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Abstract—We consider a category-level perception problem,
where one is given 3D sensor data picturing an object of a given
category (e.g., a car), and has to reconstruct the pose and shape of
the object despite intra-class variability (i.e., different car models
have different shapes). We consider an active shape model, where
—for an object category— we are given a library of potential
CAD models describing objects in that category, and we adopt
a standard formulation where pose and shape estimation are
formulated as a non-convex optimization. Our first contribution
is to provide the first certifiably optimal solver for pose and shape
estimation. In particular, we show that rotation estimation can
be decoupled from the estimation of the object translation and
shape, and we demonstrate that (i) the optimal object rotation
can be computed via a tight (small-size) semidefinite relaxation,
and (ii) the translation and shape parameters can be computed in
closed-form given the rotation. Our second contribution is to add
an outlier rejection layer to our solver, hence making it robust to
a large number of misdetections. Towards this goal, we wrap our
optimal solver in a robust estimation scheme based on graduated
non-convexity. To further enhance robustness to outliers, we also
develop the first graph-theoretic formulation to prune outliers
in category-level perception, which removes outliers via convex
hull and maximum clique computations; the resulting approach
is robust to 70 − 90% outliers. Our third contribution is an
extensive experimental evaluation. Besides providing an ablation
study on a simulated dataset and on the PASCAL3D+ dataset, we
combine our solver with a deep-learned keypoint detector, and
show that the resulting approach improves over the state of the
art in vehicle pose estimation in the ApolloScape datasets.

I. INTRODUCTION

Robotics applications, from self-driving cars to domestic
robotics, demand robots to be able to identify and estimate the
pose and shape of objects in the environment. In self-driving
applications, for instance, the perception system needs to esti-
mate the poses of other vehicles in the surroundings, identify
traffic lights and traffic signs, and detect pedestrians [27, 35].
Similarly, domestic applications require estimating the location
and shape of objects to support more effective interaction and
manipulation [23, 48, 56]. Object pose estimation is made
harder by the large intra-class shape variability of common
objects: for instance, the shape of a car largely varies depend-
ing on the model (e.g., take a station wagon versus a Smart).

Despite the fast-paced progress, reliable 3D object pose
estimation remains a challenge, as witnessed by recent self-
driving car accidents caused by misdetections [51, 70]. Deep
learning has been making great strides in enabling robots
to detect objects; popular tools such as YOLO [59] and
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Fig. 1: We propose the first certifiably optimal approach to estimate
the 3D pose and shape of objects from 3D keypoint detections (red
points in (a)). Our approach estimates pose and shape using an
overcomplete library of CAD models (b) and is robust to up to
70−90% outliers in the detections. (c) The approach is more accurate
than the state of the art on the ApolloScape dataset [80].

Mask-RCNN [29] have made object detection possible on
commodity hardware and with reasonable performance for in-
distribution test data. However, detections are typically at the
level of categories (e.g., car vs. pedestrian) rather than at the
level of instances (e.g., a specific car model) and —with the
current methods— enabling instance-level detections would
require an unreasonably large amount of labeled data and
computation (e.g., to scale to million of potential instances).
In turn, category-level perception renders the use of standard
tools for pose estimation (from point cloud registration [30,
55, 87] to 2D-3D pose estimation [34, 63, 88]) ineffective,
since they rely on the knowledge of the shape of the object.

These limitations have triggered robotics and computer
vision research on category-level 3D object pose estima-
tion. Traditional methods include the popular active shape
model [16, 84, 89], where one attempts to estimate the pose
and shape of an object given a large database of 3D CAD
models. Despite its popularity (e.g., the model is also used
in human shape estimation and face detection [89]), pose
estimation with active shape models leads to a non-convex
optimization problem and local solvers get stuck in poor
solutions, and are sensitive to outliers [84, 89]. More recently,
research effort has been devoted to end-to-end learning-based
3D pose estimation with encouraging results in human pose es-
timation [35] and vehicle pose estimation [12, 33, 37, 44, 69];
these approaches still require a large amount of 3D labeled
data, which is hard to obtain in the wild.
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Contribution. We address the shortcomings of existing
approaches for pose and shape estimation based on the active
shape model and propose the first approach that can compute
optimal pose and shape estimates and is resilient to a large
number of outliers. We consider a category-level perception
problem, where one is given 3D keypoint detections of an
object belonging to a given category (e.g., detections of the
wheels, rear-view mirrors, and other interest points of a car),
and has to reconstruct the pose and shape of the object despite
intra-class variability. We assume the availability of a library
of CAD models of objects in that category; such a library is
typically available, since CAD models are extensively used in
the design, manufacturing, and simulation of 3D objects.

Our first contribution is PACE?, the first certifiably optimal
solver for 3D-3D pose and shape estimation. In particular,
we show that —despite the non-convexity of the problem—
rotation estimation can be decoupled from the estimation of
object translation and shape, and we demonstrate that (i) the
optimal object rotation can be computed via a tight (small-
size) semidefinite relaxation, and (ii) the translation and shape
parameters can be computed in closed form given the rotation.

Our second contribution is to equip PACE? with an outlier
rejection scheme. Towards this goal, we extend existing tools
for outlier rejection to category-level perception. In particular,
we build on [87] (which assumes the shape to be known) and
(i) show how to extend the graph-theoretic outlier pruning
in [87] to the case in which the shape is unknown, and
(ii) apply a graduated non-convexity [86] scheme for robust
estimation. The resulting approach is named PACE#.

Our third contribution is an extensive experimental evalu-
ation. We provide an ablation study on a simulated dataset
and on the PASCAL3D+ dataset, and show that PACE? is more
accurate than iterative solvers, while PACE# dominates other
robust solvers and is robust to 70 − 90% outliers. Finally,
we integrate our solver in a realistic system —including a
deep-learned keypoint detector— and show that the resulting
approach improves over the state of the art in vehicle pose
estimation in the ApolloScape [80] driving datasets (Fig. 1).

II. RELATED WORK

Early approaches for category-level perception focus on
2D problems, where one has to locate objects —from human
faces [54] to resistors [16]— in images. Classical approaches
include active contour models [13, 32] and active shape
models [5, 15, 16]. These works use techniques like PCA to
build a library of 2D landmarks from training data, and then
use iterative optimization algorithms to estimate the 2D object
locations in the images, rather than estimating 3D poses.

The landscape of category-level perception has been re-
cently reshaped by the rapid adoption of convolutional net-
works [36, 40, 66]. Pipelines using deep learning have seen
great successes in areas such as human pose estimation [29,
50, 52, 75, 76], and pose estimation of household objects [23,
48, 56]. With the growing interest in self-driving vehicles,
research has also focused on jointly estimating vehicle shape

and pose [12, 33, 37, 44, 69]. Many open-source driving
datasets have also been released for benchmarking [11, 68, 80].

For methods that aim to recover both the 3D shapes and
poses of the objects of interests, a common paradigm is
to use end-to-end methods. Usually, an encoder-decoder
network is used to first convert input images to some latent
representations, and then use a decoder to map the latent
representation back to 3D space [25, 60, 71]. Alternatively,
recent work [10] trains CNNs with generative representations
of 3D objects to predict probabilistic distribution of object
poses. An additional alignment loss can also be incorporated
into the network to regress for pose directly [3, 46, 47]. One
drawback of such approaches is that it is difficult for neural
networks to learn the necessary 3D structure of the object on
a per-pixel basis. As shown in [72], such networks can be
outperformed by methods trained on model recognition and
retrieval only.

