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ABSTRACT

We address the problem of routing a team of drones and trucks over
large-scale urban road networks. To conserve their limited flight en-
ergy, drones can use trucks as temporary modes of transit en route
to their own destinations. Such coordination can yield significant
savings in total vehicle distance traveled, i.e., truck travel distance
and drone flight distance, compared to operating drones and trucks
independently. But it comes at the potentially prohibitive computa-
tional cost of deciding which trucks and drones should coordinate
and when and where it is most beneficial to do so. We tackle this
fundamental trade-off by decoupling our overall intractable prob-
lem into tractable sub-problems that we solve stage-wise. The first
stage solves only for trucks, by computing paths that make them
more likely to be useful transit options for drones. The second stage
solves only for drones, by routing them over a composite of the
road network and the transit network defined by truck paths from
the first stage. We design a comprehensive algorithmic framework
that frames each stage as a multi-agent path-finding problem and
implement two distinct methods for solving them. We evaluate
our approach on extensive simulations with up to 100 agents on
the real-world Manhattan road network containing nearly 4500
vertices and 10000 edges. Our framework saves on more than 50%
of vehicle distance traveled compared to independently solving for
trucks and drones, and computes solutions for all settings within 5
minutes on commodity hardware.
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1 INTRODUCTION

Drones have great potential for transforming urban logistics ser-
vices. By enabling quick, flexible, and efficient delivery, they can
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help address the rapidly growing logistics and e-commerce needs
of dense urban populations [13]. They can also reduce our reliance
on traditional ground delivery services that contribute to traffic
congestion [20]. However, operating package delivery services that
rely solely on drones may be infeasible due to their limited flight
range and carrying capacity [31]. To overcome these limitations,
we study the problem of operating delivery drones in tandem with
ground vehicles by allowing drones to ride on ground vehicles to
conserve energy and increase effective flight range [10, 12].

In particular, we focus on routing a team of drones and trucks
over a common road network, where drones can use trucks as
transit in addition to flying. We frame our setting as a coordinated
extension of the Multi-Agent Path Finding (MAPF) problem [30],
which requires us to compute start-goal routes for all agents while
aiming to minimize the total path cost incurred by the drones and
trucks. The path cost can be different for the two agent types and
can encode the energy consumed or the operational expense. As
in the classical MAPF formulation, our problem setting requires
us to satisfy inter-agent constraints, which in our case bounds the
maximum number of drones that can simultaneously use a truck.
It also requires reasoning about the potential cost savings from
coordinating trucks and drones to share trip segments.

The feature of agents temporarily coordinating has not been ex-
plored by the MAPF community so far (to the best of our knowledge)
and makes our problem much harder than the already difficult clas-
sical MAPF [38, 39]. Most state-of-the-art MAPF algorithms focus
on avoiding inter-agent collisions rather than optimizing coordina-
tion [14, 30]. Our recent work developed a MAPF solver for routing
drones over transit networks [12] but assumed the transit vehicles
follow fixed and known routes and that drones were not required
to fly over the road network. Another work considered MAPF prob-
lems with cooperation but only planned for predefined agent pairs
to arrive at fixed meeting points [17], rather than simultaneously
traversing a route. The operations research community has looked
at optimizing drones with trucks but their approaches only work
for few agents on small abstract routing graphs [1].

Contributions. We develop an effective algorithmic approach for
coordinated MAPF in the context of drones and ground trucks
working in tandem. Our key idea is to decouple our overall intractable
MAPF problem into two distinct MAPF sub-problems that we can solve
in stages (Figure 1). In Stage 1, we compute truck routes that are
likely to be useful as transit options for drones. In Stage 2, we fix the
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Figure 1: An illustration of our overall approach. (Left) Stage 1 computes truck paths solid (red and blue) in the vicinity of the
shortest road paths for drones (dashed); these truck paths may deviate from the shortest road paths for the trucks (dashed red
and blue). (Right) Stage 2 computes the shortest road-and-transit paths for drones, which can use trucks as transit. See Section 4

for further details.

truck routes, create a transit network based on them, and overlay
this network on the road graph. We then compute drone routes
over the composite road-and-transit network, where drones incur
no cost on the segments where they use transit (subject to capacity
constraints). As a post-processing step, we re-route trucks not used
as transit to their shortest road network paths.

We implement two variants of our approach that use different
MAPF solvers; the first uses Enhanced Conflict-Based Search [2]
and the second uses Prioritized Planning [29] for both stages. We
evaluate our approach on a range of coordinated MAPF settings
over the Manhattan road network, with nearly 4500 vertices and
10000 edges covering an area of nearly 200 km?, and up to 20 truck
and 80 drones. Our experiments show that coordinating drones and
trucks can save more than 50% of total vehicle distance traveled
compared to no coordination. We refer to the sum of truck path
distance and drone flight distance as vehicle distance traveled, since
drones incur no energy cost when riding on a truck. For brevity and
convenience, we will use this phrase hereafter, with some abuse
of terminology. Our approach plans paths for all settings within at
most 5 minutes of computation time on commodity hardware.

