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1. Introduction and results

1.1. Introduction

Approximation of convex bodies by polytopes belongs to the most classical and fun-
damental topics studied in convex and discrete geometry, and is an active area of current 
mathematical research. The reason for this can be explained by the fact that results in 
this direction are directly relevant for estimating the complexity of geometric algorithms, 
see [6,7], for example. Since best approximating polytopes are rarely accessible directly 
one usually resorts to random constructions. In fact, considering the volume, the sur-
face area, or more generally, the intrinsic volumes, random polytopes show on average 
the same behaviour as best approximating polytopes, see [10–12,23]. This philosophy has 
been taken up by many authors, who typically impose further restrictions on the position 
of the polytopes relative to the given convex body. Most classically, the approximating 
random polytope is constructed as the convex hull of (a large number of) independent 
random points, which are uniformly distributed in the interior of the convex body, see 
the survey articles [2,16,25] and the references cited therein. Also studied is the case 
where the random points are selected on the boundary of the convex body according 
to the normalized surface measure, see [24,26,28]. The obvious advantage of the latter 
model is that, when the body has strictly positive Gauss curvature almost everywhere, 
with probability one each of the random points is automatically a vertex of the random 
polytope.

On the other hand, arbitrarily positioned polytopes, i.e. polytopes with no restrictions 
on their location in space relative to the given convex body, are only rarely studied in 
the literature. A lower bound in the symmetric difference metric was given in [3] for 
sufficiently smooth convex bodies. An upper bound in the symmetric difference metric 
was established in [17] via a random construction, again in the sufficiently smooth case. 
There is however still a gap by a factor of dimension between upper and lower bound. 
In [9] a random approach with an arbitrary density function was proposed. This allows 
to discuss extremal problems and also relationships to p-affine surface areas. However, 
the symmetric volume difference is not the only measurement to determine the closeness 
between a convex body and an approximating polytope. It is equally natural to consider 
a quantity related to the surface areas of the involved sets, see [4,5,8]. As in the case of the 
symmetric volume difference, also particularly positioned polytopes were studied initially 
in the literature. The first random construction for arbitrarily positioned polytopes was 
carried out in [14], but only in the case where the underlying convex body is the n-
dimensional Euclidean unit ball. The principal goal of this paper is to generalize the 
results from [14] to arbitrary convex bodies with sufficiently smooth boundaries. Our 
construction depends on a special density function, which is intimately related to p-
affine surface areas. On the technical side dealing with the surface area instead of the 
symmetric volume difference causes several new difficulties which we overcome in this 
text. We formally describe the set-up and present our main result in the next subsection.
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1.2. Result

Let K be a convex body in Rn, n ≥ 2, that is of class C2
+. More explicitly, this means 

that K is a compact convex subset of Rn with non-empty interior and such that its 
boundary ∂K is a twice differentiable (n − 1)-dimensional sub-manifold of Rn whose 
Gaussian curvature κ(x) is strictly positive for all x ∈ ∂K. We recall that κ(x) is the 
product of the principal curvatures at x ∈ ∂K, while the mean curvature H(x) is 1/n

times the sum of the principal curvatures at x. Moreover, the support function of K is 
denoted by hK , that is, hK(u) = max{〈x, u〉 : x ∈ K} for u ∈ Sn−1. Let us denote in 
this paper by Hn−1 the (n − 1)-dimensional Hausdorff measure. Finally, the surface area 
deviation between two convex bodies K, L ⊂ Rn is defined as

Δs(K, L) := Hn−1 (∂(K ∪ L)) − Hn−1 (∂(K ∩ L)) . (1)

For the presentation of our main result we also need to recall from [15,18,21,29,31], for 
example, that for p ∈ [−∞, ∞] \ {−n} the p-affine surface area of a convex body K, 
having the origin as an interior point, is given by

asp(K) :=
∫

∂K

κ(x)
p

n+p

〈x, N(x)〉
n(p−1)

n+p

Hn−1(dx), (2)

where N(x) denotes the unique outer unit normal vector at x and where 〈 · , · 〉 stands 
for the standard scalar product in Rn. Let us mention that p-affine surface areas are 
intensively studied quantities in convex geometry and convex geometric analysis. In 
particular, they play a central role in what is called Lp-Brunn-Minkowski theory, see 
[13,20,32], for example.

Our main result provides an upper bound on the surface area deviation between a 
convex body K ⊂ Rn of class C2

+ and a polytope with a prescribed number of (sufficiently 
many) vertices. We emphasize that no restriction on the position of the polytope with 
respect to the given body is required. Especially, we do not assume that the polytope is 
contained in or contains K.

Theorem 1. Let K be a convex body in Rn, n ≥ 2, that is of class C2
+. Then, there exists 

a number NK ∈ N depending only on K such that for all N ≥ NK there exists a polytope 
P in Rn with exactly N vertices such that

Δs(K, P ) ≤ a n N− 2
n−1 asn(K)

2
n−1 Hn−1(∂K), (3)

where a ∈ (0, ∞) is an absolute constant.

Theorem 1 should be compared to some related results known from the literature. To 
do so, note first that the p-affine isoperimetric inequality [19,32] for p ≥ 0 states that
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asp(K)
asp(Bn) ≤

(
vol(K)
vol(Bn)

) n−p
n+p

, (4)

with equality if and only if K is an ellipsoid. Here, and throughout the paper, Bn denotes 
the Euclidean unit ball. In particular, for p = n this means that

asn(K) ≤ asn(Bn).