Multi-stage methods form another major paradigm for
category-level perception. Such approaches first recover the
position of semantic keypoints [56] in the images with neural
networks, and then recover the 3D pose of the object by
solving a geometric optimization problem [31, 53, 56, 57,
64]. In some works, a canonical coordinate space is pre-
dicted by a network instead of relying on geometric rea-
soning [14, 22, 41, 78]. Lim et al. [42] establish 2D-3D
correspondences between images and textureless CAD models
by using HOG descriptors, and render edgemaps of the CAD
models. Chabot et al. [12] use a two-staged approach to first
regress a set of 2D part coordinates, and then choose the
best corresponding 3D template and use PnP to solve for
the 3D pose. Pavlakos et al. [56] use a stacked hourglass
neural network [52] for 2D semantic keypoint detection, and
then employ block coordinate descent to resolve the object
pose. Zhou et al. [89, 90] propose a convex relaxation for
jointly optimizing 3D shape parameters and object pose from
2D keypoints under a weak perspective camera model. Yang
and Carlone [84] apply the moment/sums-of-squares hierar-
chy [7, 39, 79] to develop tighter relaxations than [89] but lead
to semidefinite programs whose size grows with the number
of CAD models. Probabilistic guarantees are studied in [81].

Our work belongs to the class of multi-stage methods,
but we assume to have access to depth information for the
semantic keypoints (i.e., we consider a 3D-3D estimation
setup [65]). Depth information is readily available in many
robotics problems via direct sensing (e.g., RGB-D or stereo)
or algorithms (e.g., mono depth techniques [19, 38]). As we
will show in Section IV, the use of depth information allows
us to mathematically decouple the estimation of rotation from
object translation and shape parameters, which leads to the first
certifiably optimal solver that runs in a fraction of a second
even in the presence of thousands of CAD models.

III. PROBLEM STATEMENT:
3D-3D CATEGORY-LEVEL PERCEPTION

Active Shape Model. We consider the problem of esti-
mating the 3D pose (R, t) and shape of an object, where



R ∈ SO(3) and t ∈ R3 are the unknown 3D rotation and
translation of the object, respectively. We assume the object
shape to be partially specified: we are given a library of 3D
CAD models Bk, k = 1, . . . ,K, and assume that the unknown
object shape S (modeled as a collection of 3D points) can be
written as a combination of the given CAD models. More
formally, each point s(i) of the shape S can be written as:

s(i) =
∑K
k=1 ckbk(i) (1)

where bk(i) is a given point belonging to the CAD model Bk;
the shape parameters c , [c1 . . . cK ]T are unknown, and the
entries of c are assumed to be non-negative and sum up to 1
(c ≥ 0,

∑K
k=1 ck = 1). For instance, if —upon estimation—

the vector c has the l-th entry equal to 1 and the remaining
entries equal to zero in (1), then the estimated shape of the
object matches the l-th CAD model in the library; therefore,
the estimation of the shape parameters c can be understood as
a fine-grained classification of the object among the instances
in the library. However, the model is even more expressive,
since it allows the object shape to be a convex combination
of CAD models, which enables the active shape model (1) to
interpolate between different shapes in the library.

Measurements. Towards the goal of estimating the object
pose and shape, we are given a set of N 3D keypoint detec-
tions. These are noisy measurements of 3D points belonging
to the object and are commonly obtained using learning-based
semantic keypoint detectors applied to RGB-D or RGB+Lidar
data (e.g., [56]). Each measurement y(i) (i = 1, . . . , N ) is
described by the following generative model:

y(i) = R
∑K
k=1 ckbk(i) + t+ ε(i) i = 1, . . . , N (2)

where the measurement y(i) pictures a 3D point on the object
(written as a linear combination

∑K
k=1 ckbk(i) of the shapes

in the library as in (1)), after these are rotated and translated
according to the 3D pose (R, t) of the object, and where ε(i)
represents measurement noise. Intuitively, each measurement
corresponds to a noisy measurement of a semantic feature of
the object (e.g., wheel center or rear-view mirrors of a car) and
each bk(i) corresponds to the feature location for a specific
CAD model. We are now ready to state the 3D-3D category-
level perception problem.

Problem 1 (3D-3D Category-Level Perception). Compute
the 3D pose (R, t) and shape (c) of an object given N 3D
keypoint measurements in the form (2), possibly corrupted by
outliers, i.e., measurements with large error ε(i).

IV. CERTIFIABLY OPTIMAL SOLVER
FOR 3D-3D CATEGORY-LEVEL PERCEPTION

This section shows how to solve Problem 1 in the outlier-
free case, where the noise ε(i) is assumed to follow a zero-
mean Gaussian distribution (we generalize the formulation to
deal with outliers in Section V). A standard formulation for

the pose and shape estimation problem leads to the following
regularized non-linear least squares problem:

min
R∈SO(3),

t∈R3,c∈RK

N∑
i=1

wi

∥∥∥∥∥y(i)−R
K∑
k=1

ckbk(i)− t

∥∥∥∥∥
2

+ λ ‖c‖2 (3)

s.t. 1Tc = 1

where the first summand in the objective minimizes the
residual error w.r.t. the generative model (2) (wi ≥ 0, i =
1, . . . , N are given weights), and the second term provides an
`2 regularization (a.k.a. Tikhonov regularization [74]) of the
shape coefficients c (controlled by the user-specified parameter
λ ≥ 0); the constraint 1Tc = 1 (where 1 is a vector with
all entries equal to 1) forces the shape coefficients to sum-
up to 1; in this section, we drop the constraint that c has to
be nonnegative for mathematical convenience. Numerically,
the regularization term ensures the problem is well-posed
regardless of the number of shapes in the library (otherwise,
the problem would be under-constrained when K is large).
From the probabilistic standpoint, problem (3) is a maximum a
posteriori estimator assuming that the keypoints measurement
noise follows a zero-mean Gaussian with covariance 1

wi
I3

(where I3 is the 3-by-3 identity matrix) and we have a
zero-mean Gaussian prior with covariance 1

λ over the shape
parameters c (proof in Appendix A).

Problem (3) is non-convex due to the product between
rotation R and shape parameters c in the objective, and due
to the nonconvexity of the constraint set SO(3) the rotation R
is required to belong to, see e.g., [28, 62]. Therefore, existing
approaches based on local search [26, 43, 58] are prone to
converge to local minima corresponding to incorrect estimates.

Results Overview. The rest of this section provides the first
certifiably optimal algorithm to solve Problem (3). Towards
this goal we show that (i) the translation t in (3) can be
solved in closed form given the rotation and shape parameters
(Section IV-A), (ii) the shape parameters c can be solved in
closed form given the rotation (Section IV-B), and (iii) the
rotation can be estimated (independently on shape and trans-
lation) using a tight semidefinite relaxation (Section IV-C).
This sequence of results leads to an optimal solver for pose
and shape summarized in Section IV-D.

A. Closed-form Translation Estimation
From simple inspection of (3), we observe that the vector t

is unconstrained and appears quadratically in the cost function,
i.e., from the standpoint of t, eq. (3) is a linear least squares
problem. Therefore, for any choice of R and c, the optimal
translation can be computed in closed-form as:

t?(R, c) = yw −R
∑K
k=1 ckbk,w (4)

where

yw,
1

(
∑N

i=1wi)

N∑
i=1

wiy(i), bk,w,
1

(
∑N

i=1wi)

N∑
i=1

wibk(i), (5)

are the weighted centroids of y(i) and bk(i)’s. This manipu-
lation is common in related work, e.g., [84, 89].