We foresee that our approach could serve as a building block in
more complex problem settings where we also need to optimally
allocate agents to tasks (i.e., package-delivery locations) and decide
the order in which to execute them. For instance, in a manner
similar to our previous work [12], we could use a bi-level approach
where the upper layer allocates jobs to the agents and a lower-
level planner—a coordinated MAPF solver in our case—executes
the allocation in a receding-horizon fashion.

Layout. In Section 2 we review prior related fundamental ap-
proaches and state-of-the-art applications. In Section 3 we introduce
basic notation and definitions and describe our problem setting of
coordinated MAPF. In Section 4 we describe our two-stage approach
for coordinated MAPF in detail and discuss our extensive experi-
mental results in Section 5. We conclude by summarizing our work
and outlining future research directions in Section 6.

2 RELATED WORK

We briefly review three related areas of prior research: the gen-
eral multi-agent path finding problem, peer-to-peer ridesharing
algorithms, and coordinated logistics with drones and trucks.

2.1 Multi-Agent Path Finding

The problem of planning paths for a team of agents subject to
domain-specific inter-agent constraints (e.g., collision avoidance)
is known as Multi-Agent Path Finding or MAPF [38]. MAPF is a
sub-class of the more general Multi-Agent Planning problem [35].
Though the underlying MAPF problem is computationally hard, the
research community has developed several effective search-based
solvers that work well in practice [2, 14, 28].

Most MAPF algorithms are evaluated on grid-worlds where
agents can move step-wise along the four cardinal directions, rather
than on large-scale road networks [30]. They are also designed for
avoiding collisions, not enabling agents to temporarily coordinate
by actively sharing their locations. There are two relevant excep-
tions. First, a recent paper developed a bounded-suboptimal MAPF
approach that routes drones over a time-dependent ground transit
network [12]; however, the ground vehicles are fixed and not con-
trollable. Second, an algorithmic extension to the classical MAPF
formulation enables agents to explicitly cooperate [17]. But this
approach assigns agents to cooperative tasks in advance and does
not require them to simultaneously traverse a shared path.

2.2 Peer-to-Peer Ridesharing

The recent shift towards shared-use mobility services has moti-
vated the study of peer-to-peer ridesharing. This problem involves
matching drivers to passengers with similar itineraries, such that
the former can share their trips with the latter [1]. A taxonomy of
ridesharing variants has emerged, based on the type of matching
required [34]; our problem in this paper can be considered a fixed-
role many-to-many matching variant [22], where the trucks are
the ‘drivers’ and drones are the ‘passengers’. Several ridesharing
algorithms provide useful foundations for us, such as one that ge-
ographically partitions a large-scale road network [27], one that



partitions an intermediate trip graph datastructure to decompose
the problem [33], and one that incorporates return restrictions
on drivers in an integer linear program [9]. However, a common
challenge with all of them is that their objective functions only
consider the distance traveled by the driver vehicles, and possibly
wait time for the passengers, but not the distance that passengers
must traverse to get to the drivers. Another challenge is that most
approaches frame and solve a mathematical program, which scales
poorly to complex multi-agent path finding problems [3].

2.3 Coordinated Drone-Truck Routing

The idea of pairing drones with trucks for last-mile delivery and
logistics has been partially explored. The flying-sidekick traveling-
salesman problem was formulated to model a single truck-drone
pair making a set of deliveries, with the drone leaving and return-
ing to the truck at various points [23]. A range of optimization ap-
proaches have been developed for this flying sidekick problem [25],
including an extension that considers multiple drones [24]. Unfor-
tunately, they do not scale well with scenario size and are only
applied for a small number of trucks and drones.

Several other works address similar settings; a genetic algorithm
optimizing a truck-drone pair in a tandem delivery network [15],
a geometric approach that relies on Euclidean plane analysis [8],
a sequential decision-making model that assumes geographical
districting [36], and a drone scheduling routine for given truck
routes [6]. All of those approaches consider a small number of
agents (typically one drone and one truck) and allow the drones
to move freely in the plane, which can be unrealistic. Lastly, we
mention that control aspects of drone landing on a moving truck
have been explored recently [18].

3 PROBLEM FORMULATION

We control a centralized fleet of agents comprising m trucks and n
drones. Each agent is assigned an index i from the set A = A U
AL where AT := {1,...,m} and AY := {m+1, m+n} denote truck
and drone indices, respectively. The agents operate on a shared
road network, represented as a directed graph G = (V, &) with
two types of edges. An edge (v,0v’) € & where v # v’ represents a
traversal of a physical road segment.

Each edge e € & has two cost values ¢ (e) and cdr(e) represent-
ing the travel cost incurred by a truck and drone, respectively. In
both cases, we set ¢ (¢) and c¢%' (¢) to the physical distance of the
corresponding road link, but the two quantities could be different.
The drone incurs cost ¢¥* () while traversing e only if it is flying
along the edge. Our objective, discussed in detail below, is to op-
timize the total travel cost incurred by all agents. Edges are also
annotated with travel times that depend on the type of agents using
them, based on an average traversal speed. We consider a discrete
time setting in this work, where ' () and 19 (¢) denote the integer
traversal time for trucks and drones, respectively.