We put this into (3) and note also that asn(Bn) = Hn−1(∂Bn). Using in addition that, 
by Stirling’s formula, the quantity Hn−1(∂Bn)

2
n−1 is bounded by a constant multiple of 

1/n, this yields the existence of a polytope P in Rn with exactly N vertices (with N
being sufficiently large) such that

Δs(K, P ) ≤ a N− 2
n−1 Hn−1(∂K). (5)

As mentioned in the previous section, the surface area deviation of the n-dimensional 
Euclidean unit ball Bn and an arbitrarily positioned polytope was treated in [14]. There 
it was shown that for sufficiently large N one can find a polytope P in Rn with precisely 
N vertices and such that

Δs(Bn, P ) ≤ a N− 2
n−1 Hn−1(∂Bn) (6)

with an absolute constant a > 0. Thus inequality (5) is the exact analogue for general 
convex bodies to the case of the Euclidean ball. In fact, the even slightly stronger in-
equality (3) holds.
In contrast to surface area deviations, volume deviations have been studied more inten-
sively in the literature. For two convex bodies K, L ⊂ Rn we define

Δv(K, L) := vol(K ∪ L) − vol(K ∩ L).

In [9] the authors derived an upper bound for the volume deviation of a convex body 
of class C2

+ and an arbitrarily positioned polytope with a prescribed number of vertices. 
More precisely, they show that if K ⊂ Rn is a convex body of class C2

+ and if f : ∂K →
R+ is a continuous and strictly positive function with 

∫
∂K

f(x)Hn−1(dx) = 1, there 
exists a constant NK,f ∈ N depending only on K and on f such that for all N ≥ NK,f

one can find a polytope Pf ⊂ Rn with precisely N vertices and such that

Δv(K, Pf ) ≤ a N− 2
n−1

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
Hn−1(dx)

for some absolute constant a ∈ (0, ∞). Especially, taking for f the function

f(x) = κ(x)
1

n+1∫ 1
n+1 n−1

= κ(x)
1

n+1

as1(K) , x ∈ ∂K,
∂K
κ(x) H (dx)
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yields the existence of an n-dimensional polytope P with precisely N vertices (again N
sufficiently large) such that

Δv(K, P ) ≤ a N− 2
n−1 as1(K)

n+1
n−1 . (7)

A comparison of Theorem 1 and (7) shows that the difference between the upper bound 
for the volume and surface area deviation consists in the appearance of an additional 
dimension factor n as well as in the replacement of the (classical) affine surface area 
as1(K) by asn(K), which is raised to a different power.

Remark 2. The surface area Hn−1(∂K) of a convex body K ⊂ Rn can be identified with 
2 times the intrinsic volume Vn−1(K) of order n − 1 of K (see [27] for an introduction 
to intrinsic volumes). Similarly to the volume and the surface area deviation one can 
also define for each i ∈ {1, . . . , n} the ith intrinsic volume deviation between two convex 
bodies K, L ⊂ Rn as

Δi(K, L) := Vi(K ∪ L) − Vi(K ∩ L),

where Vi(K∪L) is understood as the extension of the intrinsic volume Vi to the collection 
of sets arising as finite unions of convex bodies. Using methods that are similar as those 
for the proof of Theorem 1 presented below one can generalize (3) to an upper bound 
for Δi(K, P ), where P is a polytope with sufficiently many vertices. However, in the 
present text we concentrate on the surface deviation and treat general intrinsic volumes 
in a future work.

The remaining parts of the paper are structured as follows. In Section 2 we present 
some auxiliary result. In particular, we obtain there a precise asymptotic formula for the 
expected surface area of a random polytope, which will turn out to be crucial for our 
approach. We also rephrase there a Blaschke-Petkantschin-type formula for the Hausdorff 
measure. The final Section 3 is devoted to the proof of Theorem 1.

2. Auxiliary results

2.1. Precise asymptotics for the expected surface area of random polytopes

As already explained above, our proof of Theorem 1 is based on the probabilistic 
method and hence on the construction of a random polytope (which we implicitly assume 
to be defined on a suitable probability space (Ω, A, P )). In particular, it will be important 
for us to have a precise control over the expected surface area of the convex hull of a 
fixed (but large) number of random points on the boundary of a convex body K, which 
are chosen independently and according to a continuous and everywhere positive density 
on ∂K. To present the statement, let us write aN ∼ bN for two sequences (aN )N∈N
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and (bN )N∈N provided that aN /bN → 1, as N → ∞. Also, we shall write E for the 
expectation with respect to the underlying probability measure P .

Proposition 3. Let K ⊂ Rn be a convex body of class C2
+. Let PN be the convex hull of N

points chosen independently at random according to a continuous and positive probability 
density f : ∂K → R+. Then

Hn−1(∂K) − E[Hn−1(∂PN )] ∼ N− 2
n−1

π(n + 1)(n − 2)!
Γ(n + 2

n−1 )
Γ(n−1

2 )
Γ

(n + 1
2

) n+1
n−1

×
∫

∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx).

Proof. The proof is based on a combination of two known results. First, Theorem 1 in 
[22] (see also [1]) states that if K = Bn is the n-dimensional Euclidean unit ball and 
f = Hn−1(∂Bn)−1 is the density of the uniform distribution on ∂Bn then

Hn−1(∂Bn) − E[Hn−1(∂PN )]

∼ 2
n+1
n−1 π

n
2 + 1

n−1

(n + 1)(n − 2)!
Γ(n + 2

n−1 )
Γ(n−1

2 )

(
Γ(n+1

2 )
Γ(n

2 )

) n+1
n−1

N− 2
n−1 .

(8)

On the other hand a special case of Theorem 1 in [24] states that if K and f are as in 
the statement of the theorem then there exists a constant cn ∈ (0, ∞) only depending 
on the dimension n such that

Hn−1(∂K) − E[Hn−1(∂PN )] ∼ cn

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx) N− 2

n−1 . (9)

Especially, taking K = Bn and f = Hn−1(∂Bn)−1 in (9) gives

Hn−1(∂Bn) − E[Hn−1(∂PN )] ∼ cn Hn−1(∂Bn)
n+1
n−1 N− 2

n−1 . (10)

Comparing now (8) with (10) implies that the constant cn in (9) is given by

cn = 2
n+1
n−1 π

n
2 + 1

n−1

(n + 1)(n − 2)!
Γ(n + 2

n−1 )
Γ(n−1

2 )

(
Γ(n+1

2 )
Γ(n

2 )

) n+1
n−1

Hn−1(∂Bn)− n+1
n−1

= 1
π(n + 1)(n − 2)!

