dian aggregation by recursively constructing an increasingly

accurate histogram. However, these solutions require the base

station to know the percentile of interest, i.e., φ, in advance

and incurs a communication cost proportional to the number

of percentile queries.

Quantile summary [20] aggregation in wireless sensor net-

works has been studied. In [15], a quantile digest summa-

ry structure was introduced to realize quantile aggregation.

Greenwald et al. [16] introduced a distributed algorithm to

compute an ε-approximate quantile summary of sensor data,

which was later improved by Huang et al. [17] to reduce

the maximum per node communication cost. More recently,

several efficient gossip algorithms were introduced in [18] to

compute exact and approximate quantiles in a fully distributed

fashion. Unfortunately, none of the above quantile aggregation

schemes have any security provisions. None of these works

consider possible attacks, and they cannot be applied to our

problem.

III. NETWORK AND ADVERSARY MODELS

In this section, we introduce our system and adversary

models.

A. Network Model
We consider a multi-hop wireless sensor network consisting

of a base station and s sensor nodes. Every sensor node senses

the environment and periodically generates readings at fixed

frequency. We assume that every sensor node i has a set of

n readings denoted by Di and every reading is in the range

R = {1, . . . , vmax} it should be float numbers. It follows that

the total number of readings in the network is sn. As in [17],

we assume that all the readings in the sensor network are

distinct. While this assumption may seem restrictive, it can

be easily accommodated by imposing a total order among the

readings by taking node ID and the time at which a reading

is generated to break the tie.
The base station aims to obtain a quantile summary of all

the readings generated in the network over a certain period.

A quantitle summary is a subset of readings along with

their (estimated) global ranks which can support value-to-rank
queries. Specifically, for any value v ∈ R, the value-to-rank

query returns an estimated global rank r̂(v). The φ-quantile

of all the readings
⋃s

i=1 Di is then the value x with rank

r(x) = �φsn� for any 0 < φ < 1.
We assume that the aggregation is performed over an

aggregation tree, which is the directed tree rooted at the base

station formed by the unique path from every sensor node to

the base station. During network initialization, the base station

learns the topologies of the network as well as the aggregation

tree. We also assume that each sensor node i shares a secret

key Ki with the base station. We also assume that any two

nodes i and j can establish a shared key Ki,j using existing

techniques such as [21], [22].

B. Adversary Model
The attacker aims to mislead the base station into accepting

a modified distribution of an aggregated summary without

being detected in order to significantly shift any quantile query

result from its original position. We assume that the base

station is equipped with adequate computation and energy

resources and is safeguarded from any malicious attacks. In

contrast, sensor nodes are constrained in computation and

communication resources which make them susceptible to

compromising. Once a sensor node is compromised, all the

information stored at the sensor node such as cryptographic

keys is revealed to the attacker. The attacker can then instruct

compromised sensor nodes to carry out a wide range of

attacks.
Since the aggregated summary consists of a subset sampled

readings and their ranks, we consider the following two attacks

in this paper.



• A compromised node may forge its own readings, their

ranks, or both.

• A compromised node may deviate from protocol oper-

ations, which includes dropping other nodes’ readings,

replacing other nodes’ readings with its own, modifying

other nodes’ readings or their ranks.

IV. ATTACKS ON QUANTILE SUMMARY AGGREGATION

In this section, we first briefly review the sampling based

quantile summary protocol proposed by Huang et. al. [17],

which serves as the basis for SecQSA. We then evaluate the

impact of a range of attacks on the Huang’s protocol via

simulation studies.