3.1 Truck and drone paths

Each agent i € A is assigned start and goal nodes s;, g; € V. For
simplicity, we assume that all the agents begin their journey at time
step 0. We could account for different start times without losing
generality, by including a new zero-cost edge for each agent with

traversal time equal to its start time. We must compute a set of paths
that move agents from their start to goal nodes over the graph G,
such that the total travel cost across all agents is minimized.

Drones can use trucks as temporary modes of transit for one or
more edges to save on travel cost. They may only board or alight
at nodes in the road network graph. Each truck has a maximum
carrying capacity for drones. In our experiments, all trucks are ho-
mogeneous and have the same capacity C > 1, though our approach
could accommodate varying truck capacities.

Next, we describe the solution paths for trucks, which encode
their traversal over the road network graph. Given a truck i € AY,

1 t

its solution path m; = (e?, €, st; ) is a sequence of edges, for

some f; > 1, where for every 0 < j < ¢; it holds that e{ € &, and
o(e?) =si, d(efl) = g;, where o(e) and d(e) denote the origin and
destination of a given edge e € &. Additionally, a path must satisfy
connectivity constraints between the edges, i.e., d(e{) = o(e{ﬂ)
for every 0 < j < #;. In addition to encoding the truck’s location in
space, the path 7; also implicitly describes its departure and arrival
time over the edges. In particular, 7/ (1;) denotes the departure time
of edge e{ € m;, where 0 < j < £, and is defined as

(i) = 15 (e]) + 7 (), (1)

where 79(7;) := 0. The path cost incurred by the truck is simply
the sum of truck travel costs c'* (1;) := 2o<j<t ctr(e{).

We define solution paths for drones similarly, except that these
paths also describe whether drones use trucks for some trip seg-

ments. For drone i € A its solution is a path z; = (e?, el.l, C efi)

for some ¢ > 1 and an assignment sequence A; = (a?, al!, .. .,af").
The start-goal and continuity constraints imposed on x; are the
same as those for trucks, as are the arrival and departure times of
the drone path edges.

The assignment sequence A; is defined as follows. For a given
solution segment 0 < j < ¢, the value a{ € AW U {1} describes
whether drone i is riding a truck a{ € AY or flying (in which

case af = 1), when traversing the edge e € . Assuming that the
assignment sequence A; is valid with respect to the trucks used
along the route (defined below), the cost of the drone solution
(7, Aj) is computed as

(i, Ay) = Z 1y (e, ()
o<j<t;

where ]laj: | returns 1 if a{ = 1, and otherwise returns 0. That

is, the value ¢ (13, A;) sums up the cost along edges for which the
drone does not ride on a truck.

A global solution S to our problem is a collection of solutions
over all agents, i.e., S := Ujeqr{7mi} U U;c ga{(7m, Ai)}. The so-
lution S is valid if it satisfies the following two conditions on the
coordination between trucks and drones. First, fix a drone i € A
and fix a segment 0 < j < ¢ where it is assigned to some truck
i’ = af € AY. Then the edge e{ € m; along the drone’s path must
also be part of the truck’s path 7;7, whose departure time must also
align with that of the drone. That is, there exists a truck segment

0 < j/ < & such that elj - el{; and 7j(7;) = 7j (7). The second



condition requires that a truck’s capacity will not be exceeded. In
particular, fix a truck i € A" and a solution segment 0 < j < 4.
Then it must hold that

{i’ e AL |F0<j < Ly, Ty () = 7 (i) A a{,/ = l}| <C. (3)
We are ready to state our problem.

Problem 1 (Coordinated MAPF). Given a set of agents A = A% U
AY, road graph G, edge cost function ¢, edge traversal-time func-
tion ¢, we wish to find a valid global solution S := J;e gt {7} U
U;eqar{ (i, A;) } minimizing the total cost

«(8) = Y )+ Y M im A @
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3.2 Discussion

We discuss some computational aspects of our problem. Integer
programming would scale poorly, even for only one truck and one
drone [23]. Coordinating multiple drones and trucks increases the
nominal decision space by orders of magnitude through two axes:
(i) all possible matchings of drones to trucks based on capacity
(i.e., all ways to distribute n drones across m trucks where each
truck can have up to C drones); (ii) for each drone-truck pairing, all
possible intermediate start and end points of the truck route, and
the various routes a truck can take. We aslo need to account for
conflicts arising from violating vehicle capacity constraints. Those
observations suggest that our problem is more difficult than the
classical MAPF problem, which is NP-hard [38]. But we defer the
study of the complexity of Coordinated MAPF for future work.