Γ(n + 2
n−1 )

Γ(n−1
2 )

Γ
(n + 1

2

) n+1
n−1

after simplifications. Plugging this into (9) proves the claim. �
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Remark 4. It is clear that Proposition 3 can be generalized to intrinsic volumes of arbi-
trary order, since the result in [24] holds in this framework and the precise asymptotics 
for the intrinsic volumes n-dimensional unit ball has been computed in [1] (in fact, the 
so-called Quermassintegrals were considered in [1], but they are directly linked with the 
intrinsic volumes up to a multiplicative factor).

2.2. Tools from integral geometry

Tools from integral geometry will play a crucial role at several places in the proof of 
Theorem 1. For completeness we gather them in the present section as not all of them 
might be well known and since we have in mind a broad readership with different mathe-
matical backgrounds. We start with the following change-of-variables formula taken from 
[27, Equation (2.62)].

Proposition 5. Let K ⊂ Rn be a convex body of class C2
+ and let g : ∂K → R be a 

continuous function. For u ∈ Sn−1 we denote by x(u) ∈ ∂K the unique point with outer 
unit normal vector u, i.e., u = N(x). Then

∫
Sn−1

g(x(u)) Hn−1(du) =
∫

∂K

g(x) κ(x) Hn−1(dx). (11)

Next we rephrase a special case of Minkowski’s integral formula, see [27, Equation 
(5.60)] with j = 1 there and Remark 7 below. We recall that hK stands for the support 
function of K and H(x) is the mean curvature at x ∈ ∂K.

Proposition 6. Let K ⊂ Rn be a convex body of class C2
+. Then

Hn−1(∂K) =
∫

∂K

hK(N(x)) H(x) Hn−1(dx). (12)

Remark 7. The general Minkowski integral formula says that for a convex body K ⊂ Rn

of class C2
+ and for j ∈ {1, . . . , n − 1},

∫
∂K

Hj−1(x) Hn−1(dx) =
∫

∂K

hK(N(x)) Hj(x) Hn−1(dx),

where Hj(x) is the jth normalized elementary symmetric function of the principal cur-
vatures of K at x ∈ ∂K. Taking j = 1 we obtain (12).

Integral-geometric transformation formulas, also known as Blaschke-Petkantschin for-
mulas, are widely used in the theory or random polytopes. While the original Blaschke-
Petkantschin formula for the Lebesgue measure can be applied if the random points 
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are distributed in the interior of a given convex body, in our case we need a version 
for the Hausdorff measure. In a very general form, such a transformation formula was 
obtained by Zähle [33] using methods from geometric measure theory (see also [30] for 
a more elementary approach under slightly stronger assumptions). The following spe-
cial case can also directly be derived from the classical Blaschke-Petkantschin formula 
for the Lebesgue measure by a limiting procedure as demonstrated in [24]. For points 
x1, . . . , xi ∈ Rn, i ∈ N, we denote by [x1, . . . , xi] the convex hull of x1, . . . , xi. Especially 
if i = n, Hn−1([x1, . . . , xn]) is the (n − 1)-Hausdorff measure of the (n − 1)-dimensional 
simplex spanned by x1, . . . , xn. Moreover, for h ≥ 0 and u ∈ Sn−1 we denote by H(u, h)
the hyperplane {x ∈ Rn : 〈x, u〉 = h}.

Proposition 8. Let K ⊂ Rn be a convex body of class C2
+ and let g : ∂K → R+ be a 

continuous function. Then,∫
∂K

· · ·
∫

∂K

g(x1, . . . , xn) Hn−1(dx1) . . . Hn−1(dxn)

= (n − 1)!
∫

Sn−1

∞∫
0

∫
∂K∩H

· · ·
∫

∂K∩H

g(x1, . . . , xn) Hn−1([x1, . . . , xn])

×
n∏

j=1
lH(xj) Hn−2(dx1) . . . Hn−2(dxn)dhHn−1(du),

where lH(xj) := ‖projHN(xj)‖−1 denotes the inverse length of the orthogonal projection 
onto H = H(u, h) of the unique outer unit normal vector N(xj) of ∂K at xj.

3. Proof of Theorem 1

3.1. Preliminaries

We start by introducing the set-up and some more notation. Throughout this section 
K will denote a convex body in Rn of class C+

2 and f : ∂K → R+ will denote a strictly 
positive and continuous function, which satisfies 

∫
∂K

f(x) Hn−1(dx) = 1. In the course 
of the proof we will specialize f further by taking f = fn with fn given by

fn(x) = 1
asn(K)

κ(x) 1
2

hK(u(x)) n−1
2

, x ∈ ∂K, (13)

which integrates to 1 by definition (2) of asn(K) and since 〈x, N(x)〉 = h(u(x)). We 
denote by Pf the probability measure on ∂K with density f with respect to Hn−1. That 
is,

dPf (x) = f(x), x ∈ ∂K.
dHn−1
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Also, if H ⊂ Rn is a hyperplane with H ∩ K �= ∅, we denote by Pf∂K∩H
the probability 

measure on ∂K ∩ H with normalized density f with respect to the (n − 2)-dimensional 
Hausdorff measure restricted to ∂K ∩ H, i.e.,

dPf∂K∩H

dHn−2 (x) = f(x)∫
∂K∩H

f(y) Hn−2(dy)
, x ∈ ∂K ∩ H.

3.2. The probabilistic construction

As in [9,17] we will obtain the approximating polytope P of K by using the proba-
bilistic method. To be more precise, we consider a convex body that is slightly bigger 
than the original body K, then choose N points at random on the boundary of the 
bigger body and take the convex hull of these points. We shall prove that such a random 
polytope satisfies the desired property on average and then argue that also a realization 
with the same property exists.