A. Review of Huang’s Protocol [17]

Huang’s protocol [17] is designed based on random sam-

pling. Let G1, . . . , Gk be a family of sets of data values, where

Gi

⋂
Gj = ∅ for all 1 ≤ i < j ≤ k. If we independently

sample each value in Gi with probability q to obtain a subset

Si ⊆ Gi for all i = 1, . . . , k. Denote by r(v,Gi) its local rank

within the set Gi for each sampled value v ∈ Si. Given any

value x, we can estimate its local rank r̂(x,Gi) within Gi for

all 1 ≤ i ≤ k. Let p(x|Si) be the predecessor of value x in

Si. It has been shown that

r̂(x,Gi) =

{
r(p(x|Si), Gi) + 1/p, if p(x|Si) exists;

0 otherwise,
(1)

is an unbiased estimator of r(x,Gi). The global rank of value

x within G =
⋃k

i=1 Gi can then be estimated as

r̂(x) =

k∑
i=1

r̂(x,Gi) .

Under Huang’s protocol [17], every node i first samples

each reading of its own independently to generate a local

quantile summary. All the nodes then participate in quantile

summary aggregations in which local quantile summaries are

forwarded and merged with others into one along the way

before reaching the base station. A key advantage of Huang’s

scheme [17] over prior solutions [15], [16] is that it can

guarantee an individual node communication cost of O(1/ε)
even for those nodes close to the base station and have many

decedents by carefully designed merging conditions. We refer

readers to [17] for details of Huang’s scheme.

B. Impact of Attacks

We now evaluate the impact of several attacks on Huang’s

protocol [17], which will guide the design of SecQSA.

Several possible attacks can be launched by a compromised

sensor node. First, a compromised sensor node can arbitrarily

forge its own readings and their local ranks, which is fun-

damentally difficult to detect without any special assumption.

Moreover, since a quantile summary consists of a subset of

sample values with their local ranks, a compromised sensor

node can also modify the readings of its decedent nodes

and corresponding ranks. In addition, Huang’s protocol [17]

(a) Average rank error (b) Maximum rank error

Fig. 1. Comparison of ARE and MRE under different attacks.

requires that every reading is sampled independently during

merging operations, but a compromised node may not follow

by discarding all the readings from one or more of its decedent

nodes. Due to symmetry, we only consider the case in which

the attacker intends to inflate the estimated rank of any value

and consider the following three attacks.

• Attack 1: Modify its own sampled values to the minimum

and their ranks to the maximum.

• Attack 2: Modify children nodes’ sampled values to the

minimum and their ranks to the maximum.

• Attack 3: Modify its own sampled values to the minimum

and their ranks to the maximum and drop all the children

nodes’ value from the quantile summary.

We use the following two metrics to evaluate the impact of

the above three attacks on the accuracy of the final quantile

summary at the base station. Let r(v) and r̂(v) be the true

rank and estimated rank of a value v, respectively, for all v ∈
{1, . . . , vmax}. The normalized average rank error (ARE) and

maximum rank error (MRE) are defined as

ARE =

∑vmax

v=1 |r̂(v)− r(v)|
v2max

, (2)

and

MRE =
maxv={1,...,vmax}(|r̂(v)− r(v)|)

vmax
. (3)

We simulate a wireless sensor network consisting of s = 62
sensor nodes which form an aggregation tree of height 6 where

each sensor node has two children nodes. We assume that each

node has n = 1000 readings. Every point in the following

figures is the average of 100 runs each with a distinct random

seed for the sampling process.

Figs. 1(a) and 1(b) compare the ARE and MRE under the

three types of attack as well as in the absence of attack

with the sampling probability varying from 0.01 to 0.l. As

we can see, both ARE and MRE decreases as the sampling

probability increases in the absence of attack. This is expected

as the higher the sampling probability, the more readings are

included in the final quantile summary received by the base

station, the more accurate the value-to-rank query results, the

lower ARE and MRE, and vice versa. In addition, the ARE

and MRE under Attack 1 are very close to those under no

attack. The reason is that a single compromised node forging

its own readings and local ranks has very limited impact on the

accuracy of final quantile summary. In contrast, the ARE and



MRE under Attack 2 and Attack 3 are significantly higher

than those under Attack 1. In particular, we can see from

Fig. 1(a) that the AREs under Attack 2 and Attack 3 are 0.24

and 0.42, respectively. Similarly, the MREs under Attack 2 and

Attack 3 are both around 0.5. These results clearly demonstrate

the severe impact of Attacks 2 and 3 on the final quantile

summary.