B. Closed-form Shape Estimation

Substituting the optimal translation (4) (as a function of
R and c) back into the cost function (3), we obtain an
optimization problem that only depends on R and c:

min
R∈SO(3),c∈RK

∑N
i=1

∥∥∥ȳ(i)−R
∑K
k=1 ckb̄k(i)

∥∥∥2

+ λ ‖c‖2 (6)

s.t. 1Tc− 1 = 0

where
ȳ(i) ,

√
wi(y(i)− yw), b̄k(i) ,

√
wi(bk(i)− bk,w), (7)

are the (weighted) relative positions of y(i) and bk(i)
w.r.t. their corresponding weighted centroids. Using the fact
that the `2 norm is invariant to rotation, problem (6) is
equivalent to:

min
R∈SO(3),c∈RK

∑N
i=1

∥∥∥RTȳ(i)−
∑K
k=1 ckb̄k(i)

∥∥∥2

+ λ ‖c‖2 (8)

s.t. 1Tc− 1 = 0

We can further simplify the expression by adopting the
following matrix notations:

ȳ =
(
ȳ(1)

T

, . . . , ȳ(N)
T
)T

∈ R3N (9)

B̄ =

 b̄1(1) · · · b̄K(1)
...

. . .
...

b̄1(N) · · · b̄K(N)

 ∈ R3N×K (10)

which allows rewriting (8) in the following compact form:

min
R∈SO(3),c∈RK

∥∥B̄c− (IN ⊗RT)ȳ
∥∥2

+ λ ‖c‖2 (11)

s.t. 1Tc− 1 = 0

Now the reader can again recognize that —for any choice of
R— problem (11) is a linearly-constrained linear least squares
problem in c, which admits a closed-form solution.

Proposition 1 (Optimal Shape). For any choice of rotation
R, the optimal shape parameters that solve (11) can be
computed in closed-form as:

c?(R) = 2GB̄T(IN ⊗RT)ȳ + g (12)

where we defined the following constant matrices and vectors:

H̄ , 2(B̄TB̄ + λIK) (13)

G , H̄−1 − H̄
−111TH̄−1

1TH̄−11
, g ,

H̄−11

1TH̄−11
(14)

C. Certifiably Optimal Rotation Estimation

Substituting the optimal shape parameters (12) (as a func-
tion of R) back into the cost function (11), we obtain an
optimization problem that only depends on R:

min
R∈SO(3)

∥∥M(IN ⊗RT)ȳ + h
∥∥2

(15)

where the matrix M ∈ R(3N+K)×3N and vector h ∈ R3N+K

are defined as:

M ,

[
2B̄GB̄T − I3N

2
√
λGB̄T

]
, h ,

[
B̄g
g

]
. (16)

Problem (15) is a quadratic optimization over the non-convex
set SO(3). It is known that the setR ∈ SO(3) can be described
as a set of quadratic equality constraints, see e.g., [62, 77]
or [84, Lemma 5]. Therefore, we can succinctly rewrite (15)
as a quadratically constrained quadratic program (QCQP).

Proposition 2 (Optimal Rotation). The category-level rota-
tion estimation problem (15) can be equivalently written as a
quadratically constrained quadratic program (QCQP):

min
r̃∈R10

r̃TQr̃ (17)

s.t. r̃TAir̃ = 0,∀i = 1, . . . , 15

where r̃ , [1, vec (R)
T

]T ∈ R10 is a vector stacking all the
entries of the unknown rotation R in (15) (with an additional
unit element), Q ∈ S10 is a symmetric constant matrix (ex-
pression given in Appendix D), and Ai ∈ S10, i = 1, . . . , 15
are the constant matrices that define the quadratic constraints
describing the set SO(3) [84, Lemma 5].

While a QCQP is still a non-convex problem, it admits a
standard semidefinite relaxation, described below.

Corollary 3 (Shor’s Semidefinite Relaxation). The following
semidefinite program (SDP) is a convex relaxation of (17).

min
X∈S10

tr (QX) (18)

s.t. tr (A0X) = 1,

tr (AiX) = 0,∀i = 1, . . . , 15

X � 0

Moreover, when the optimal solution X? of (18) has rank 1,

it can be factored as X? =

[
1

vec (R?)

]
[1 vec (R?)] where

R? is the optimal rotation minimizing (15).

The rationale behind using the relaxation (18) is threefold:
(i) similar to related quadratic problems over SO(3) [9, 21,
62, 83, 87], the relaxation (18) empirically produces rank-1
—and hence optimal— solutions in common problems; (ii)
even when the relaxation is not tight, the problem allows
computing how suboptimal the resulting estimate is; (iii)
the relaxation entails solving a small semidefinite program
(10 × 10 matrix size, and 16 linear equality constraints),
hence it can be solved in milliseconds using standard interior-
point methods (e.g., MOSEK [2] interfaced via CVX [24]
or CVXPY [18]). The proposed solution falls in the class of
certifiable algorithms (see [4] and Appendix A in [87]), since
it allows solving a hard (non-convex) problem efficiently and
with provable a posteriori guarantees.

D. Summary

The results in this section suggest a simple algorithm to
compute a certifiably optimal solution to the original pose and
shape estimation problem (3): (i) we fist compute the optimal
rotation R? using the semidefinite relaxation (18) (which
is independent from the translation and shape parameters);
(ii) we retrieve the optimal shape c?(R?) given the optimal



Fig. 2: Example of compatibility test with 3 CAD models of cars (red,
dark green, blue, indexed from 1 to 3). (Noiseless) inliers (e.g., the
detection of the back wheel y(i) in the figure) must fall in the convex
hull of the corresponding points on the CAD models (e.g., triangle
b1(i)− b2(i)− b3(i) encompassing the back wheel positions across
CAD models). This restricts the relative distance between two inliers
and allows filtering out outliers. For instance, the dashed black line
shows a distance that is compatible with the location of the convex
hulls, while the solid black line is too short compared to the relative
position of the wheels (for any car model) and allows pointing out
that there is an outlier (i.e., y(j) in the figure).

rotation using (12). Finally, we retrieve the optimal translation
t?(R?, c?) using (4). We call the resulting algorithm PACE?

(shaPe and pose estimAtion for Category-level pErception).

V. INCREASING ROBUSTNESS VIA OUTLIER PRUNING AND
GRADUATED NON-CONVEXITY

This section extends the optimal solver presented in the
previous section to deal with the case where some of the
measurements are outliers, i.e., some measurements in (2) have
unexpectedly large noise. In such as case, problem (3) (even
when solved to optimality) does not return an accurate estimate
since the quadratic cost in (3) implicitly assumes the mea-
surement noise to be a zero-mean Gaussian. This section first
presents a pre-processing that filters out gross outliers from the
measurements using a graph-theoretic pruning (Section V-A).
Then, we show that the optimal solver (PACE?) can be easily
re-used in a robust estimation framework based on graduated
non-convexity [86] (Section V-B).

A. Outlier Pruning for Category-Level Perception

We use a graph-theoretic approach to prune outliers, similar
to [20, 45, 65, 87]. The key idea is to check if pairs of 3D
keypoints can be mutually compatible (i.e., can possibly be
simultaneously inliers) and model pair-wise compatibility as
edges in a graph where the nodes are the 3D keypoints. Then,
since the inliers are all mutually compatible, they must form a
large clique in the graph and can be retrieved by computing the
maximum clique. Our main novelty is to develop an efficient
mutual compatibility test for category-level perception, while
related work has focused on known shapes [20, 65, 87].