We now discuss our modeling assumptions. First, we use a shared
road graph for trucks and drones. For urban areas with high-rises
and no-fly zones, restricting drones to fly over the road network
rather than point-to-point between any two locations is a reason-
able design choice. Second, of the two popular MAPF objective
functions, sum-of-costs and makespan, we choose to minimize the
former rather than the latter (the makespan of a MAPF solution is
the maximum path cost for any agent).

In our setting, sum-of-costs better reflects the gains from having
drones use trucks as transit; e.g., if the maximum-cost path in a
solution was that of some truck whose start and goal were dispro-
portionately far apart, then the makespan of the solution would
only depend on the cost of that worst path (unlike the sum-of-costs
metric); no further optimizing of the other drones and trucks to
save on drone flight cost would be incentivized, even though that
would have led to real-world benefits. In any case, we considered
makespan in a related earlier work where it was more appropri-
ate [12]. Finally, we only include travel distance in our objective
and not the elapsed travel time to avoid arbitrary scaling between
the two physical quantities. Vehicle distance traveled is a standard
objective for the ridesharing problem [34].

4 COORDINATED DRONE-TRUCK MAPF

Most effective multi-agent planning approaches rely on the system
being loosely coupled [7]. In the context of MAPF (a sub-class of
multi-agent planning), a loosely coupled multi-agent system is one
where the optimal path for an individual agent mostly does not
interact or coordinate with that of other agents, and when it does,

the extent of interaction required is small compared to the overall
path length. For example, Conflict-Based Search or CBS [28] is an
influential MAPF algorithm that works by computing individual
paths independently for each agent with a search-based method
like A* [19] and resolving any conflicts or inter-path constraint
violations in a structured hierarchical manner. However, it only
works well on problems where there are not many conflicts, i.e.,
the underlying multi-agent system is loosely coupled [16].

In our problem, the ability of drones to coordinate with trucks
when convenient vastly increases the amount of coupling in the
system and thereby the complexity of the MAPF problem. If drones
incur no cost when using trucks as transit, then their optimal paths
are highly dependent on the set of truck paths. On the other hand,
the set of individual shortest paths for trucks may not yield a useful
transit network for the drones. We noted this increased complexity
in the previous section, through the orders-of-magnitude larger
decision space. But the tighter coupling affects even search-based
solvers like CBS, which are less sensitive to dimensionality than
integer programming methods.

The tight coupling and large-scale road network in our setting
make it intractable to solve optimally or bounded-suboptimally.
Therefore, we decouple the overall MAPF problem into two distinct
MAPF sub-problems and solve them in stages (Figure 1). In Stage 1,
we compute a set of truck paths {ﬂ,'il} icaw that drones are likely
to use as transit. We do so by generating a MAPF instance for the
trucks where their travel cost is discounted when they get close to
nominal drone routes, i.e., the shortest drone paths over the road
network. In Stage 2, we design another MAPF instance to route the
drones. We augment the road graph G to keep track of the motion
of the trucks along {7} };c = and allow drones to ride on the trucks
for some segments of their trips and fly for the others. After both
stages, we re-route any trucks that were not used by a single drone
to their original shortest path on the road network, if their Stage 1
paths deviated from their shortest path.

4.1 Stage 1: MAPF for Trucks

Our problem imposes no system constraints between any two truck
paths. If we ignore drones (whose paths will be computed in Stage
2), the solution to the MAPF problem for the trucks alone is trivial:
the set of shortest road network paths for each individual truck.
However, this set of truck paths may be ill-suited for the drones to
use as transit and may yield a poor-quality downstream solution.
Therefore, we seek a set of truck paths that drones are likely to benefit
from in Stage 2. To inform this search, we first consider a set of
one or more start-goal flight paths for each drone over the road
network. In our case, we use the shortest flight path 7'[? for each
drone i € AL along G, but this set could capture other properties
like geographical coverage or path diversity [4].

Next, we describe an instance of the MAPF problem whose solu-
tion would allocate trucks to routes that could potentially benefit
the drones. We describe the graph G% = (V¥, EY) used in this
stage. The graph G augments the road network graph G to en-
courage trucks to take paths that are close to the initial drone flight
paths. In particular, the vertices V't are equal to V. The edge set
&l generalizes the edge set §,i.e., & C E For each drone i € ﬂdr,
we consider all edges e € & within K > 1 hops (or edge traversals)



Figure 2: The two MAPF sub-problems that we need to solve. (Left) In Stage 1, we take initial drone shortest paths (dashed
purple and green) and add drone-annotated weight-discounted copies of nearby road edges (coloured thinner edges; for clarity,
we only show a subset of all possible such copies). We then solve a MAPF problem for trucks on this augmented graph. (Right)
In Stage 2, we take the truck paths computed in Stage 1 (solid red and blue) and create zero-weight transit edge copies from
them. We then solve a MAPF problem for drones on this road-and-transit graph.

of its flight path 71'?. For each such edge e € &, we create a copy
eliC € EY annotated with the drone and the hop 0 < k < K; the same
road network in & can have multiple copies in E if it is close to
multiple nominal drone paths. See Figure 2 (Left) for illustration.

