Smaller and Deformed Ossicles in Oim/Oim Mouse Model of Osteogenesis Imperfecta

Category: Middle and External Ear

Maialen Ugarteburu^{*1}, Annalisa De Paolis¹, Anxhela Docaj¹, Michael Doube², Christoph Rau³, Luis Cardoso¹, Claus-Peter Richter⁴, Alessandra Carriero¹

¹The City College of New York, ²City University of Hong Kong, ³Diamond Light Source, ⁴Northwestern University

Background

Progressive hearing loss affects 70% of the people with Osteogenesis Imperfecta (OI), a genetic disorder generating mutations in collagen type I of connective tissues. Hearing loss in OI has early onset and is either conductive, sensorineural, or mixed. There is no cure for OI, and treatments for its hearing loss rely on conventional treatments for the general population. To date it is still unknown the mechanisms of hearing loss in OI. In this study, we examine the morphometric analysis of middle ear ossicles in the *oim/oim* mouse model of OI, suffering from hearing loss.

Methods

The ears of 14-week-old *oim* (n = 6) and wild type (WT) (n = 6) mice were imaged using synchrotron microtomography. Volumetric-morphometric analysis was conducted for the auditory ossicles. For each ossicle we determined volume, thickness and intracortical bone porosity density. Additional parameters calculated for the malleus included head volume (MhV), body volume (MbV), lamina's enclosed area, and length of the manubrium (Mm). For the incus, we measured functional length (IfL), and area of the disk. For the stapes we assessed total height (Sh), footplate-height (SfH), crura and head height (SchH), footplate's 3D surface area (SfA), and smallest and biggest head-heights. The lever arm ratio and an estimation of the area convergence ratio were also calculated. Finally, presence of fractures in the ossicles were quantified.

Results

The *oim* mice ossicles are significantly (p<0.005) smaller (total volume of the ossicles WT = 0.18 ± 0.005 mm³, *oim* = 0.17 ± 0.012 mm³) than WT counterparts, with a smaller malleus (malleus volume WT = 0.13 ± 0.003 mm³, *oim* = 0.11 ± 0.009 mm³) with a smaller head (MhV WT = 0.018 ± 0.0009 mm³, *oim* = 0.015 ± 0.0009 mm³) and body volume (MbV WT = 0.11 ± 0.003 mm³, *oim* = 0.098 ± 0.008 mm³), smaller footplate-height (SfH WT = 0.148 ± 0.004 mm, *oim* = 0.133 ± 0.007 mm) and 3D surface area (SfA WT = 0.176 ± 0.011 mm², *oim* = 0.163 ± 0.005 mm²), and larger SchH:SfH ratio (WT = 3.34 ± 0.08 , *oim* = 3.72 ± 0.27). Besides, half of the *oim* incudes were fractured at the facet for the malleus. WT ossicles had no fractures.

Conclusions

Our results report for the first time on a volumetric-morphometric analysis of the ossicles in OI and indicate a series of morphological differences between the auditory ossicles of WT and *oim* mice that may affect the biomechanics of the middle ear in *oim* mice further contributing to their hearing loss. This knowledge will aid in the understanding of hearing loss in OI and in clinical care of the same.