Without loss of generality we can and will assume that the origin, denoted by 0, is 
in the interior of K. More specifically, we assume that 0 coincides with the centre of 
gravity of K. Since the density f is concentrated on the boundary of K, we will choose 
the random points on ∂K and approximate a slightly smaller body, say (1 − c)K, where 
c := c(n, N, K, f) depends on the dimension n and the number of points N , the body K
and the function f and has to be chosen carefully. In what follows we will in short write 
c instead of c(n, N, K, f). We compute the expected surface area deviation

E[Δs((1 − c)K, PN )]

between (1 −c)K and a random polytope PN := [X1, . . . , XN ] whose vertices X1, . . . , XN

are independent and randomly chosen from the boundary of K according to the proba-
bility measure Pf . In order to do this, we choose c such that the following holds:

E[Hn−1(∂PN )] = Hn−1(∂(1 − c)K) = (1 − c)n−1Hn−1(∂K). (14)

By Theorem 3, we have that

Hn−1(∂K) − E[Hn−1(∂PN )] ∼ N− 2
n−1 cn,K,f ,

as N → ∞, with

cn,K,f := 1
π(n + 1)(n − 2)!

Γ(n + 2
n−1 )

Γ(n−1
2 )

Γ
(n + 1

2

) n+1
n−1

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx).

Hence, with the choice (14) of c, this yields

Hn−1(∂K) − (1 − c)n−1Hn−1(∂K) ∼ N− 2
n−1 cn,K,f ,
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as N → ∞, and leads to

c ∼ N− 2
n−1

cn,K,f

(n − 1)Hn−1(∂K) . (15)

In particular, for sufficiently large N we get the lower bound

c ≥
(

1 − 1
n

)
N− 2

n−1
cn,K,f

(n − 1)Hn−1(∂K) . (16)

3.3. A first upper bound for the expected surface area deviation

In this paper we denote for fixed u ∈ Sn−1 and h ≥ 0 by H := H(u, h) the hyperplane 
orthogonal to u and at distance h from the origin. Further, we let H+ be the half-space 
bounded by H which contains the origin and put

Pf (∂K ∩ H+) :=
∫

∂K∩H+

f(x) Hn−1(dx). (17)

Also recall that the support function of a convex body K is denoted by hK : Sn−1 → R. 
In what follows, a ∈ (0, ∞) will always denote an absolute constant whose value might 
change from occasion to occasion.

Lemma 9. For sufficiently large N and for all sufficiently small ε > chK(u) we have that

E[Δs((1 − c)K, PN )]

≤ a

(
N

n

)
n!

∫
Sn−1

(1−c)hK(u)∫
hK (u)−ε

(
Pf (∂K ∩ H+)

)N−n 1
hK(u) ((1 − c)hK(u) − h)

×
∫

∂K∩H

· · ·
∫

∂K∩H

(Hn−1([x1, . . . , xn]))2
n∏

j=1
lH(xj) Hn−2(x1) . . . Hn−2(dxn)dhHn−1(du).

Proof. With the choice (14) of the parameter c we obtain

E[Hn−1(∂((1 − c)K) ∩ PN )] + E[Hn−1(∂((1 − c)K) ∩ P c
N )]

= E[Hn−1(∂PN ∩ (1 − c)K)] + E[Hn−1(∂PN ∩ ((1 − c)K)c]

and thus

E[Δs((1 − c)K, PN )]

= E[Hn−1(∂((1 − c)K) ∩ P c
N )] + E[Hn−1(∂PN ∩ ((1 − c)K)c]

− E[Hn−1(∂PN ∩ (1 − c)K] − E[Hn−1(∂((1 − c)K) ∩ PN )]
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= 2
(
E[Hn−1(∂((1 − c)K) ∩ P c

N )] − E[Hn−1(∂PN ∩ (1 − c)K]
)

.

We refer to [14] for a similar computation. Therefore,

E[Δs((1 − c)K, PN )]

= 2
∫

∂K

· · ·
∫

∂K

Hn−1(∂((1 − c)K) ∩ P c
N ) − Hn−1(∂PN ∩ (1 − c)K)

× Pf (dx1) . . .Pf (dxN )

≤ 2
∫

∂K

· · ·
∫

∂K

Hn−1(∂((1 − c)K) ∩ P c
N )1{0∈PN } Pf (dx1) . . .Pf (dxN )

+ 2
∫

∂K

· · ·
∫

∂K

Hn−1(∂((1 − c)K) ∩ P c
N )1{0/∈PN } Pf (dx1) . . .Pf (dxN )

− 2
∫

∂K

· · ·
∫

∂K

Hn−1(∂PN ∩ (1 − c)K)1{0∈PN } Pf (dx1) . . .Pf (dxN )

≤ 2
∫

∂K

· · ·
∫

∂K

Hn−1(∂((1 − c)K) ∩ P c
N )1{0∈PN } Pf (dx1) . . .Pf (dxN )

− 2
∫

∂K

· · ·
∫

∂K

Hn−1(∂PN ∩ (1 − c)K)1{0∈PN } Pf (dx1) . . .Pf (dxN )

+ 2 Hn−1(∂K)PN
f ({0 /∈ [x1, . . . , xN ]}).

Since the density function f is strictly positive and since the origin is contained in the 
interior of K, it is a standard argument in random polytope theory which implies that

PN
f ({0 /∈ [x1, . . . , xN ]}) ≤ e−aN ,

see [28, Lemma 4.3]. In the course of the proof we will see that the difference between the 
first and the second summand above is of order N− 2

n−1 and thus it is enough to consider 
this difference in what follows and to neglect the third, exponentially small term from 
now on.