The weights of the road edges e € & reflect their truck cost, i.e.,
w'(e) := ¢ (e). For each copy e]i we discount the original edge
truck cost c"(e) by y(k) € [% 1) depending on the hop distance
k between the edge and the corresponding drone flight path, i.e.,
wtr(e]ic) = c(e) - y(k). We want y(0) = % to reflect that the drone
need not deviate from its shortest path at all if the truck takes that
edge, thus halving the effective edge cost. The choice of discounting
function is a heuristic. For our experiments in Section 5, we use
y(k) = % - (1 + tanh(k)). We also run an ablation study with the
sigmoid function, i.e. y(k) = ﬁ in the extended version of our
paper [11]. Both satisfy our desiderata that y(0) = % and that y(k)
approaches 1 as k increases. The maximum hop distance (K) the
drone flight path is 3 hops in all cases; we ran some offline ablations,
found negligible change for greater values of K, and omit those
results in the interest of space.

The road network graph, augmented by discounted weight copies,
is the underlying pathfinding graph G' for the MAPF problem with
trucks (Figure 2; left). The shortest paths for trucks (with respect
to the weights w'’) on this augmented graph G may deviate from
their original shortest paths (with respect to weights c') on the
graph G, in favor of edges with drone-annotated copies and thus
lower weights. The truck paths on the augmented road graph do
have pairwise constraints, unlike those on the base graph. To reduce
the chance that several trucks are assigned to “assist” the same
drone, we impose a capacity constraint of one, i.e., cap(eli) =1lon
every edge elic € &Y (but do not restrict capacities of edges e € E¥
not associated with drones). In the terminology of classical MAPF,
two trucks are in conflict if they use the same drone-annotated
weight-discounted edge copy elic. Note that we do not forbid mul-
tiple trucks being assigned to copies eli, e]i(, € EY annotated with
the same drone i but different hops k and k’. This choice keeps the

Stage 1 runtime low but may introduce some known inefficiency,
as the drone i can only use one truck at a time.

Given graph GY, weights w'l, truck capacities and start-goal
nodes {si,gi};jcqr C V'Y, we solve a MAPF problem with the
objective of minimizing the total weight w'* incurred by all trucks.
The outcome of Stage 1 is a set of truck paths {nll} icat. Capacity
conflicts between truck paths do not reflect any physical constraints,
in contrast to most MAPF applications. Rather, they encode our
design choice that truck paths be useful for drones downstream.
Again, since a particular drone can only use one truck at a time on
transit, if two trucks deviate to use the same drone-annotated edge
copy, one of those deviations is likely to be wasted in Stage 2.

4.2 Stage 2: MAPF for Drones

Stage 1 yields a set of truck paths {7{1.1}1-e At over the road network
G, because a truck using an edge copy el‘; € & is essentially using
e € & Whether a truck path used drone-annotated discounted-
weight edge copies is now irrelevant as the discounting was simply
a heuristic to guide trucks closer to the nominal drone flight paths.
In Stage 2, we will fix the truck paths, keep track of their locations in
time and space, and solve a MAPF problem for drones that can use
trucks as transit, subject to capacity constraints. This stage builds
upon recent work for routing drones over ground transit [12], but
differs in how it requires drones to operate on the road network
rather than fly point-to-point between locations.

For the Stage 2 MAPF problem, we augment the original road
network with the transit network derived from truck paths (Figure 2;
right panel) to yield the graph G4 = (14, £4r). Each truck path
is a sequence of road network edges. For each road edge of a given
truck path, we add a copy to G that we call a transit edge. Every
transit edge e € EY is annotated with the corresponding truck,
has drone capacity C, and has zero weight wif(e) = 0 because the
drone incurs no distance cost when using transit. We set the weight
of non-transit edges e € & to be wd(e) = ¢4 (e). Since we omit
elapsed time in the objective and assume that drones and trucks
can slow down as needed to wait for the coordinating agent, any
drone-truck connection can be made in principle.



Algorithm 1 Pseudocode of two MAPF techniques
Input: MAPF Graph G, ¢ agents

1: procedure CONFLICTBASEDSEARCH

2 Initialize constraint tree node A with A.constr = @

3 fori=1to¢do > Any ordering
4 A.soln[i] « ShortestPath(G, i, A.constr) > A*
5 A.cost « SumOfCosts(A.soln)
6 Insert A into OPEN > Higher-level open list
7: while OPEN is not empty do

8 B « PopBest(OPEN) > Min. cost candidate
9

if B.soln has no conflicts then

10: return B.soln > Best valid solution
11: for all conflicts (i, c) € B.soln do

12: C « B U UpdateConstraints(B.constr, c)

13: C.soln[i] < Path(G, i, C.constr)

14: Insert C into OPEN

15: procedure PRIORITIZEDPLANNING

16: Initialize S with S.soln = @ and S.constr = @

17: fori=1to¢do > Priority ordering
18: S.soln[i] « ShortestPath(G, i, S.constr)

19: UpdateConstraints(S.constr, S.soln[i])

20: return S.soln

In contrast to Stage 1, the conflicts here do represent physical
constraints, i.e., the maximum drone-carrying capacity of the truck.
Drone paths may conflict with each other if more than C drones
use the same transit edge. Given the graph G%*, weights wd, and
the above constraints, we have a well-defined MAPF problem for
Stage 2, where we seek to compute a set of drone paths, each with a
combination of road and transit edges (although there may be drone
paths that do not take transit at all). Our objective is to minimize
the sum of drone path costs, given that only road edges incur cost
due to the distance of the corresponding link.