V. SECQSA: SECURE QUANTILE SUMMARY

AGGREGATION

In this section, we first give an overview of SecQSA and

then detail its design.

A. Overview

We find that the key to secure quantile summary aggregation

is to ensure the integrity of the readings and their ranks

during merging operations. Specifically, SecQSA is designed

to achieve the following goals.

1) Integrity of sample readings: every reading in the final

quantile summary must be generated by a sensor node

and has not been altered during the aggregation process.

2) Integrity of local ranks: as readings being aggregated

into different quantile summaries through the process,

their local ranks within quantile summaries must be

correctly computed according to [17].

3) Compliance of uniform sampling: when multiple quan-

tile summaries are merged, every reading should be

sampled independently according to [17].

We do not intend to defend against a compromised node

forging its own readings and their local ranks, which has

very limited impact on the aggregation results as shown in

Section IV-B.

SecQSA is designed to meet the above goals using efficient

cryptographic primitives. Under SecQSA, sensor nodes send,

receive, and merge local quantile summaries in a secure

fashion. Specifically, a quantile summary Q is associated with

a ground set G and represented by

Q = 〈ID,O, q〉,
where ID is the node that generates the quantile summary, O
is a set of sample objects, and q is the sampling probability.

Every sample object o ∈ O corresponds to one reading drawn

from the ground set G and has the form

o = 〈v, σinit, σcurrent〉.
where v is the reading, and σinit and σcurrent carry the necessary

verification information about v in the quantile summary. More

specifically, the first component σinit carries the initial rank of

v and has the form

σinit = 〈IDi, r(v,Di), HKi
(v||r(v,Di))〉,

where IDi is the ID of the node that generates reading v,

r(v,Di) is the initial local rank of v in node i’s set Di, Ki

is the secret key node i shared with the base station, and

H∗(·) denotes a message authentication code keyed with the

subscript. The second component σcurrent has the form

σcurrent = 〈IDj , r(v,G)〉,
where IDj is the ID of the node which merges value v into

the current quantile summary Q, and r(v,G) is the local rank

of v in the current ground set G.

As a reading v moves through the aggregation process,

the first component σinit remains unchanged and will allow

the base station to verify the integrity of the reading and

compliance of random sampling of any intermediate node.

In contrast, the second component σcurrent will be updated

whenever reading v is merged into a new quantile summary.

In what follows, we detail how quantitle summaries are

generated by individual sensor nodes and merged through the

aggregation process.

B. Initialization

To initiate a quantile summary aggregation process, the base

station broadcasts a command with a random seed d using a

proper broadcast authentication protocol such as μ-Telsa [23].

On receiving the command, each sensor node i first gen-

erates a local quantile summary Qi with respect to its set of

readings Di. Let H(·) be a cryptographic hash function that

maps any input to an integer in the range {0, . . . , λ−1}. Node

i samples every reading v ∈ Di with probability qinit, where

qinit is a system parameter that determines the accuracy of the

quantile summary and communication overhead. Specifically,

every reading v is selected to be included in the local quantile

summary Qi if

H(IDi||r(v,Di)||d) ≤ qinitλ . (4)

It is easy to see that each reading is sampled independently

with probability qinit. We subsequently denote by Si ⊆ Di the

subset of readings included in Qi.

For each selected sample reading v ∈ Si, node i constructs

a sample object as o = 〈v, σinit, σcurrent〉, where

σinit = σcurrent = 〈IDi, r(v,Di), HKi
(v||r(v,Di))〉 .