Mutually Compatible Measurements. The goal here is
to design a boolean condition that allows asserting if two
measurements can be both inliers for any choice of pose

and shape parameters. The challenge is that such a condition
should not depend on the pose and shape parameters, which
are unknown. Therefore, we show how to manipulate the
model (2) to obtain a condition that do not depend on R,
t, and c. Towards this goal, let us call ε the maximum error
for a measurement to be called an inlier. In other words, a
measurement in (2) is an inlier if ‖ε(i)‖≤ ε.

A pair of inliers i and j in eq. (2) must satisfy ‖ε(i)‖≤ ε
and ‖ε(j)‖≤ ε. Taking the difference between measurement i
and j in (2) leads to:

y(j)− y(i) = R

K∑
k=1

ck(bk(j)− bk(i)) + (ε(j)− ε(i))

where the translation cancels out in the subtraction. Now
taking the `2 norm of both members:

‖y(j)− y(i)‖= ‖R
K∑
k=1

ck(bk(j)− bk(i)) + (ε(j)− ε(i))‖

Using the triangle inequality and observing that ‖ε(i)‖≤ ε and
‖ε(j)‖≤ ε imply ‖ε(j)− ε(i)‖≤ 2ε:

−2ε ≤ ‖y(j)− y(i)‖−‖R
K∑
k=1

ck(bk(j)− bk(i))‖≤ 2ε (19)

Now observing that the `2 norm is invariant to rotation and
rearranging the terms:

‖
∑K
k=1 ck(bk(j)− bk(i))‖−2ε ≤ ‖y(j)− y(i)‖ ≤ (20)

‖
∑K
k=1 ck(bk(j)− bk(i))‖+2ε

Considering the extreme cases over the set of possible shape
coefficients:

bmin
ij︷ ︸︸ ︷

min
c≥0,1Tc=1

‖
K∑
k=1

ck(bk(j)− bk(i))‖−2ε ≤ ‖y(j)− y(i)‖≤ (21)

max
c≥0,1Tc=1

‖
K∑
k=1

ck(bk(j)− bk(i))‖︸ ︷︷ ︸
bmax
ij

+2ε

Since
∑K
k=1 ckbk(j) is a convex combinations of the points

bk(j) (k = 1 . . . ,K) and hence lies in the convex hull of such
points, the term ‖

∑K
k=1 ck(bk(j)−bk(i))‖ represents the dis-

tance between two (unknown) points in the two convex hulls
defined by the set of points bk(j) and bk(i) (k = 1 . . . ,K)
(Fig. 2). The minimum bmin

ij and the maximum bmax
ij over the

convex hulls can be easily computed, either in closed form or
via small convex programs (details in Appendix F). Therefore,
a pair of inliers must satisfy:

bmin
ij − 2ε ≤ ‖y(j)− y(i)‖≤ bmax

ij + 2ε (22)

Note that bmin
ij and bmax

ij only depend on the given library and
can be pre-computed. Any pair of measurements that do not
satisfy (22) cannot be simultaneously inliers for problem (2).



Largest Set of Compatible Measurements. The compati-
bility test (22) checks if a pair of measurements can be together
in the inlier set. Therefore, after testing compatibility between
every pair of keypoints, we can find inliers by searching
for the largest set of mutually compatible measurements.
References [20, 45, 65, 87] have already established that
the largest set of mutually compatible measurements can be
found by computing the maximum clique of a graph where
nodes correspond to the 3D keypoints and an edge connects
nodes i and j is the corresponding measurements satisfy
the compatibility test (22). While we refer the reader to
those papers for details, here we observe that such graph-
theoretic approach has been shown to remove a large amount
of gross outliers [87] (while preserving all inliers). We will
handle the remaining outliers using graduated non-convexity
as discussed in the next section. In our experiments, we show
that while graduated non-convexity can be robust to up to
50− 60% outliers, the addition of this graph-theoretic outlier
pruning boosts robustness to 70− 90% outliers.

B. Graduated Non-Convexity for Category-Level Perception

While the graph-theoretic outlier pruning in the previous
section is able to filter out a large fraction of gross outliers
(without even computing an estimate), in this section we
show how to use the remaining measurements (potentially
still contaminated by a few outliers) to compute an accurate
pose and shape estimate. Towards this goal, we use a standard
robust estimation framework, and we optimize the resulting
optimization using graduated non-convexity (GNC) [86].

As prescribed by standard robust estimation, we re-gain
robustness to outliers by replacing the squared `2 norm in (3)
with a robust loss function ρ:

min
R∈SO(3),

t∈R3,c∈RK

N∑
i=1

ρ

(∥∥∥∥∥y(i)−R
K∑
k=1

ckbk(i)−t

∥∥∥∥∥
)

+λ ‖c‖2

s.t. 1Tc = 1 (23)

While GNC can be applied to a broad class of loss func-
tions [86], here we consider a truncated least square loss
ρ(r) = min(r2, ε2) which minimizes the squared residuals
whenever they are below ε2 (note: the constant ε is the same
inlier threshold of the previous section) or becomes constant
otherwise. Such cost function can be written by using auxiliary
slack variables ρ(r) = min(r2, ε2) = minω∈{0,1} ωr

2 + (1 −
ω)ε2 [86], hence allowing to rewrite (23) as:

min
R∈SO(3),

t∈R3,c∈RK

ωi∈{0,1}∀i

N∑
i=1

ωi

∥∥∥∥∥y(i)−R
K∑
k=1

ckbk(i)−t

∥∥∥∥∥
2

+(1−ωi)ε2+λ ‖c‖2

s.t. 1Tc = 1 (24)

In (24), when ωi = 1, the i-th measurement is considered
an inlier and the cost minimizes the corresponding squared
residual; when ωi = 0, the cost becomes independent of y(i)
hence the corresponding measurement is rejected as an outlier.

Therefore, problem (24) simultaneously estimates pose and
shape variables (R, t, c) while classifying inliers/outliers via
the binary weights ωi (i = 1, . . . , N ).

Now the advantage is that we can minimize (24) with
an alternation scheme where we iteratively optimize (i) over
(R, t, c) with fixed weights ωi and (ii) over the weights ωi
with fixed (R, t, c). This approach is convenient since the
optimization over (R, t, c) can be solved to optimality using
PACE?, while the optimization of the weights can be solved
in closed form [86]. To improve convergence of this alterna-
tion scheme, we adopt graduated non-convexity [6, 86, 86],
which starts with a convex approximation of the loss function
in (24) and then gradually increases the non-convexity until
the original robust loss ρ in (24) is retrieved.

We call PACE# the approach applying graph-theoretic outlier
pruning and then using GNC to retrieve a robust estimate.

VI. EXPERIMENTS

In this section, we first demonstrate the optimality of PACE?

and the robustness of PACE# in simulated data and in the PAS-
CAL3D+ dataset [82] (Section VI-A). Then we show that PACE#
can be integrated in a realistic perception system and achieve
state-of-the-art performance on vehicle pose estimation in the
ApolloScape dataset [80] (Section VI-B). In both cases, our
solvers outperform baseline approaches in terms of accuracy.

A. Ablation: Optimality and Robustness

Optimality of PACE?. To evaluate the performance of PACE?

in solving the outlier-free problem (3), we randomly simulate
K shape models Bk whose points bk(i)’s are drawn from
an i.i.d. Gaussian distribution N (0, I3). We sample shape
parameters c uniformly at random in [0, 1]K , and normalize
c such that 1Tc = 1. Then we draw random poses (R, t)
as in [87] and generate the measurements y(i) according to
the model (2), where the noise ε(i) follows N (0, σ2I3) with
standard deviation σ = 0.01. We fix N = 100, increase
K from 10 up to 2000 and set the regularization factor
λ =

√
K/N so that larger regularization is imposed when

K increases and the problem becomes more ill-posed. We
compare PACE? with a baseline approach based on alternating
minimization [26, 43, 58] (details given in Appendix G) that
offers no optimality guarantees (label: Altern).