4.3 Solving stage-wise MAPF problems

The prior work on drone-transit routing that we build upon [12]
used Enhanced CBS or ECBS [2] for the MAPF problem. CBS is a
hierarchical algorithm, where the multi-agent level defines inter-
path and per-path constraints on the single-agent level. The single-
agent level computes optimal paths that satisfy the respective per-
path constraints. If two or more single-agent paths conflict with
each other, i.e,, violate any shared constraints, the multi-agent level
imposes more constraints to resolve the conflict, and reruns the
single-agent level for the conflicting agents.

ECBS uses bounded-suboptimal Focal Search [26] instead of op-
timal A" at both levels. It can be orders of magnitude more efficient
than CBS, especially on MAPF problems with many more conflicts,
i.e., that reflect a more tightly coupled multi-agent system. We also
implement and use ECBS for our MAPF problems in both stages.
However, for larger numbers of cars and drones ECBS would have
far too many conflicts to resolve and timeout before returning a
solution (as we shall see in Section 5). Moreover, conflict resolution
is particularly expensive in our setting as the truck capacities are

greater than one, and resolving them generates a large number
of constraints. A conflict generates constraints for all subsets of
excess drones, i.e., if a transit edge has capacity C, and C’ > C
drones choose to use it, then C’-choose-C constraints are generated
in the higher-level search tree, where all C-subsets of the C’ drones
are restricted from using that transit edge. A similar setting with
capacities is discussed in our earlier work [12]. A version of CBS
tailored for MAPF with capacity constraints was recently devel-
oped [32]. But developing vanilla MAPF solvers is not the focus of
our work and we defer its implementation for future research.

The challenges of using ECBS for larger problem settings moti-
vates us to also consider Prioritized Planning (PP) [29]. Here, we
plan paths for agents one-by-one (using A*) based on some pri-
ority ordering. After planning each agent’s path, PP analyzes the
edges along it and updates any MAPF constraints for subsequent
paths. In both our stages, these update rules depend on the con-
flict criteria between paths. In Stage 1, if a truck path uses any
drone-annotated edge copies, then those copies are removed and
unusable for subsequent trucks. In Stage 2, each time a drone uses a
specific transit edge, its capacity is reduced by one; when a transit
edge reaches zero capacity, it can no longer be used by subsequent
drones. Once a drone-annotated or transit edge is used up in the
respective stages, later agents are not allowed to use them. Note
that PP circumvents the conflicts that CBS encounters when C’ > C
through the imposed priority ordering.

PP has no solution quality guarantees, unlike ECBS. But it does
not need to resolve conflicts and can be more efficient than ECBS in
practice. Section 5 will show how PP can solve problems intractable
for ECBS and be competitive on the tractable problems. The choice of
priority ordering can impact the solution quality for PP. For Stage 2,
we use the sensible heuristic of prioritizing drones whose shortest
paths on the road have higher cost, as they are most likely to benefit
from using transit. No such-clearly motivated heuristic exists for
the prioritizing the order of trucks paths in Stage 1, so we impose
an arbitrary ordering based on truck IDs.

Algorithm 1 contains high-level pseudocode for CBS. It maintains
a higher-level constraint tree whose root node A is initialized with
an empty constraint set and the independent shortest paths for each
agent. When the lowest-cost constraint tree node B is expanded,
CBS evaluates its set of paths for any conflicts and generates a
child node C that recomputes the path for every conflicting agent i
and corresponding constraint c. CBS continues until it yields the
first conflict-free solution, which is guaranteed to be optimal. The
basic structure of ECBS is the same as CBS, with a few extensions
to enable more efficient behavior while sacrificing optimality for
bounded-suboptimality. We omit those extensions for readability.
We also sketch out the pseudocode of Prioritized Planning in Algo-
rithm 1 to highlight its major differences from CBS. PP computes
the shortest path of each of the £ agents one-by-one, following a
given priority ordering. After obtaining the path for any agent i, it
updates the shared set of constraints based on that path.

5 EXPERIMENTS AND RESULTS

We implemented! our approach and ran all simulations using the
Julia programming language [5] on a machine with 128 GiB RAM

IThe code is at https://github.com/Shushman/AerialGroundPathFinding,jl



Table 1: We compare the solution quality (vehicle distance traveled) and computational efficiency (plan time) of our framework
against the Direct baseline. All quantities are averaged over 20 trials. Note that by vehicle travel distance we mean the sum of
truck distances and drone flight distances. In all cases, the standard error of the mean was less than 5% of the mean, and has
been omitted. Red indicates that some of the 20 trials timed out, so the comparison is not precisely equivalent. For the larger
settings, ECBS times out on the majority of the trials, and is thus omitted.

