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1. Introduction

The Blaschke—Santal6 inequality, see [4,34], states that every O-symmetric convex
body K in R™ satisfies

vol, (K)vol, (K°) < (VOln(BEL))Z:

where K° = {y € R" : (z,y) < 1Vz € K} is the polar body of K, B} = {z € R": |z| <
1} is the Euclidean unit ball and | - | denotes the Euclidean norm on R™. The left-hand
side of this inequality is called the Mahler volume. The sharp lower bound for the Mahler
volume is still open in dimensions 4 and higher. The famous Mahler conjecture suggests
that this functional is minimized by the couple (B}, BY ). Partial results can be found
in, e.g., [20,24,30,32].

Here we ask: What is a natural generalization of the bounds for the Mahler volume
for multiple sets? While this is not obvious from the geometric viewpoint, we suggest in
this paper a reasonable extension, which is naturally related to a functional counterpart
of the Blaschke-Santalé inequality.

The functional Blaschke-Santalé inequality was discovered by K. Ball [6] and later
extended and generalized in [3], [17], [27]. In its simplest form it states that for every
two measurable even functions V, W on R™ we have that

/e_v(x)da:/e_w(y)dyg (2m)™,

provided that V(z) + W(y) > (z,y) and either 0 < [e™V®) < oo or 0 < [e W) <
0o. Equality is attained if and only if V(z) = |Tz|?> + ¢, W(y) = |T'y|? — ¢, where
T is a positive definite matrix and ¢ > 0 is a constant. Interesting links to optimal
transportation theory were noted in [3] and more recently in [15]. There, it is shown that
for probability measures p = f -, v = g -y, where ~ is the standard Gaussian measure,
such that [ zfdy =0, the following inequality holds,

5 W31, ) < Enty (1) + Bty (v) (L1)

and that this inequality is equivalent to the functional Blaschke—Santal6 inequality. Here,
W#(u,v) is the L? Kantorovich distance (see Section 2 for the definition) and

r
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Enty (1) = | flog fi

is the relative entropy with respect to Gaussian measure. Inequality (1.1) is a remarkable
strengthening of the Talagrand transportation inequality and the starting point of our
paper. We refer to, e.g., [5] for Talagrand’s inequality and it’s fundamental importance in
probability theory. In this context, please also note a very recent result of N. Gozlan about
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a transportational approach to the lower bound for the functional Blaschke—Santald
inequality [23].

We would like to point out an important connection of the Blaschke-Santalé inequality
to the Kéhler-Einstein equation. Inequality (1.1) implies, in particular, that the func-
tional p — 3 W3 (p, v) — Ent, (i) is bounded from above. The minimum of this functional
solves the so-called Kdahler—Einstein equation. This was established by F. Santambrogio
[33]. The form of the functional presented here was considered in [26]. The well-posedness
of the Kahler-Einstein equation was proved by D. Cordero-Erausquin and B. Klartag
[13]. Generalization to the sphere and relations to the logarithmic Minkowski problem
were established in [25]. Other related transportation inequalities can be found in [16].

To analyze the case of k functions with £ > 2 we consider the cost functional

n

oy, hzn) = Y |mi—ayf (1.2)

i,j=1,i<j

and the corresponding multimarginal Monge-Kantorovich problem, i.e., the minimiza-
tion problem

P_)/Cdpa PEP(P’I:“'HU’JG)

among the measures P(u1,--- , ) with fixed projections py, - - - , ug. This problem has
been studied by Gangbo and Swiech [21]. Agueh and Carlier realized in [1] that this

problem is naturally related to the barycenter problem for pu,---, ux. A measure p is

called geodesic (or Wasserstein) barycenter of p1,--- , ux with coefficients %, if it gives

k 1
i=1 2k
attracted much attention, also among applied scientists. We refer to the recent book of

the minimum to the functional v — W2(u;,v). Barycenters of measures have

Peyré and Cuturi [31] and the references therein for more information.
Motivated by these results we conjecture that

f[/f,;(a:@)dxi < (/ P’I‘(%_l)mf)du)k, (1.3)