Fig. 3(a) plots the statistics of rotation error (angular dis-
tance between estimated and ground-truth rotations), trans-
lation error, shape parameters error (`2 distance between
estimated and ground-truth translation/shape parameters), as
well as average runtime and relative duality gap (details in
Appendix E). We make the following observations: (i) PACE?

returns accurate pose and shape estimates up to K = 2000,
while Altern starts failing at K = 500. (ii) Although Altern
is faster than PACE? for small K (e.g., K < 200), PACE? is
orders of magnitude faster than Altern for large K. In fact, the
runtime of PACE? only slightly increases because PACE? solves
a fixed-size SDP regardless of the increase in K (the increase
in runtime is due to inversion of a dense matrix in (13)). (iii)
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(a) Performance of the certifiably optimal solver PACE? on outlier-free random simulated data: N = 100.
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(b) Robustness of PACE# against increasing outliers on random simulated data: N = 100, K = 10, r = 0.1.
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(c) Robustness of PACE# against increasing outliers on the car category in the PASCAL3D+ dataset [82]: N = 12, K = 9.
Fig. 3: Performance of PACE? and PACE# compared with baselines in simulated experiments. (a) PACE? compared with alternating
minimization (Altern) on random simulated outlier-free data with N = 100 and K increasing from 10 to 2000; (b) PACE# along with
two individual components of itself (Clique-PACE? and GNC), compared with two variants of iterative reweighted least squares (IRLS-GM and
IRLS-TLS) [73] on random simulated outlier-contaminated data with N = 100, K = 10 and outlier rates up to 93%; (c) same as (b) but
using the car category CAD models from the PASCAL3D+ dataset [82], with N = 12, K = 9 and outlier rates up to 80%. Each boxplot and
lineplot summarizes 50 Monte Carlo random runs.

The relaxation (18) is empirically tight (duality gap < 10−4),
certifying global optimality of the solution returned by PACE?.

Robustness of PACE#. To test the robustness of PACE# on
outlier-contaminated data, we follow the same data generation
protocol as before, except that (i) when generating the CAD
models, we follow a more realistic active shape model [16]
where we first generate a mean shape B whose points b(i)’s
are i.i.d. Gaussian N (0, I3), and then each CAD model is
generated from the mean shape by: bk(i) = b(i) + v(i),
where v(i) follows N (0, r2I3) and represents the intra-class
variation of semantic keypoints with variation radius r. (ii)
we replace a fraction of the measurements y(i) with arbitrary
3D points sampled according to N (0, I3) and violating the
generative model (2). We compare PACE# with two vari-
ants: Clique-PACE? (i.e., after pruning outliers using maximum
clique, PACE? is applied without GNC) and GNC (i.e., GNC
is applied to problem data without any outlier pruning), as
well as two variants of the popular iterative reweighted least
squares heuristics: IRLS-TLS and IRLS-GM, where TLS and
GM denote the truncated least squares cost function and the
Geman-McClure cost function [73]. For fair comparison, we

use PACE? inside PACE#, GNC, IRLS-TLS, and IRLS-GM when
updating (R, t, c) given fixed weights. We set ε = 0.05 for
outlier pruning and GNC. Fig. 3(b) plots the results under
increasing outlier rates up to 93% when N = 100, K = 10
and r = 0.1. We make the following observations: (i) IRLS-
TLS quickly fails (at 10% outlier rate) due to the binary nature
of the TLS cost, while IRLS-GM is robust to 40% outliers. (ii)
GNC alone already outperforms IRLS-TLS and IRLS-GM and is
robust to 60% outliers. (iii) With our maximum-clique outlier
pruning, the robustness of PACE# is boosted to 92%, a level that
is comparable to cases when the shapes are known (e.g., [87]).
In addition, outlier pruning speeds up the convergence of GNC
(cf. number of iterations plot for GNC and PACE# in Fig. 3(b)).
(iv) Even without GNC, the outlier pruning is so effective that
PACE? alone is able to succeed with up to 90% outliers, despite
that the estimates are typically less accurate than PACE#. In
fact, looking at the clique inlier rate plot (green lineplot in
Fig. 3(b)), the reader sees that the set of measurements after
maximum clique pruning is almost free of outliers, explaining
the surprising performance of Clique-PACE?. In Appendix H,
we show extra results for r = 0.2 and K = 50, which further



confirm PACE#’s robustness to 90% outliers.
Robustness on PASCAL3D+. For a simulation setup that is

closer to realistic scenarios, we use the CAD models from the
car category in the PASCAL3D+ dataset [82], which contains
K = 9 CAD models of N = 12 semantic keypoints. We
randomly sample (R, t, c) and add noise and outliers as
before, and compare the performance of PACE# with other
baselines, as shown in Fig. 3(c). The dominance of PACE#
over other baselines, and the effectiveness of outlier pruning
is clearly seen across the plots. PACE# is robust to 70% outliers,
while other baselines break at a much lower outlier rate. Note
that at 80% outlier rate, there are only two inlier semantic
keypoints, making it pathological to estimate shape and pose.

B. Vehicle Pose Estimation on ApolloScape

Setup and Baselines. We evaluate PACE# on the ApolloScape
dataset [67, 80]. The ApolloScape self-driving dataset is a large
collection of multi-modal data collected in four different cities
in China under varying lighting and road conditions [80].
Within the dataset, annotations are provided for different per-
ception tasks, ranging from pixel-level semantic segmentation
to dense semantic 3D point clouds for the environments. For
our experiments, we specifically use the subset of ApolloScape
named ApolloCar3D. ApolloCar3D consists of high-resolution
(3384× 2710) images taken from the main ApolloScape dataset,
with additional 2D annotations of semantic keypoints, ground
truth poses, and 3D CAD models of car instances in each
frame. The dataset contains a total of 5277 images, with an
average of 11.7 cars per image, and a total of 79 ground-
truth CAD models [67]. For each car, a total of 66 semantic
keypoints were labeled on 2D images.

We compare PACE# against DeepMANTA [12], 3D-
RCNN [37], and GSNet [33], three recent state of the art
methods for 3D vehicle pose estimation. For our experiments,
we use the official splits of the ApolloCar3D dataset. Namely,
we use the validation split (200 images) for all the quantita-
tive experiments shown below, consistent with the evaluation
setups reported in other baseline methods.

We use the 2D semantic keypoints extracted by GSNet [33]
as measurements for PACE#; in particular we use the pretrained
weights from [33] and reject keypoints with confidence less
than 0.05. For each 2D semantic keypoint, we retrieve the
corresponding depth from the depth images provided by Apol-
loScape; the resulting technique is labeled PACE#-ApolloDepths.
We also provide an ablation study to assess the impact of depth
and keypoint quality on PACE#. Towards this goal, we test two
variants: PACE#-GTDepths uses ground-truth depths obtained
by ray-tracing the GSNet keypoints using ground-truth 3D
car models, while PACE#-GTKeypoints uses ground-truth 2D
semantic keypoints with ground-truth depths. While the 2D
semantic keypoint annotations are provided by ApolloCar3D,
the dataset does not provide the corresponding 3D keypoint
annotations on the CAD models. To obtain the necessary 2D-
3D correspondences, we manually label the 66 3D semantic
keypoints on the 79 CAD models. We then provide this set

of labeled 3D points as the shape library to PACE#. We use
λ = 0.5 and ε = 0.15 in PACE#.