C. Secure Quantile Summary Aggregation

All the nodes then participate in the quantile summary

aggregation based on the aggregation tree. Specifically, every

leaf node i of the aggregation tree sends its local quantitle

summary Qi to its parent node, say j, as

Qi = 〈IDi, Oi, qinit, HKi,j
(info)〉 ,

where Oi = {o|v ∈ Si} is the set of sample objects and info =
IDi||Oi||qinit is the concatenation of all the prior information.

On receiving a local quantile summary Qi from one of its

children nodes, node j first verifies its integrity by checking

HKi,j
(info) using the shared key Ki,j . If succeed, node j

checks if local quantile summary Qi exhibits any inconsisten-

cy. Specifically, node j checks if the reading in every sample

object is in the range R. Without loss of generality, suppose

that Oi = 〈o1, . . . , ox〉, where ox = 〈vi, σinit, σcurrent〉 and



v1 < · · · < vx. Node j checks if r(v1, Di) < · · · < r(vx, Di).
If so, node j considers quantile summary Qi valid.

Node j then processes Qi in one of the two possible ways.

In the first case, node j directly forwards Qi to its parent node,

say k, by sending

j → k : 〈IDi, Oi, q,HKj,k
(info)〉 ,

which allows node k to verify its integrity. In the second case,

node j merges Qi with one or more other local quantile sum-

maries to produce a single quantile summary if the conditions

specified in [17] are met. In what follows, we use an example

to illustrate how multiple local quantile summaries are merged

at an intermediate node.

Suppose that node j intends to merge l local quantitle

summaries Q1, . . . , Ql into one local quantile summary Q.

Each local quantitle summary

Qx = 〈IDx, Ox, qx〉 ,
is sampled from a ground set Gx with sampling probability

qx independently for all x = 1, . . . , l. The resulting quantile

summary Qj = 〈IDj , Oj , q〉 corresponds to the ground

set G =
⋃l

x=1 Gx where every reading in G is sampled

independently with probability q.

The merging operation involves four steps. First, node j
resamples every reading in Q1, . . . , Ql to obtain the set of

readings to be included in Q. Specifically, for each quantile

summary Qx, 1 ≤ x ≤ l, node j samples every sample unit

o ∈ Ox independently with probability q/qx. In particular,

each sample object o ∈ Ox is selected if

H(IDj ||r(v,Gx)||d) ≤ qλ

qx
. (5)

It follows that each reading v in the ground set Gx is selected

to be in Q with probability

Pr(v ∈ Q) = Pr(o ∈ Q|v ∈ Qx)Pr(v ∈ Qx)

=
q

qx
· qx

= q .

Second, node j computes the local rank of every reading

in the quantile summary Q. Let O′
x ⊆ Ox be the subset

of sample objects in Qx selected to be included in Q for

all 1 ≤ x ≤ l. Consider a sample unit o ∈ O′
j as

an example where o = 〈v, σinit, σcurrent〉 and σcurrent =
〈IDz, r(v,Gx), HKz (v||r(v,Gx))〉. It follows that v is ranked

r(v,Gx) within the ground set Gx. Its local rank within the

new ground set G =
⋃l

y=1 Gx can then be estimated as

r(v,G) = r(v,Gx) +

l∑
y=1,y �=x

r(v,Gy) ,

where

r(v,Gy) =

{
r(p(v|Oy), Gy) + 1/qy, if p(v|Oy) exists;

0 otherwise,

and p(v|Oy) is the predecessor of value v in Oy . It has been

shown that r(v,G) is an unbiased estimator of v’s local rank

within G [17].

Third, node j updates each sample object in Q. Specifically,

for each o = 〈v, σinit, σcurrent〉 selected, node j updates σcurrent

to

σcurrent = 〈IDj , r(v,G)〉 .
Next, node j, its children nodes, and its parent node k

execute a protocol whereby node j’s children nodes verify and

endorse the new local rank of each sample object in G. Among

the l local quantile summaries Q1, . . . , Ql, there is at most one

local quantile summary generated by node j itself. Without

loss of generality, suppose that local quantile summary Qj is

generated by node j itself and that each quantile summary

Qy is received from children node y for all y = 1, . . . , l and

y �= j.