1’=1R'n R~

where f;: R — R,, 1 < < k, are even, measurable, integrable functions satisfying
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k k
[[fi@) <o D (ziz))
i=1 ij=1,i<j

and p is a positive non-increasing function. We verify this conjecture in several cases.
Some of our main results are stated next.
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1.1. The main results

In Section 2 we discuss some preliminary facts about Kantorovich duality theory for
many functions and prove that our integral functional is bounded for the case of quadratic
cost (1.2). We also show that for k¥ > 2 our functional has a trivial (zero) lower bound,
unlike the case of two functions.

In Section 3 we verify the above conjecture in the unconditional case (see Section 3 for
the definition) and prove the following theorem.

Theorem 3.1. Let f;: R™ — R., 1 < i < k, be unconditional integrable functions satis-
fying

k k
Hf@(xz) <p Z (iyzj) | for every m;,x; € RT,

1,7=1
i<j

where p is a positive non-increasing function on [0, 00) such that [ p* (t2)dt < 0o. Then

f[/j}-(zzcz-).snl:r:2 < ] 1)| |2) du
i=1gn

For k > 2, equality holds in this inequality if and only if there exist positive constants c;,
1 <1<k, such that Hi;l c; =1, and such that for all 1 <i <k,
1.

k

filz) = ci ph (""’("‘“2‘1)|x|2)

almost everywhere on R™.
2. The function p satisfies the inequality

o (252 ) 3 o

for all z;,z; in R?
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Our proof uses the Prékopa—Leindler inequality for many functions and an exponential
change of variables as an intermediate step.

The above theorem and the affine isoperimetric inequality of affine surface area for log-
concave functions of [11] lead to multi-functional affine isoperimetric inequalities for
log-concave functions, which we also prove in this section.
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In Section 4 we study equality cases for unconditional functions and prove the above
stated equality characterizations. To do so, we need equality characterizations in the
Prékopa—Leindler inequality. We could not find such characterizations in the literature
and therefore give a proof of those.

In Section 5 we prove a generalization of the Blaschke-Santalé inequality which involves
more than two convex bodies. There, || - ||k denotes the norm with the convex body K
as unit ball.

Theorem 5.1. Let K;, 1 <1 <k, be unconditional convex bodies in R™ such that
1 2 k
Hefinx"”fﬂ <p Z (xi,zj) | for every z;,x; € RY,

2,j=1,2<g

where p is a positive non-increasing function [0,00) such that [p p%(tZ)dt < 0o. Then

Hvol (vo(lQ;B" / |3:|2)d:c

For k > 2, equality holds if and only if K; =r By and p(t) =e T for some r > 0.
In particular, if p(t) = e =1, then, if Z” 1< (@i i) < k-l Zf=l |z:||%,, we have
that

k

Hvol ) < (vol,(B2))*

and for k > 2 equality holds if and only if K; = BY for all1 <i < k.

Proposition 5.3 of this section gives a version of the L,-affine isoperimetric inequalities
for many sets.

In Section 6 we prove several strengthenings of classical inequalities using barycenters.
Among them is the following “pointwise Prékopa—Leindler inequality”.

Theorem 6.1. Let i1 be the barycenter of measures p; = f—f%dmi with weights A\;, 1 <
i < k, where f; are nonnegative integrable functions. Then it has density p satisfying
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k

k _
H(f fidxi))\lp(m) < sup fi)‘"*(yi), for p—a.e.x. (1.4)
i=1 1

e=3%_, Aiyi j—

In Section 7 we study applications of our results to transportation inequalities for the
barycenter problem. We obtain the following bound which generalizes (1.1) and, in par-
ticular, a classical estimate of Talagrand.
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Theorem 7.1. Assume that p; = p; - vy, where «y is the standard Gaussian measure and
the p; are unconditional, then

k
k—1
Flu) € — > / pilog pidry,
i=1

where F(p) = 52 Z?=1 W2(u, pi) and p is the barycenter of {u;} with weights .