Vehicle Distance Traveled (km)

Plan Time (s)

Cap=5 Cap =10 Cap=5 Cap =10
Trucks Drones Direct ECBS PP ECBS PP Direct ECBS PP ECBS PP
5 10 113 74.9 80.8 74.8 80.8 0.012 4.76  4.80 4.93 4.80
5 15 148 93.4 99.3 89.8 95.5 0.013 8.01 6.96 7.39 7.03
5 20 185 116 127 107 116 0.015 10.9 9.21 9.79 9.70
10 20 223 124 135 116 123 0.021 41.6 21.6 28.2 229
10 30 295 - 187 139 153 0.026 - 324 59.8 36.8
10 40 368 - 254 167 191 0.029 - 427 157 48.6
15 30 333 - 197 158 167 0.029 - 57.1 144 67.1
15 45 434 - 275 207 0.039 - 78.5 - 957
15 60 543 - 374 258 0.048 - 105 - 135
20 40 436 - 257 213 0.035 - 112 - 138
20 60 576 - 367 265 0.047 - 158 - 206
20 80 714 - 525 347 0.058 - 210 - 296

and a 2.6 GiHz Intel Xeon CPU. On various problem settings, we
evaluated the quality of solutions as per our optimization objective,
i.e., the sum of total path costs over all agents. We also considered
the efficiency of our approach by measuring the plan time and
observing how it scales with more trucks and drones. For the road
graph, we used the street network of Manhattan in New York City?,
covering an area of nearly 200 km?. This directed graph has 4426
nodes and 9604 edges; the nodes are annotated with geographical
locations and the edges are annotated with the distance of the
road link in kilometres. For simplicity, we use total vehicle distance
traveled as the path cost metric (i.e., the sum of trucktravel distance
and drone flight distance), and we defer more sophisticated cost
metrics to future work. Our underlying graph is significantly larger
than in most MAPF applications [30].

5.1 Solution Quality and Efficiency

We evaluated two versions of our approach on solution quality and
computational efficiency: one with Enhanced Conflict-Based Search
(ECBS) for both stages and the other with Prioritized Planning (PP)
instead. Since the full problem is intractable to solve jointly, we do
not baseline against a Mixed Integer Linear Program approach. As
a reference point, we compared against an approach that simply
assigns to each truck and drone its shortest path on the road net-
work, with no coordination among them. This baseline (that we
call Direct) is much faster than our approach but has much poorer
solution quality, especially with more trucks that drones can use as
transit to reduce path cost.

Table 1 displays the results of all simulations. We varied the
number of trucks and drones and considered two different drone-
carrying capacities for trucks, 5 and 10. For each setting, we had
20 different trials, each with different start and goal nodes for each

Zhttps://www.kaggle.com/crailtap/street-network- of-new-york-in-graphml.

agent. We ran all approaches on the MAPF problems defined by
that trial, computed the total solution cost (vehicle distance) in
kilometres and the planning time in seconds, and averaged over all
trials. The standard error of the mean was less than 5% of the mean
in all cases, so we omitted it in the interest of space.

As expected, both ECBS and PP compute much better quality
solutions than Direct, and the quality gap increases with more trucks
and drones and with higher truck capacity. Also, Direct has much
lower planning time than both PP and ECBS. We mentioned earlier
in Section 4.2 that ECBS has many expensive conflicts to resolve
for bounded-suboptimality. PP does not explicitly need to resolve
conflicts but still needs to plan over much larger graphs in both
stages than the road network that Direct plans on: Stage 1 adds the
drone-annotated weight-discounted edge copies and Stage 2 adds
the transit network from truck paths. Even the worst plan time for
PP, nearly 5 minutes, is good enough in practice for an operation
horizon on the order of hours. For that setting, PP has an absolute
savings of more than 350 km and a relative savings of more than
50% compared to Direct.

Comparing PP to ECBS yields many important insights. The plan
times start out as comparable, but PP scales much more better than
ECBS with increasing trucks and/or drones, as we foreshadowed
in Section 4.3. Beyond a certain problem size, the majority of ECBS
trials have too many conflicts (our threshold is 500) and timeouts
(more than 10 minutes of planning time); those entries in the table
remain blank. Before those thresholds, there are settings where
a minority of ECBS trials time out, making the table entry not
directly comparable to PP as it averages over a subset of trials (we
have marked those in red). For example, notice how the plan time
for ECBS for 10 trucks and 40 drones shoots up to 157 seconds, i.e.,
nearly 3 minutes. Problems with truck capacity 5 take longer to
solve than those with capacity 10 because they are more resource



Table 2: The ablation with the modified approach Direct-PP
(D-PP for short) helps disentangle the relative effects of the
two stages on Vehicle Distance Traveled. The values for the
PP and Direct columns are copied over from the correspond-
ing Distance columns in Table 1.