Node j first broadcasts the quantitle summary as

j → ∗ : 〈Q,HKj,k
(Q)〉 ,

where Q = 〈IDj , O, q〉 and O is the set of sample objects.

This message will be received by both node j’s parent node

k and all the children nodes as they are all in node j’s

transmission range. On receiving the message, node k verifies

its integrity using the shared key Kj,k.

Node j then seeks its children nodes’ endorsement for

the new quantile summary Q. Since every children node y
knows Qy it sent earlier and also overheard the quantile

summary Q, it knows the subset of sample object O′
y ⊆ Oy

being included in Q. Each node y first verifies whether node

j faithfully perform random sampling for Oy according to

Eq. (5). Moreover, node y also checks whether node j correctly

computes the new local rank r(v,G) of each sample object

o ∈ O. Specifically, for each sample object o ∈ O where

o = 〈v, σinit, σcurrent〉, node j broadcasts the following message

j → ∗ : v, r(v,G1), q1, r(v,G2), q2, . . . , r(v,Gl), ql ,

Without loss of generality, consider sample object o ∈ O′
y ⊆

Oy and Qy was sent by child node y. Node y first verifies

whether

r(v,G) = r(v,Gy) +

l∑
z=1,z �=y

r(v,Gz) .

If so, node y sends its endorsement to node j as

x → j : HKy,k
(Q) ,

where Ky,k is the shared key between node y and j’s parent

node k. Similarly, every other children node z (z = 1, . . . , l,
z �= y, and z �= j) which sent Qz finds p(v|Oz), i.e., the

predecessor of v in Oz , and verifies whether

r(v,Gz) = r(p(v|Oz), Gz) + 1/qz .

If so, node z sends its endorsement to node j as

y → j : HKz,k
(Q) ,



On receiving the endorsement from each of its children,

node j sends an aggregated endorsement of Q to its parent

node k

j → k :
l⊕

y=1,y �=j

HKy,k
(Q) .

Since the parent node j has previously verified the integrity

of Q using HKj,k
(Q), it further verifies the aggregated en-

dorsement
⊕l

y=1,y �=j HKy,k
(Q) using the keys shared with

each children node y (y = 1, . . . , l). If all the verifications

succeed, node k accepts Q as a valid quantile summary.

D. Final Verification at the Base Station

At the end of the aggregation process, the base station

receives one or multiple quantile summaries from its children

nodes. For every quantile summary it receives, the base station

verifies the quantitile summary in the following steps.

First, for each sample object o = 〈v, σinit, σcurrent〉 where

σinit = 〈IDi, r(v,Di), HKi
(v||r(v,Di))〉, the base station first

verifies v’s integrity by recomputing HKi
(v||r(v,Di)) using

the shared key Ki.

Second, the base station verifies if every node that per-

formed merging operations have faithfully followed random

sampling. Since the base station knows the number of read-

ings each node has and the aggregation tree structure and

the random sampling performed at each node is based on

each reading’s initial rank, the ID of the node that performs

sampling, and the seed d, the base station can emulate the

entire aggregation process to predict (1) the subset of readings

sampled in each initial local quantile summary, (2) the number

of quantile summaries received at each intermediate node

and their corresponding sizes, (3) which nodes should have

performed merging operations, and (4) the subset of read-

ings that should have been selected in each merged quantile

summary. Specifically, for each node i and every possible

local rank 1, . . . , n, the base station verifies if (1) for every

initial rank that is supposed to survive the entire aggregation

process, the corresponding reading is indeed included in the

final quantile summary, and (2) if there is any reading in the

final quantile summary received should have been dropped by

any intermediate node.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of SecQSA via

simulation.

A. Simulation Setting

We again consider a wireless sensor network consisting of

s = 62 sensor nodes which form an aggregation tree of height

6 where each sensor node has two children nodes. Every point

in the following graphs is the average of 100 runs, each with

a distinct random seed for the sampling process. We adopt the

SHA-256 for the message authentication code which results

in a 32 bytes code. Also, we assume that each reading is of

16 bits, and each local rank is of 32 bits.