Results. Table I shows the performance of PACE# against
various baselines. We use two metrics called A3DP-Rel and
A3DP-Abs (for both, the higher the better) following the
same definitions used in [67]. They are measures of pre-
cision with thresholds jointly considering translation, rota-
tion, and 3D shape similarity between estimated cars and
ground truth. A3DP-Abs uses absolute translation thresholds,
whereas A3DP-Rel uses relative translation thresholds. The
mean column represents the average A3DP-Abs/Rel over 10
different thresholds. c-l represents a loose criterion (2.8 m
for translation error, π/6 rad for rotation error, and 0.5 for
shape similarity), and c-s represents a strict criterion (1.4 m
for translation error, π/12 rad for rotation error, and 0.75 for
shape similarity). PACE# outperforms the baselines in terms
of the mean and c-s criteria; this is partially expected since
we use depth information, which is not available to the other
methods. In terms of the strict criterion c-s, PACE# outperforms
competitors by a large amount, confirming that it can re-
trieve highly accurate estimates. PACE#-GTDepths outperforms
baselines across all criteria, suggesting that if accurate depth
measurements are available, PACE# can roughly double the
performance of state-of-the-art methods in terms of mean
and c-s criteria. PACE#-GTKeypoints shows the results produced
by PACE# when using ground-truth keypoint detections and
depths: this is the best potential accuracy PACE# could achieve
if provided with perfect keypoint detections. In our tests, the
average number of inliers produced by GSNet is 21.8%,1

showing that there is still a large margin of improvement for
state-of-the-art methods in semantic keypoint detection.

A3DP-Rel ↑ A3DP-Abs ↑

mean c-l c-s mean c-l c-s

DeepMANTA [12] 16.0 23.8 19.8 20.1 30.7 23.8
3D-RCNN [37] 10.8 17.8 11.9 16.4 29.7 19.8
GSNet [33] 20.2 40.5 19.9 18.9 37.4 18.4
PACE#-ApolloDepths 25.9 35.7 33.7 22.4 34.7 31.6

PACE#-GTDepths 36.0 45.4 43.6 35.3 44.2 43.2
PACE#-GTKeypoints 64.5 88.1 86.0 64.3 88.1 86.1

TABLE I: Evaluation of PACE# on ApolloScape. Results for
DeepMANTA,3D-RCNN, and GSNet are taken from [33]. The best
result for each column is highlighted in boldface.

Table II shows the timing breakdown for PACE#. We also
report the timing for the GSNet keypoint detection from [33]
for completeness. In our current implementation of PACE#, the
max-clique pruning is in C++ and its runtime is negligible,
while GNC is implemented in Python. All tests are run on a
Linux computer with an Intel i9-9920X CPU at 3.5 GHz.

GSNet keypoint detection PACE#
Max-clique GNC

0.45 s 2 ms 0.45 s

TABLE II: Timing breakdown for PACE#.

1We define true inliers as 2D keypoint detections such that there exists a
ground-truth annotated keypoint with the same ID within a radius of 5 pixels.



VII. CONCLUSION

We proposed PACE?, the first certifiably optimal solver for
the estimation of the pose and shape of 3D objects from
3D keypoint detections. While existing iterative methods get
stuck in local minima corresponding to poor estimates, PACE?

leverages a tight and fixed-size SDP relaxation to compute cer-
tifiably optimal estimates. We also design a second algorithm,
PACE#, that adds an outlier rejection layer to PACE? and is able
to estimate accurate pose and shape parameters in the face of
large amounts of outliers (e.g., 70−90% of the measurements
are incorrect). The proposed methods dominate the state of
the art in terms of accuracy and robustness on both Monte
Carlo simulations and on the PASCAL3D+ dataset. Moreover,
we show that PACE# can be successfully combined with deep-
learned keypoint detectors, and leads to highly accurate vehicle
pose estimates in the ApolloScape driving datasets.
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APPENDIX A
PROBLEM (3) IS A MAP ESTIMATOR WHEN THE

MEASUREMENT NOISE IS GAUSSIAN

Here we prove that the optimization in eq. (3) is a maximum
a posteriori (MAP) estimator when the measurement noise
ε(i) in (2) follows a zero-mean Gaussian with covariance

1
wi

I3 (where I3 is the 3-by-3 identity matrix) and we have
a zero-mean Gaussian prior with covariance 1

λIK over the
shape parameters c. Mathematically:

P (ε(i)) = κε exp
(
−wi

2
‖ε(i)‖2

)
, (A1)

P (c) = κc exp

(
−λ

2
‖c‖2

)
, (A2)

where κε and κc are suitable normalization constants that are
irrelevant for the following derivation.

A MAP estimator for the unknown parameters x ,
{R, t, c} (belonging to a suitable domain X) given measure-
ments y(i) (i = 1, . . . , N ) is defined as the maximum of the
posterior distribution P (x|y(1) . . . y(N)):

arg max
x∈X

P (x|y(1) . . . y(N)) = arg max
x∈X

N∏
i=1

P (y(i)|x)P (x)

(A3)
where on the right we applied Bayes rule and used the standard
assumption of independent measurements. Using (A1) and (2)
we obtain:

P (y(i)|x) = κε exp

−wi
2

∥∥∥∥∥y(i)−R
K∑
k=1

ckbk(i)−t

∥∥∥∥∥
2
 . (A4)

Moreover, assuming we only have a prior on c:

P (x) = P (c) = κc exp

(
−λ

2
‖c‖2

)
. (A5)

Substituting (A4) and (A5) back into (A3) and observing that
the maximum of the posterior is the same as the minimum of
the negative logarithm of the posterior:

arg max
x∈X

N∏
i=1

P (y(i)|x)P (x) = (A6)

arg min
x∈X

N∑
i=1

− logP (y(i)|x)− logP (x) = (A7)

arg min
R∈SO(3),

t∈R3,c∈RK ,

1Tc=1

N∑
i=1

wi
2

∥∥∥∥∥y(i)−R
K∑
k=1

ckbk(i)− t

∥∥∥∥∥
2

(A8)

+
λ

2
‖c‖2+constants (A9)

which, after dropping constant multiplicative and additive
factors, can be seen to match eq. (3), proving the claim.

APPENDIX B
PROBLEM (23) IS A MAP ESTIMATOR WHEN THE

MEASUREMENT NOISE IS HEAVY-TAILED

Here we prove that the optimization in eq. (23) with a
truncated least square loss ρ(r) = min(r2, ε2) is a maximum a
posteriori (MAP) estimator when the measurement noise ε(i)
in (2) follows a max-mixture distribution, where we replace

https://arxiv.org/pdf/1905.12536.pdf
https://arxiv.org/pdf/1911.11924.pdf
https://arxiv.org/pdf/2006.06769.pdf
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the tails of a Gaussian with a uniform distribution —a model
we borrow from [1]. Mathematically:

P (ε(i)) =

 κε exp
(
− 1

2‖ε(i)‖
2
)
, ‖ε(i)‖< ε,

κε exp
(
− 1

2ε
2
)
, ‖ε(i)‖∈ [ε, α],

0, otherwise,
(A10)

where ε is the maximum noise for an inlier, κε is a normal-
ization constant, and α defines the support of the uniform
distribution (both κε and α are irrelevant for the derivation);
in (A10) —without loss of generality— we assumed unit
covariance for the Gaussian. Intuitively, eq. (A10) describes a
Gaussian distribution for errors below ε, but for errors larger
than ε the Gaussian tails have been substituted by a uniform
distribution (observe that κε exp

(
− 1

2ε
2
)

is a constant). Then
the proof trivially follows from [1, Proposition 5] (the expres-
sion of the shape priors remains the same as Appendix A).