Cap=5 Cap =10
Trucks Drones Direct D-PP PP D-PP PP
5 20 185 130 127 119 116
10 40 368 257 254 200 191
15 60 543 376 374 273 258
20 80 714 526 525 354 347

constrained and hence yield more conflicts to resolve in ECBS and
more constraints to update in PP.

In contrast to ECBS, PP does not have to resolve conflicts, has
lower plan time for most settings (with a slight exception for 5
trucks, 10 drones, and capacity 5), and is tractable even for our
largest problems. We expected it to be more efficient than ECBS,
which is why we implemented it in the first place. Even more promis-
ing is the modest gap in solution quality between PP and ECBS for
the settings where the latter is tractable. The total vehicle distance
traveled of the PP solution is typically between 10 and 20% higher
than that of the ECBS solution (the gap for 10 trucks and 40 drones
is higher though not entirely representative because ECBS times
out on some of the 20 problems). A possible reason for the small
gap in solution quality between the two approaches is that our
setting has a relatively small number of agents compared to the
pathfinding graph size, which increases the space of non-conflicting
agent paths and provides more flexibility. In problems that require
tight coordination between agents such as automated warehouse
scenarios [37], PP may struggle to find a solution.

For both ECBS and PP, Stage 2 accounts for almost all the total
plan time (over 99%). We expect this disparity between the stage
plan times for three reasons: the number of drones to plan for is
two to four times the number of trucks, constructing the composite
road-and-transit network for stage 2 is itself expensive, and the
second stage has more constraints and conflicts than the first.

5.2 Ablation Study on Effect of Stage 1

To disentangle the relative effects of the two stages of our approach
on the solution quality (vehicle distance traveled), we ran an abla-
tion study with a modified approach. Here, the first stage does not
account for the drones at all and just sets the truck routes to their
shortest paths on the road network. The second stage is the same as
our original approach, and plans for the drones over the composite
network of the road and the truck paths as transit. We expect this
modified approach to compute solutions that are better than the
Direct baseline. But the nature of these performance gaps will help
us understand how much of the advantage from Section 5.1 is due
to either stage and what future work should focus on improving.
For the ablation study, we considered problem settings with
a higher ratio of the number of drones to the number of trucks
(4). In Section 5.1, we had considered smaller ratios as well (2 and
3) to highlight the trends in solution quality and plan time with

an increasing drone/truck ratio, but in practice we would prefer
higher ratios as trucks are more expensive to operate than drones
and contribute to ground congestion. The modified approach uses
direct truck shortest paths for Stage 1 and PP for Stage 2; we call it
Direct-PP (D-PP in short). We compare its solution quality against
that of PP for both stages over the problem settings in Table 2,
averaged over 20 trials. The entries in the PP columns are copied
over from the corresponding columns in Table 1.

The performance gap between D-PP and PP appears to be quite
modest for most settings, particularly with capacity 5. Behind the
low average differences, however, are specific instances where PP
yields a significantly better solution than D-PP, e.g., in a few of the
settings with 15 drones, 60 trucks, and capacity 10, PP’s solution was
more than 20% better than that of D-PP; we found a similar gap for
a few of the settings with 10 drones, 40 trucks, and capacity 10. Of
course, PP can be arbitrarily sub-optimal depending on the priority
ordering (and we choose an arbitrary ordering for Stage 1). Future
work could investigate various modifications and improvements
to Stage 1: a more sophisticated priority ordering, a different set of
nominal drone flight paths to use as the basis for weight-discounted
copies of nearby road edges, or even a hybrid of ECBS for Stage 1
(which takes less time) and PP for Stage 2, to yield potentially better
overall solution quality without an unacceptably large decrease in
computational efficiency.

6 CONCLUSION

We introduced the problem of coordinated routing for drones and
trucks over a common large-scale road network, where the former
can use the latter as modes of transit to reduce total vehicle distance
traveled. We explained how this problem is significantly more com-
plex than prior work on MAPF. Our comprehensive algorithmic
framework elegantly decouples the intractable overall problem into
stage-wise multi-agent path finding sub-problems that it solves
for trucks and drones respectively. In practice, it yields significant
distance savings compared to independently operating trucks and
drones (more than 50%), within a reasonable computation time (up
to 5 minutes) on the large-scale Manhattan road network.

Several interesting operational extensions emerge for future
work, including equipping trucks with charging docks for the
drones and allowing drones to drop packages onto moving trucks.
In addition, we could further enhance the performance of our frame-
work through an iterative process that improves truck and drone
routes repeatedly, replans online in receding-horizon fashion, and
considers hybrid methods using different heuristics in each stage.
Finally, for practical applications, it would be useful to extend our
method to the lifelong MAPF setting [21] where agents receive
new tasks when they complete their current one, and to consider
more complex trajectory-level issues of the drone routes, such as
kinematic constraints.
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