For a polytope P ⊂ Rn we denote by Fn−1(P ) the set of all facets of P . Also, for 
x1, . . . , xn ∈ Rn we set

cone(x1, . . . , xn) :=
{

n∑
i=1

ai xi : ai ≥ 0, 1 ≤ i ≤ n

}

be the cone generated by x1, . . . , xn. For a subset {j1, . . . , jn} ⊆ {1, . . . , N} we define 
two functions Φj1,...,jn

: (∂K)n → R and Ψj1,...,jn
: (∂K)n → R as follows. We put
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Φj1,...,jn
(x1, . . . , xN ) := Hn−1(∂((1 − c)K) ∩ P c

N ∩ cone(xj1 , . . . , xjn
))

if [xj1 , . . . , xjn
] is a facet of PN (i.e. if [xj1 , . . . , xjn

] ∈ Fn−1(PN )) and 0 ∈ PN . In the 
other case that [xj1 , . . . , xjn

] /∈ Fn−1(PN ) or 0 /∈ PN we define Φj1,...,jn
(x1, . . . , xN ) = 0. 

Similarly, we set

Ψj1,...,jn
(x1, . . . , xN ) := Hn−1((1 − c)K ∩ [xj1 , . . . , xjn

]),

provided that [xj1 , . . . , xjn
] ∈ Fn−1(PN ) and 0 ∈ PN , and put Ψj1,...,jn

(x1, . . . , xN ) to 
be zero otherwise. Conditioned on the event that 0 ∈ PN , with probability one we have 
that Rn can be written as the disjoint union

Rn = ·
⋃

[xj1 ,...,xjn ]∈Fn−1(PN )

cone(xj1 , . . . , xjn
).

Moreover,

PN−n
f ({(xn+1, . . . , xN ) : [x1, . . . , xn] ∈ Fn−1(PN ) and 0 ∈ PN })

≤
(
Pf (∂K ∩ H+)

)N−n
,

where H = H(x1, . . . , xn) is the hyperplane spanned by the points x1, . . . , xn and we 
recall the definition of Pf (∂K ∩ H+) given in (17). We also notice that the random 
polytopes PN are simplicial with probability one. Therefore, and since the set where H
is not well defined has measure zero and all N points are independent and identically 
distributed, we arrive at

∫
∂K

· · ·
∫

∂K

Hn−1(∂((1 − c)K) ∩ P c
N )1{0∈PN } Pf (dx1) . . .Pf (dxN )

−
∫

∂K

· · ·
∫

∂K

Hn−1(∂PN ∩ (1 − c)K)1{0∈PN } Pf (dx1) . . .Pf (dxN )

=
∫

∂K

· · ·
∫

∂K

∑
{j1,...,jn}⊆{1,...,N}

[Φj1,...,jn
(x1, . . . , xN )

− Ψj1,...,jn
(x1, . . . , xN )]Pf (dx1) . . .Pf (dxn)

=
(

N

n

) ∫
∂K

· · ·
∫

∂K

[Φ1,...,n(x1, . . . , xN ) − Ψ1,...,n(x1, . . . , xN )]Pf (dx1) . . .Pf (dxN )

≤
(

N

n

) ∫
∂K

· · ·
∫

∂K

(
Pf (∂K ∩ H+)

)N−n [
Hn−1(∂((1 − c)K) ∩ H− ∩ cone(x1, . . . , xn))

− Hn−1((1 − c)K ∩ H ∩ [x1, . . . , xn])
]
Pf (dx1) . . .Pf (dxn).



J. Grote et al. / Advances in Applied Mathematics 129 (2021) 102218 13
Next, we apply the Blaschke-Petkantschin-type formula presented in Proposition 8 to 
the last integral expression. For large enough N this leads to the upper bound

E[Δs((1 − c)K, PN )]

≤ a

(
N

n

)
(n − 1)!

∫
Sn−1

∞∫
0

∫
∂K∩H

· · ·
∫

∂K∩H

(
Pf (∂K ∩ H+)

)N−n Hn−1([x1, . . . , xn])

×
[
Hn−1(∂((1 − c)K) ∩ H− ∩ cone(x1, . . . , xn)) − Hn−1((1 − c)K ∩ H ∩ [x1, . . . , xn])

]
×

n∏
j=1

lH(xj)Pf∂K∩H
(dx1) · · ·Pf∂K∩H

(dxn)dhHn−1(du).

We note that for fixed u ∈ Sn−1 the integrand on the right-hand side can be non-zero if 
and only if 0 ≤ h ≤ hK(u), where we recall that hK(u) is the support function of K in 
direction u. The same arguments as in [17, Page 9], [24, Page 2255] or [9] show that it is 
enough to consider h for which hK(u) − ε ≤ h ≤ hK(u), where ε > 0 is sufficiently small. 
In fact, the integral over the remaining interval [0, hK(u) − ε] decays exponentially fast 
in N . In particular, for sufficiently large N we can choose ε such that

chK(u) ≤ ε ≤ hK(u)
n

,

where c is as in (15). As in [14, Page 8] we have the inequality

Hn−1(∂((1 − c)K) ∩ H− ∩ cone(x1, . . . , xn))

≤
(

(1 − c)hK(u)
h

)n−1

Hn−1((1 − c)K ∩ [x1, . . . , xn]). (18)

This holds because

Hn−1(H̃ ∩ cone(x1, . . . , xn ∩ (1 − c)K))
Hn−1((1 − c)K ∩ [x1, . . . , xn]) ≤

(
(1 − c)hK(u)

h

)n−1

,

where H̃ is the tangent hyperplane to (1 −c)K with outer normal u, and as by the metric 
projection

Hn−1(∂((1 − c)K) ∩ H− ∩ cone(x1, . . . , xn)) ≤ Hn−1(H̃ ∩ cone(x1, . . . , xn ∩ (1 − c)K)).

Inequality (18) implies that

Hn−1(∂((1 − c)K) ∩ H− ∩ cone(x1, . . . , xn)) − Hn−1((1 − c)K ∩ H ∩ [x1, . . . , xn])

≤ max
{(

(1 − c)hK(u)
h

)n−1

− 1, 0
}

Hn−1((1 − c)K ∩ [x1, . . . , xn]).
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Since c is of the order N− 2
n−1 and ε ≤ hK(u)/n, for sufficiently large N , we get

(1 − c)hK(u) − h

h
≤ (1 − c)hK(u) − hK(u) + ε

hK(u) − ε
≤

1
n − c

1 − 1
n

≤ 1
n − 1 .