APPENDIX C
CLOSED-FORM SHAPE ESTIMATION:

PROOF OF PROPOSITION 1
Fixing R, the Lagrangian of the linearly constrained linear

least squares problem (11) is:

L =
∥∥B̄c− (IN ⊗RT)ȳ

∥∥2
+ λ ‖c‖2 + γ(1Tc− 1) (A11)

where γ ∈ R is the multiplier associated with the constraint
1Tc = 1 [8]. Observe that problem (11) has a single equality
constraint and trivially satisfies the linear independence con-
straint qualification (LICQ), therefore, any optimal solution
must satisfy the following KKT conditions:

∇cL = 2(B̄TB̄ + λIK)c+ γ1− 2B̄T(IN ⊗RT)ȳ = 0 (A12)
∇γL = 1Tc− 1 = 0 (A13)

which can be written compactly as the following linear system
of equations:[
2(B̄TB̄ + λIK) 1

1T 0

][
c
γ

]
=

[
2B̄T(IN ⊗RT)ȳ

1

]
.(A14)

Now let

H̄ , 2(B̄TB̄ + λIK) ∈ SK++, (A15)

H ,

[
H̄ 1
1T 0

]
∈ SK+1, (A16)

where SK++ denotes the set of positive definite matrices of size
K. Note that the inverse of H exists because H̄ is positive
definite and invertible (H̄−1 is also positive definite):

H−1 =

[
H̄−1 − H̄−1e1TH̄−1

1TH̄−11
H̄−11

1TH̄−11
1TH̄−1

1TH̄−11
− 1

1TH̄−11

]
. (A17)

Therefore the optimal c can be obtained from (A14) as:

c?(R) = 2GB̄T(IN ⊗RT)ȳ + g, (A18)

where

G , H̄−1 − H̄
−111TH̄−1

1TH̄−11
, g ,

H̄−11

1TH̄−11
(A19)

proving Proposition 1.

APPENDIX D
CERTIFIABLY OPTIMAL ROTATION ESTIMATION:
PROOF OF PROPOSITION 2 AND COROLLARY 3

Let us first develop the cost function of problem (15) as a
quadratic function of r , vec (R):

∥∥M(IN ⊗RT)ȳ + h
∥∥2

(A20)

=
∥∥Mvec

(
RTY

)
+ h

∥∥2
(A21)

=
∥∥M(Y T ⊗ I3)vec

(
RT
)

+ h
∥∥2

(A22)

=
∥∥M(Y T ⊗ I3)Pr + h

∥∥2
(A23)

= r̃TQr̃ (A24)

where P ∈ R9×9 is the following permutation matrix

(1, 1, 1), (2, 4, 1), (3, 7, 1), (A25)
(4, 2, 1), (5, 5, 1), (6, 8, 1), (A26)
(7, 3, 1), (8, 6, 1), (9, 9, 1), (A27)

with the triplet (i, j, v) defining the nonzero entries of P
(i.e., Pij = v), such that:

vec
(
RT
)
≡ P vec (R) (A28)

always holds, Y and r̃ are defined as:

Y ,
[
ȳ(1) · · · ȳ(N)

]
∈ R3×N , (A29)

r̃ ,
[

1 rT
]T ∈ R10, (A30)

and Q ∈ S10 can be assembled as follows:

Q ,

[
hTh hTM(Y T ⊗ I3)P
? P T(Y ⊗ I3)MTM(Y T ⊗ I3)P

]
. (A31)

Now that the objective function of (15) is quadratic in r (R),
we can write problem (15) equivalently as the quadratically
constrained quadratic program (QCQP) in (17), where Ai ∈
S10, i = 1, . . . , 15, are the constant matrices that define the
quadratic constraints associated with R ∈ SO(3) [84, Lemma



5]. For completeness, we give the expressions for Ai’s:

A0 : (1, 1, 1)

A1 −A3 : columns have unit norm
A1 : (1, 1, 1), (2, 2,−1), (3, 3,−1), (4, 4,−1)

A2 : (1, 1, 1), (5, 5,−1), (6, 6,−1), (7, 7,−1)

A3 : (1, 1, 1), (8, 8,−1), (9, 9,−1), (10, 10,−1)

A4 −A6 : columns are mutually orthogonal
A4 : (2, 5, 1), (3, 6, 1), (4, 7, 1)

A5 : (2, 8, 1), (3, 9, 1), (4, 10, 1)

A6 : (5, 8, 1), (6, 9, 1), (7, 10, 1)

A7 −A15 : columns form right-handed frame
A7 : (3, 7, 1), (4, 6,−1), (1, 8,−1)

A8 : (4, 5, 1), (2, 7,−1), (1, 9,−1)

A9 : (2, 6, 1), (1, 10,−1), (3, 5,−1)

A10 : (6, 10, 1), (1, 2,−1), (7, 9,−1)

A11 : (7, 8, 1), (5, 10,−1), (1, 3,−1)

A12 : (5, 9, 1), (1, 4,−1), (6, 8,−1)

A13 : (4, 9, 1), (3, 10,−1), (1, 5,−1)

A14 : (2, 10, 1), (1, 6,−1), (4, 8,−1)

A15 : (3, 8, 1), (2, 9,−1), (1, 7,−1)

where the triplets (i, j, v) define the diagonal and upper
triangular nonzero entries of a symmetric matrix (i.e., Aij =
Aji = v with i ≤ j).

APPENDIX E
SHOR’S SEMIDEFINITE RELAXATION AND

RELATIVE DUALITY GAP

To see why problem (18) is a convex relaxation for prob-
lem (17), let us first create a matrix variable

X = r̃r̃T ∈ S10, (A32)

and notice that X satisfies

X � 0, rank (X) = 1. (A33)

Moreover, if X � 0, rank (X) = 1 then X must have a
factorization of the form (A32). Therefore, the non-convex
QCQP (17) is equivalent to the following rank-constrained
matrix optimization problem:

min
X∈S10

tr (QX) (A34)

s.t. tr (A0X) = 1, (A35)
tr (AiX) = 0,∀i = 1, . . . , 15, (A36)

X � 0, (A37)
rank (X) = 1, (A38)

where A0 ∈ S10 is an all-zero matrix except the top-left entry
being 1 (to enforce that the first entry of r̃ is 1), and we have
used the fact that

r̃TAr̃ = tr
(
r̃TAr̃

)
= tr

(
Ar̃r̃T

)
= tr (AX) . (A39)

Now observe that the only nonconvex constraint in prob-
lem (A34) is the rank constraint (A38), and the SDP relax-
ation (18) is obtained by simply removing the rank constraint.

In practice, we solve the convex problem (18) and obtain
an optimal solution X?, if rank (X?) = 1, then the optimal
solution of problem (18) is unique (the rationale behind this
is that interior-point methods converge to a maximum rank
solution [17]) and it actually satisfies the rank constraint that
has been dropped. Therefore, in this situation, we say the
convex relaxation is tight and the global optimal solution to the
nonconvex problem (17) can be obtained from the rank-one
factorization of X?.