Since there is no prior solution for secure quantile summary

aggregation, we compare the proposed protocol with two

baseline schemes.

• Baseline 1: every node independently samples its readings

with probability q and then submits the sampled readings

along with their associated ranks and a MAC to the base

station. The base station verifies the integrity of each

reading and answers value-to-rank queries according to

Eq. (1).

• Baseline 2: every node independently samples its readings

with probability q and then submits the sampled readings

along with a MAC to the base station with no ranking

information. On receiving all the sample readings, the

base station broadcasts all the readings to all the sensor

nodes. Finally, all the nodes participate in multiple paral-

lel secure SUM aggregations according to [11] to allow

the base station to obtain the global rank of each reading,

whereby to answer value-to-rank queries according to

Eq. (1).

Besides the ARE and MRE, we also use total communication
overhead and maximum per node communication overhead
to evaluate the performance of proposed scheme and the two

baseline schemes.

B. Simulation Results

Figs. 2(a) to 2(d) compare the ARE, MRE, total commu-

nication overhead, and maximum per node communication

overhead of SecQSA and the two baseline solutions, respec-

tively, with sampling probability varying from 0.01 to 0.1.

We can see from Fig. 2(a) and 2(b) that both ARE and

MRE decrease as the sampling probability q increases under

all three schemes. This is expected because the higher the

sampling probability, the more readings we sample, the more

accurate the rank estimation, and vice versa. Moreover, we

can see from Fig. 2(a) that the AREs of all three schemes are

close to zero if the sampling probability exceeds 0.02. Similar

trend can be observed for the MRE in Fig. 2(b) for the same

reason. We can see that the accuracy of SecQSA is comparable

to the two baseline schemes. On the other hand, Fig. 2(c)

shows the total communication overhead under SecQSA and

the other two baseline schemes. Generally speaking, the total

communication overhead increases as the sampling probability

increases, which is expected. Moreover, we can see that

Baseline 2 has the largest communication overhead among the

three because multiple parallel secure SUM aggregations need

to be performed to obtain the global rank for every reading

in the quantile summary. In contrast, neither Baseline 1 nor

SecQSA involve such operations. Moreover, SecQSA incurs

less total communication overhead than Baseline 1 because

of the merging operations in SecQSA. Finally, Fig. 2(d) plots

the maximum per node communication overhead for each of

the three schemes. We can see that the maximum per node

overhead increases under all three schemes as the sampling

probability increases, which is anticipated. Most importantly,

SecQSA beats both Baseline 1 and Baseline 2 with significant

margins because of its merging operations.
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Fig. 2. Comparison of SecQSA and two baselines with sampling probability varying from 0.01 to 0.1.

(a) Average rank error (b) Maximum rank error (c) Total comm. overhead (d) Maximum per node overhead

Fig. 3. Comparison of SecQSA and two baselines with the number of values per node varying from 400 to 2000.

(a) Average rank error (b) Maximum rank error (c) Total comm. overhead (d) Maximum per node overhead

Fig. 4. Comparison of SecQSA and the baselines with the height of the aggregation tree varying from 6 to 10.

(a) Average rank error (b) Maximum rank error (c) Total comm. overhead (d) Maximum per node overhead

Fig. 5. Comparison of SecQSA and the baselines with the number of children per node varying from 2 to 4.

Figs. 3(a) to 3(d) compare the ARE, MRE, total com-

munication overhead, and maximum per node communication

overhead under SecQSA, Baseline 1 and Baseline 2 with the

number of readings per node varying from 400 to 2000. We

can see from Figs. 3(a) and 3(b) that both ARE and MRE

decrease as the number of readings per node increases under

all three schemes. The reason is that the more readings each

node has, the more readings are included in the final quantile

summary, and the higher accuracy of the final quantile summa-

ry. Also, we can see from Fig. 3(a) that the ARE is almost the

same for SecQSA and the two baselines for the similar reason.