Thus,
(

(1 − c)hK(u)
h

)n−1

− 1

=
(

h + (1 − c)hK(u) − h

h

)n−1

− 1

=
(

1 + (1 − c)hK(u) − h

h

)n−1

− 1

= (n − 1)(1 − c)hK(u) − h

h
+ (n − 1)(n − 2)

2

(
(1 − c)hK(u) − h

h

)2

+ . . .

. . . +
( (1 − c)hK(u) − h

h

)n−1

≤ (n − 1)(1 − c)hK(u) − h

h
·

∞∑
k=0

nk

k!

(
(1 − c)hK(u) − h

h

)k

≤ (n − 1) exp
(

n

n − 1

)
(1 − c)hK(u) − h

h

≤ a n
(1 − c)hK(u) − h

h
.

As a consequence, for sufficiently large N ,

Hn−1(∂((1 − c)K) ∩ H− ∩ cone(x1, . . . , xn)) − Hn−1((1 − c)K ∩ H ∩ [x1, . . . , xn])

≤ a n
1
h

Hn−1([x1, . . . , xn]) max{0, (1 − c)hK(u) − h}

≤ a n
1

hK(u) Hn−1([x1, . . . , xn]) max{0, (1 − c)hK(u) − h},

since 1
h ≤ 1

(1−1/n)hK(u) = n
n−1

1
hK (u) ≤ 2 1

hK (u) . This proves the lemma. �
3.4. A bound for the inner integral

In a next step we consider the inner integral over ∂K ∩ H appearing in Lemma 9. 
The following upper bound has been derived in [9, Lemma 3.3]. In what follows we use 
for k ∈ N the notation

ωk := Hk−1(Sk−1) = 2πk/2

k
and κk := volk(Bk) = πk/2

k
.

Γ( 2 ) Γ( 2 + 1)
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Lemma 10. Fix u ∈ Sn−1 and let x(u) ∈ ∂K be the point with outer unit normal vector 
u. Let H be a hyperplane orthogonal to u at distance h and put z := hK(u) − h. Then, 
for all sufficiently small δ > 0,

∫
∂K∩H

· · ·
∫

∂K∩H

(Hn−1([x1, . . . , xn]))2
n∏

j=1
lH(xj)Pf∂K∩H

(dx1) · · ·Pf∂K∩H
(dxn)

≤ (1 + δ)
n(n+3)

2 2
n2−n−2

2 z
n2−n−2

2
n ωn

n−1
(n − 1)! (n − 1)n−1 f(x(u))n κ(x(u))− n

2 −1

+ δO(z
n2−n−2

2 ),

where the constant in the O( · )-term can be chosen independently of x(u) and δ.

3.5. A decomposition into two terms T1 and T2

Using the upper bound provided in Lemma 10, we now decompose the expected surface 
area deviation between (1 − c)K and PN into two integral terms, which will be treated 
separately afterwards. In order to do this, we put s := Pf (∂K ∩ H−), or, in other words, 
Pf (∂K ∩ H+) = 1 − s. Also recall the definition of z from Lemma 10.

Lemma 11. For sufficiently large N and sufficiently small δ > 0, we have

E[Δs((1 − c)K, PN )] ≤ T1 + T2

with the terms T1 and T2 given by

T1 := (1 + δ)
3n2+3n

2 a

(
N

n

)
n2

∫
Sn−1

1
hK(u)κ(x(u))

×
1∫

0

(1 − s)N−n sn−1 (z − chK(u)) dsHn−1(du)

and

T2 := (1 + δ)
3n2+3n

2 a

(
N

n

)
n2

∫
Sn−1

1
hK(u)κ(x(u))

×
s(chK(u))∫

0

(1 − s)N−n sn−1 (chK(u) − z) dsHn−1(du).
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Here, z = z(s) and s(chK(u)) =
∫

∂K∩H−
f(x) Hn−1(dx), where H is the unique hyper-

plane with unit normal vector u ∈ Sn−1 and distance (1 − c)hK(u) from the origin, and 
H− the half-space bounded by H not containing the origin.

We prepare the proof of Lemma 11 with the following result taken from [24, Equation 
(71)]. It provides a bound for s (recall the paragraph before Lemma 11) as well as an 
upper bound for z = z(s) and its derivative (recall the definition of z from Lemma 10).

Lemma 12. Let u ∈ Sn−1 and x(u) ∈ ∂K be the unique point with outer unit normal 
vector u. Then, for all sufficiently small δ > 0, it holds that

(1 + δ)−n 2
n−1

2 f(x(u)) κ(x(u))− 1
2 κn−1 z

n−1
2

≤ s ≤ (1 + δ)n+1 2
n−1

2 f(x(u)) κ(x(u))− 1
2 κn−1 z

n−1
2 .

(19)

Therefore,

z ≤ (1 + δ)
2n

n−1
κ(x(u))

1
n−1 (n − 1)

2
n−1

2 f(x(u))
2

n−1 ω
2

n−1
n−1

s
2

n−1 (20)

and

dz

ds
≤ (1 + δ)n κ(x(u)) 1

2 2− n−3
2

f(x(u)) ωn−1
z− n−3

2 . (21)

Proof of Lemma 11. Observe first that max{0, (1 − c)hK(u) − h} = 0 whenever h >

(1 − c)hK(u). This observation together with Lemma 9, Lemma 10 and the substitution 
z = hK(u) − h imply that

E[Δs((1 − c)K, PN )]

≤ (1 + δ)
n(n+3)

2 a 2
n2−n−2

2

(
N

n

)
n2 ωn

n−1
(n − 1)n−1

∫
Sn−1

f(x(u))n κ(x(u))− n
2 −1

×
(1−c)hK (u)∫
hK (u)−ε

(
Pf (∂K ∩ H+)

)N−n
z

n2−n−2
2

1
hK(u) ((1 − c)hK(u) − h) dhHn−1(du)

+ δ

(
N

n

)
n!