Relative duality gap. Checking if the solution is rank one
can sometimes be sensitive to numerical thresholds, therefore,
an alternative way to check the quality of the relaxation is
to compute the relative duality gap. Let X? be a solution of
the SDP relaxation (18) and let fSDP , tr (QX?) be the
optimal cost. Let r̂ ∈ SO(3) be a rounded solution from
X? (the rounding can be done by closed-form projection to
SO(3) [85]), and let fest , [1, r̂T]Q[1, r̂T]T be the cost of the
non-convex problem (17) evaluated at the rounded solution r̂,
then we have:

fSDP ≤ f? ≤ fest, (A40)

where f? is the true global optimum of the nonconvex
problem (17), the first inequality follows from the fact that
problem (18) is a convex relaxation and the second inequality
follows from the fact that f? is the global minimum. We then
compute the relative duality gap

η ,
fest − fSDP

fest
, (A41)

which is informative of the suboptimality of the rounded
solution. In particular, if η ≈ 0, then r̂ is certified to be the
globally optimal solution.

APPENDIX F
MINIMUM AND MAXIMUM DISTANCES

BETWEEN CONVEX HULLS

Recall from eq. (21) the definitions of bmin
ij and bmax

ij :

bmin
ij = min

c≥0,1Tc=1

∥∥∥∥∥
K∑
k=1

ck(bk(j)− bk(i))

∥∥∥∥∥ , (A42)

bmax
ij = max

c≥0,1Tc=1

∥∥∥∥∥
K∑
k=1

ck(bk(j)− bk(i))

∥∥∥∥∥ , (A43)

and let us use the following shorthand:

bk,ij , bk(j)− bk(i), (A44)
Bij ,

[
b1,ij · · · bK,ij

]
∈ R3×K , (A45)

to write problems (A42) and (A43) compactly as:

bmin
ij = min

c≥0,1Tc=1
‖Bijc‖ , bmax

ij = max
c≥0,1Tc=1

‖Bijc‖ . (A46)



Compute bmax
ij . Because ‖Bijc‖ is a convex function of

c, and the maximum of a convex function over a polyhedral
set (in our case, the standard simplex ∆K , {c ∈ RK : c ≥
0,1Tc = 1}) is always obtained at one of the vertices of the
polyhedron [61, Corollary 32.3.4], we have:

bmax
ij = max

k
‖bk,ij‖ , (A47)

since the vertices of ∆K are the vectors ek, k = 1, . . . ,K,
where ek is one at its k-th entry and zero anywhere else.

Compute bmin
ij . Observe that computing the minimum

of ‖Bijc‖ is equivalent to computing the minimum of
‖Bijc‖2 = cT(BT

ijBij)c because the quadratic function
f(x) = x2 is monotonically increasing in the interval [0,∞],
and hence we first solve the following convex quadratic
program (QP):

min
c∈RK

cT(BT
ijBij)c (A48)

s.t. c ≥ 0, 1Tc = 1 (A49)

and then compute bmin
ij = ‖Bijc

?‖ from the solution c? of
the QP. Note that the QP (A48) can be solved in milliseconds
for large K, so pre-computing bmin

ij for all 1 ≤ i < j ≤ N is
still tractable even when N is large.

APPENDIX G
ALTERNATION APPROACH

In Sections IV-B-IV-C of the main paper, we presented
a certifiably optimal solver to solve the joint shape and
rotation (c,R) problem (8) (after eliminating the translation
t). Here we describe a baseline method that solves problem (8)
using alternating minimization (Altern), a heuristic that is
popular in related works on 3D shape reconstruction from 2D
landmarks [26, 43, 58], but offers no optimality guarantees.
Towards this goal, let us denote the cost function of (8)
as f(R, c); the Altern method starts with an initial guess
(R(0), c(0)) (default R(0) = I3, c

(0) = 0), and performs the
following two steps at each iteration τ :

1) Optimize c:

c(τ) = arg min
c∈RK ,1Tc=1

f(R(τ−1), c), (A50)

which is a linearly constrained linear least squares prob-
lem and can be solved by the closed-form solution (12).

2) Optimize R:

R(τ) = arg min
R∈SO(3)

f(R, c(τ)), (A51)

which can be cast as an instance of Wahba’s problem [83]
and can be solved in closed form using singular value
decomposition [49].

The Altern method stops when the cost function con-
verges, i.e., |f(R(τ), c(τ))− f(R(τ−1), c(τ−1))|< ε for some
small threshold ε > 0, or when τ exceeds the maximum
number of iterations (e.g., 1000).

APPENDIX H
EXTRA EXPERIMENTAL RESULTS

In Section VI-A, we demonstrated the robustness of PACE#
to 92% outlier rates when N = 100, K = 10 and r = 0.1.
Here we show extra results when K and r are increased.
Fig. A1(a) shows the results for N = 100, K = 10 and
r = 0.2. One can see that as the intra-class variation radius
r is increased, the compatibility check becomes less effective,
leading to a slight decrease in the robustness of PACE# against
outliers — PACE# is still robust up to 90% outlier rate
while has two failures at 91% outlier rate. However, PACE#
still outperforms IRLS-TLS and IRLS-GM by a large margin.
Fig. A1(b) shows the results for N = 100, K = 50 and
r = 0.1. We see that PACE# is robust up to 91% outlier
rate while encounters two failures at 92% outlier rate. Finally,
when K = 50 and r = 0.2 (Fig. A1(c)), PACE# is robust to
80% outlier rate.
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(a) Robustness of PACE# against increasing outliers on random simulated data: N = 100, K = 10, r = 0.2.
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(b) Robustness of PACE# against increasing outliers on random simulated data: N = 100, K = 50, r = 0.1.
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(c) Robustness of PACE# against increasing outliers on random simulated data: N = 100, K = 50, r = 0.2.
Fig. A1: Performance of PACE# compared to baselines in simulated experiments with different number of CAD models K and variation
radius r. (a) The intra-class variation radius is increased to r = 0.2. (b) The number of CAD models is increased to K = 50. (c) K = 50
and r = 0.2. Each boxplot (and lineplot) reports statistics computed over 50 Monte Carlo runs.
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Fig. A1: Qualitative results: overlay of estimated vehicle pose and shape on the images from the ApolloScape dataset. The images are manually
selected out of the 5277 images in the dataset to showcase successful vehicle localization (top 4 rows) as well as failure cases (last row).


	I Introduction
	II Related Work
	III Problem Statement: 3D-3D Category-Level Perception
	IV Certifiably Optimal Solver  for 3D-3D Category-Level Perception
	IV-A Closed-form Translation Estimation
	IV-B Closed-form Shape Estimation
	IV-C Certifiably Optimal Rotation Estimation
	IV-D Summary

	V Increasing Robustness via Outlier Pruning and Graduated Non-Convexity
	V-A Outlier Pruning for Category-Level Perception
	V-B Graduated Non-Convexity for Category-Level Perception

	VI Experiments
	VI-A Ablation: Optimality and Robustness
	VI-B Vehicle Pose Estimation on ApolloScape

	VII Conclusion
	Appendix A: Problem (3) is a MAP Estimator when the Measurement Noise is Gaussian
	Appendix B: Problem (23) is a MAP Estimator when the Measurement Noise is Heavy-Tailed
	Appendix C: Closed-form Shape Estimation:  Proof of Proposition 1
	Appendix D: Certifiably Optimal Rotation Estimation:  Proof of Proposition 2 and Corollary 3
	Appendix E: Shor's Semidefinite Relaxation and  Relative Duality Gap
	Appendix F: Minimum and Maximum Distances  between Convex Hulls
	Appendix G: Alternation Approach
	Appendix H: Extra Experimental Results