Similar trend can be observed for MRE in Fig. 3(b), which

is of no surprise. We can also see from Figs. 3(c) and 3(d)

that both the total communication overhead and maximum per

node overhead produced by the three schemes increase as the

number of reading per node increases. In addition, Fig. 3(c)

shows that Baseline 2 incurs the highest total communication

overhead among the three and SecQSA incurs the lowest

total communication overhead due to its merging operations.

In contrast, Fig. 3(d) shows that SecQSA incurs the lowest



maximum per node communication overhead among the three

and outperforms the other two by large margins.

Figs. 4(a) to 4(d) compare the ARE, MRE, total com-

munication overhead, and maximum per node communication

overhead under SecQSA, Baseline 1, and Baseline 2 with the

hight of the aggregation tree varying from 6 to 10. As we can

see from Figs. 4(a) and 4(b), both ARE and MRE decrease

as the hight of the aggregation tree increases under all three

schemes. This is expected as the higher the aggregation tree,

the more sensor nodes, the more the sampled readings, the

more accurate of the final quantile summary, and vice versa.

We can also see from Fig. 4(a) that the ARE under SecQSA

is similar to that of the other two baselines. Moreover, the

MREs produced by the three schemes in Fig. 4(b) are pretty

close as expected. Moreover, we can see from Figs. 4(c) and

4(d) that the total communication overhead and maximum per

node overhead produced by the three schemes both increase

as the height of the aggregation tree increases. The reason is

that, the more levels of the aggregation tree, the more sam-

pled readings to be collected, and the higher communication

overhead. Once again, we can see that SecQSA incurs the

lowest communication overhead among the three because of

its merging operations.

Figs. 5(a) to 5(d) show the ARE, MRE, total commu-

nication overhead, and maximum per node communication

overhead produced by SecQSA, Baseline 1 and Baseline 2

with the number of children per node varying from 2 to 4. As

we can see, Figs. 5(a) and 5(b) show that both ARE and MRE

decrease as the number of children increases in the network

tree for all three schemes. This is anticipated as the more

children nodes each non-leaf node has, the more sensor nodes

in the network, the more readings collected in the final quantile

summary, and the more accurate it is. Moreover, we can see

from Fig. 5(a) that the ARE for SecQSA and each of the

two baselines are almost matching and close to zero as we

discussed before. Fig. 5(b) plots the MREs produced by the

three schemes which appears to be also quite matching as

expected. In addition, Figs. 5(c) and 5(d) show that the total

communication overhead and maximum per node overhead

produced by the three schemes both increase as the number

of children per node increases. Finally, Figs. 5(c) and 5(d) once

again confirm that SecQSA incurs the lowest communication

overhead among the three because of its merging operations.

VII. CONCLUSION

In this paper, we have initiated the study of secure quantile

summary aggregation in wireless sensor networks. After ex-

amining the impact of different attacks on quantile summary

aggregation via simulation, we introduced the design and

evaluation of SecQSA, the first secure quantile summary

aggregation protocol for wireless sensor networks. Built upon

efficient cryptographic primitives, SecQSA can ensure the

integrity of sampled readings and their ranks in the final

quantile summary. Detailed simulation results have confirmed

significant advantages of SecQSA over alternative solutions.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers

for their constructive comments and helpful advice. This work

was supported in part by the US National Science Foundation

under grants CNS-1651954 (CAREER), CNS-1933047, and

CNS-1718078.

REFERENCES

[1] N. Khalil, M. R. Abid, D. Benhaddou, and M. Gerndt, “Wireless sensors
networks for internet of things,” in IEEE ISSNIP’14, 2014, pp. 1–6.