∫
Sn−1

(1−c)hK(u)∫
hK (u)−ε

(
Pf (∂K ∩ H+)

)N−n
O(z

n2−n−2
2 )

× 1 ((1 − c)hK(u) − h) dhHn−1(du)

hK(u)
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= (1 + δ)
n(n+3)

2 a 2
n2−n−2

2

(
N

n

)
n2 ωn

n−1
(n − 1)n−1

∫
Sn−1

f(x(u))n κ(x(u))− n
2 −1

×
ε∫

chK (u)

(
Pf (∂K ∩ H+)

)N−n
z

n2−n−2
2

1
hK(u) (z − chK(u)) dzHn−1(du)

+ δ

(
N

n

)
n!

∫
Sn−1

ε∫
chK(u)

(
Pf (∂K ∩ H+)

)N−n
O(z

n2−n−2
2 )

× 1
hK(u) (z − chK(u)) dzHn−1(du).

It will turn out that, as N → ∞, both summands are of order N− 2
n−1 . Since δ can be 

chosen arbitrarily small, it is enough to consider the first summand in what follows.
We use (21) and then (20) to change from z

(n−1)2
2 to sn−1 and obtain that, for suffi-

ciently large N ,

E[Δs((1 − c)K, PN )]

≤ (1 + δ)
n(n+3)

2 +n a 2
n2−n−2

2 2− n−3
2

(
N

n

)
n2 ωn

n−1
(n − 1)n−1

∫
Sn−1

f(x(u))n−1 κ(x(u))− n
2 − 1

2

×
1∫

s(chK(u))

(1 − s)N−n z
n2−n−2−n+3

2
1

hK(u) (z − chK(u)) dsHn−1(du)

≤ (1 + δ)
n2+5n

2 a 2
n2−2n+1

2

(
N

n

)
n2 ωn−1

n−1
(n − 1)n−1

∫
Sn−1

f(x(u))n−1 κ(x(u))− n
2 − 1

2

×
1∫

s(chK(u))

(1 − s)N−n z
(n−1)2

2
1

hK(u) (z − chK(u)) dsHn−1(du)

≤ (1 + δ)
n2+5n

2 +n(n−1) a 2
(n−1)2

2 2− (n−1)2
2

(
N

n

)
n2

∫
Sn−1

κ(x(u))−1

×
1∫

s(chK(u))

(1 − s)N−n sn−1 1
hK(u) (z − chK(u)) dsHn−1(du)

≤ (1 + δ)
3n2+3n

2 a

(
N

n

)
n2

∫
Sn−1

κ(x(u))−1

×
1∫

(1 − s)N−n sn−1 1
hK(u) (z − chK(u)) dsHn−1(du)
s(chK(u))
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= (1 + δ)
3n2+3n

2 a

(
N

n

)
n2

∫
Sn−1

κ(x(u))−1
1∫

0

(1 − s)N−n sn−1

× 1
hK(u) (z − chK(u)) dsHn−1(du) + (1 + δ)

3n2+3n
2 a

(
N

n

)
n2

∫
Sn−1

κ(x(u))−1

×
s(chK(u))∫

0

(1 − s)N−n sn−1 1
hK(u) (chK(u) − z) dsHn−1(du).

In view of the definitions of the terms T1 and T2 this proves the claim. �
3.6. A bound for the term T1

After having decomposed the original integral expression from Lemma 9 into the sum 
of T1 and T2, we are now going to bound each of these terms individually. We start with 
T1 and at the same time start to specialize our set-up by taking the density function f
to be equal to fn, which was defined in (13).

Lemma 13. For sufficiently large N we have that

T1 ≤ a n N− 2
n−1 asn(K)

2
n−1 Hn−1(∂K)

with an absolute constant a ∈ (0, ∞).

Proof. We apply (20) and (16), to get that for all sufficiently small δ > 0 and sufficiently 
large N ,

T1 ≤ (1 + δ)
3n2+3n

2 a

(
N

n

)
n2

2
(n − 1)

2
n−1

ω
2

n−1
n−1

×
[

(1 + δ)
2n

n−1

∫
Sn−1

1
hK(u)

κ(x(u))−1+ 1
n−1

f(x(u))
2

n−1
Hn−1(du)

1∫
0

(1 − s)N−n sn−1+ 2
n−1 ds

−
(

1 − 1
n

)
N− 2

n−1
Γ(n + 2

n−1 )
(n + 1)(n − 2)!

1
Hn−1(∂K)

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx)

×
∫

Sn−1

κ(x(u))−1 Hn−1(dx)
1∫

0

(1 − s)N−n sn−1 ds

]
.
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For u ∈ Sn−1 let x = x(u) ∈ ∂K be the point with outer unit normal vector u. Using 
the change-of-variables formula (11) yields that

Hn−1(∂K) =
∫

Sn−1

hK(u)
κ(x(u)) Hn−1(du)

and
∫

Sn−1

1
hK(u)

κ(x(u))−1+ 1
n−1

f(x(u))
2

n−1
Hn−1(du) =

∫
∂K

1
hK(u(x))

κ(x)
1

n−1

f(x)
2

n−1
Hn−1(dx).

Together with the observation that

ω
2

n−1
n−1 ∼ 1

n
and (n − 1)

2
n−1 ≤ 2

we get

T1 ≤ (1 + δ)
3n2+3n

2 a

(
N

n

)
n3

2

×
[

(1 + δ)
2n

n−1
Γ(N − n + 1)Γ

(
n + 2

n−1

)
Γ

(
N + 1 + 2

n−1

) ∫
∂K

1
hK(u(x))

κ(x)
1

n−1

f(x)
2

n−1
Hn−1(dx)

−
(

1 − 1
n

)
N− 2

n−1
Γ(N − n + 1)Γ (n)

Γ (N + 1)
Γ(n + 2

n−1 )
(n + 1)(n − 2)!

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx)

]

≤ (1 + δ)
3n2+3n

2 a

(
N

n

)
n3

2

Γ(N − n + 1)Γ
(

n + 2
n−1

)
Γ

(
N + 1 + 2

n−1

)

×
[

(1 + δ)
2n

n−1

∫
∂K

1
hK(u(x))

κ(x)
1

n−1

f(x)
2

n−1
Hn−1(dx)

−
(

1 − 1
n

)
N− 2

n−1
Γ (n)

Γ (N + 1)
Γ(N + 1 + 2

n−1 )
(n + 1)(n − 2)!

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx)

]

≤ (1 + δ)
3n2+3n

2 a n2 N− 2
n−1

[
(1 + δ)

2n
n−1

∫
∂K

1
hK(u(x))

κ(x)
1

n−1

f(x)
2

n−1
Hn−1(dx)

−
(

1 − 1
n

)
Γ(n)

(n + 1)(n − 2)!

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx)

]

≤ (1 + δ)
3n2+3n

2 a n2 N− 2
n−1

[
(1 + δ)

2n
n−1

∫ 1
hK(u(x))

κ(x)
1

n−1

f(x)
2

n−1
Hn−1(dx)
∂K
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−
(

1 − 1
n

)
(n − 1)
(n + 1)

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx)

]

≤ (1 + δ)
3n2+3n

2 a n2 N− 2
n−1

[
(1 + δ)

2n
n−1

∫
∂K

1
hK(u(x))

κ(x)
1

n−1

f(x)
2

n−1
Hn−1(dx)

−
(

1 − 1
n

) ∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
H(x) Hn−1(dx)

]
, (22)

where in the third last inequality we have also used that

Γ(N − n + 1)Γ
(

n + 2
n−1

)
Γ

(
N + 1 + 2

n−1

) ∼ 1(
N
n

)
nN

2
n−1

and

Γ
(

N + 1 + 2
n − 1

)
∼ N

2
n−1 Γ (N + 1) .

Now, we replace the generic density f by the particular function fn, which is defined in 
(13). Together with Minkowski’s integral formula (12) this leads to the bound

T1 ≤ (1 + δ)
3n2+3n

2 a n2 N− 2
n−1

[
(1 + δ)

2n
n−1 asn(K)

2
n−1 Hn−1(∂K)

−
(

1 − 1
n

)
asn(K)

2
n−1

∫
∂K

hK(u(x)) H(x) Hn−1(dx)
]

= (1 + δ)
3n2+3n

2 a n2 N− 2
n−1 asn(K)

2
n−1 Hn−1(∂K)

[
(1 + δ)

2n
n−1 −

(
1 − 1

n

)]
≤ a n N− 2

n−1 asn(K)
2

n−1 Hn−1(∂K),

where a is some absolute constant. This completes the proof. �
3.7. A bound for the term T2

Now, we deal with the term T2 in Lemma 11.

Lemma 14. For sufficiently large N , it holds that

T2 ≤ a
N− 2

n−1
√

n
asn(K)

2
n−1 Hn−1(∂K),

where a ∈ (0, ∞) is an absolute constant.
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Proof. By definition of T2 in Lemma 11 and (19),

T2 ≤ (1 + δ)
3n2+3n

2 a
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N

n

)
n2

∫
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N
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1

n−1
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)
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2 a

(
N
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[
c

n

∫
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n−1(
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2
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1
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2

n−1

2hK(u(x))f(x)
2

n−1
Hn−1(dx)

]
,

where a ∈ (0, ∞) is an absolute constant and where we have used (11) in the last equality. 
By Lemma 12 we get

s(chK(u(x)))
2

n−1 ≥ 2 (1 + δ)−2 n+1
n−1 c voln−1(Bn−1)

2
n−1

f(x)
2

n−1 hK(u(x))
κ(x)

1
n−1

, (23)

where c is as in (15). Therefore,

T2 ≤ a (1 + δ)
3n2+3n

2 c

(
N

n

)
n

∫
∂K

s(chK(u))n Hn−1(dx)
[
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2
c

n(n − 1)

(
N

n

)
n

∫
∂K

s(chK(u))n Hn−1(dx). (24)

By (15) and Stirling’s formula it holds that

(2 c)
n−1

2 voln−1(Bn−1) ≤ 1 voln−1(Bn−1)

N
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×
(
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We use this together with (23) in (24) and get the bound

T2 ≤ a (1 + δ)
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2
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where we made use of Stirling’s formula once again. Now we use that c satisfies
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c ≤ a
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together with the elementary inequality 
√
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to see that
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Now we plug in the special density function fn given by (13) for f . Then
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which yields the bound

T2 ≤ a
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√
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asn(K)

2
n−1 Hn−1(∂K).

This completes the proof of the lemma. �
3.8. Completion of the proof of Theorem 1

We are now ready to complete the proof of Theorem 1. Indeed, Lemma 11, Lemma 13
and Lemma 14 imply that for sufficiently large N ,

E[Δs((1 − c)K, PN )] ≤ T1 + T2

≤ a1 n N− 2
n−1 asn(K)

2
n−1 Hn−1(∂K)

+ a2
N− 2

n−1
√

n
asn(K)
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≤ a n N− 2
n−1 as (K)

2
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(26)
n
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where a, a1, a2 ∈ (0, ∞) are absolute constants. Taking into account that we were ap-
proximating the body (1 − c)K instead of K, we need to multiply the bound (26) by 
(1 − c)−(n−1). Since

(1 − c)n−1 ≥ 1 − (n − 1)c,

for sufficiently large N (recall that the definition of c depends on N), we have that

(1 − c)−(n−1) ≤ a,

where a ∈ (0, ∞) is another absolute constant. This proves that the expected surface area 
deviation between K and PN is bounded by the right-hand side in (26). In particular, this 
means that there must exist a realization PN (ω) of a polytope with precisely N vertices 
for some ω ∈ Ω (recall that (Ω, A, P ) is our underlying probability space) such that the 
surface area deviation between PN (ω) and K is bounded by the same expression. Taking 
P to be this realization proves the claim of Theorem 1. �
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