[2] Y.-W. Kuo, C.-L. Li, J.-H. Jhang, and S. Lin, “Design of a wireless
sensor network-based iot platform for wide area and heterogeneous
applications,” IEEE Sensors Journal, vol. 18, no. 12, pp. 5187–5197,
2018.

[3] R. Rajagopalan and P. K. Varshney, “Data-aggregation techniques in
sensor networks: A survey,” IEEE Communications Surveys & Tutorials,
vol. 8, no. 4, pp. 48–63, 2006.

[4] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” in ACM CCS’06, 2006, pp. 278–287.

[5] S. Roy, M. Conti, S. Setia, and S. Jajodia, “Secure median computation
in wireless sensor networks,” Ad Hoc Networks, vol. 7, no. 8, pp. 1448–
1462, 2009.

[6] B. Przydatek, D. Song, and A. Perrig, “Sia: Secure information aggre-
gation in sensor networks,” in ACM SenSys’03, 2003, pp. 255–265.

[7] S. Roy, S. Setia, and S. Jajodia, “Attack-resilient hierarchical data
aggregation in sensor networks,” in ACM SASN’04, 2006, pp. 71–82.

[8] D. Wagner, “Resilient aggregation in sensor networks,” in ACM SAS-
N’04, 2004, pp. 78–87.

[9] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Sdap: A secure hop-by-hop
data aggregation protocol for sensor networks,” ACM TISSEC, vol. 11,
no. 4, pp. 1–43, 2008.

[10] K. B. Frikken and J. A. Dougherty IV, “An efficient integrity-preserving
scheme for hierarchical sensor aggregation,” in ACM WiSec’08, 2008,
pp. 68–76.

[11] S. Papadopoulos, A. Kiayias, and D. Papadias, “Secure and efficient in-
network processing of exact sum queries,” in IEEE ICDE’11, 2011, pp.
517–528.

[12] H. Yu, “Secure and highly-available aggregation queries in large-scale
sensor networks via set sampling,” Distributed Computing, vol. 23, no.
5-6, pp. 373–394, 2011.

[13] S. Roy, M. Conti, S. Setia, and S. Jajodia, “Secure data aggregation
in wireless sensor networks: Filtering out the attacker’s impact,” IEEE
Trans. Inf. Forensics Secur., vol. 9, no. 4, pp. 681–694, 2014.

[14] A. Aseeri and R. Zhang, “Secure data aggregation in wireless sensor
networks: Enumeration attack and countermeasure,” in IEEE ICC’19,
2019, pp. 1–7.

[15] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians
and beyond: new aggregation techniques for sensor networks,” in ACM
SenSys’04, 2004, pp. 239–249.

[16] M. B. Greenwald and S. Khanna, “Power-conserving computation of
order-statistics over sensor networks,” in ACM PODS’04, 2004, pp. 275–
285.

[17] Z. Huang, L. Wang, K. Yi, and Y. Liu, “Sampling based algorithms for
quantile computation in sensor networks,” in ACM SIGMOD’11, 2011,
pp. 745–756.

[18] B. Haeupler, J. Mohapatra, and H.-H. Su, “Optimal gossip algorithms
for exact and approximate quantile computations,” in ACM PODS’18,
2018, pp. 179–188.

[19] B. Chen and H. Yu, “Secure aggregation with malicious node revocation
in sensor networks,” in IEEE ICDCS’11, 2011, pp. 581–592.

[20] M. Greenwald and S. Khanna, “Space-efficient online computation of
quantile summaries,” in ACM SIGMOD’01, Santa Barbara, CA, 2001,
pp. 58–66.

[21] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor
networks,” in ACM CCS, Washington, DC, October 2003, pp. 52–61.

[22] W. Zhang, M. Tran, S. Zhu, and G. Cao, “A compromise-resilient scheme
for pairwise key establishment in dynamic sensor networks,” in ACM
MobiHoc, Montreal, Canada, September 2007, pp. 90–99.

[23] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:
Security protocols for sensor networks,” in MobiCom, Rome, Italy, July
2001, pp. 189–199.