Moreover, from our refinement of the Prékopa—Leindler inequality, we deduce some new
inequalities related to displacement convexity of the Gaussian entropy.

In Section 8 we prove a monotonicity property of the multimarginal Blaschke-Santald
functional. A simplified version of the result is stated next.

Theorem 8.2. Assume that for 1 < i < k, V;(z;) are measurable functions such that e~V
are integrable, satisfying

k k 1
D Vi) = Y (i m)
i=1 i,7=1,i<y

Let the tuple of functions U;(x;) be the solution to the dual multimarginal mazimization

-V,
e Vidzx; . 1 k
Te=Vida, and the cost function — > i,j:l,i<j<$'5’$j)' Then

problem with marginals

k k
H/e_v"dm,; < H]e,_U‘dm,;.
i=1 i=1

2. Integral bounds and facts about barycenters

We start this section with the proof that the Blaschke—Santalé functional is bounded
on the set of even functions. We will need the definition of the Legendre conjugate V*,
which for a proper (not identically equal to +oo) function V : R™ — RU{+o0} is defined
as

V*(y) = sup ({z,y) — V(z)).
rzER”

Proposition 2.1. Let V;, 1 < i < k, be a family of Borel functions on R™ such that e~V
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is integrable for all 1 < i < k. Then the functional

k
S(Via v :Vk) = er_m(ml) dxz
=1

18 bounded on the set
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Lnk=

H

k k
{(Vl,--- Ve):Vie{l,--- k},V; is even,feW(w)dm < oo,ZVi(:cz—) > Z (9:1,3:3)}

i=1 1,7=1,1<j

Proof. Let us fix arbitrary finite (Vi,---,V%) € Ly, x and estimate S(V1,- -+, V). First
we note that the functions V; can be assumed to be convex. Indeed, if V7 is not convex,
replace it by the following convex function

k
Vi(zy) = sup ( Z (@s,25) ZV :1:@))
TidFl Y i< i#1

The tuple (f’l, -+, V&) belongs to Ly, . Note that all the desired properties can be easily
checked except of integrability of e~"1. We will show below that V4 is integrable. Since
Vi > Vi, weget S(Vq,---, Vi) > S(Vi,---,Vi). Next we apply the same procedure to the
tuple (171, -+, Vi) and the function V5. Repeating this procedure, we finally obtain a tuple
(Vi,--- , Vi) consisting of only convex functions such that S(Vi,--- , Vi) > S(Vi,- -+, V&).
Let us denote this new tuple again by (Vi,- -, Vi).

Next, note that without loss of generality we can restrict ourself to the case of convex
functions satisfying V;(0) = 0. Indeed, one can replace V; by Vi(z;) = Vi(x;) — V;(0),
1<i<k-1,and V; by Vk(;t:k) = Vi(zr) + Vi(0) + - - - 4+ Vik—1(0) and this replacement
does not influence the value of the integral functional. One has ﬁ’;(O) =0,1<i<k-1.
Next we note that

k—1 k—1
Z ﬁ’z(m@) > Z Ti, T;j) <Z xz,xk> - ff}(mk), for all zy,
=1

1<j

is equivalent to

T
—
El
|

—
El
|

-

,,
I
—_
o3,
A
.,
-~
Il
—

which in turn is equivalent to
2
R

2
v lEE L paas L

kE—1
IA7ALIA NP

aT.
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i bt
=1

Ly 9 ' Tn\E= 9

=1

TRy \/_J.u,,/.
=1

We now define a function F' by the following relation

%—f—F(t): inf Z'x” Vi(zs).

t= Z'L_l T =1
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Clearly (ffk)* < F, hence V;, > F*. Thus S(ffh--- ,17;.;) < S(T‘;’l,--- , F*). More-
over, it follows immediately from the definition of F' and the above inequalities that
(Vi,+++ ,F*) € L, %. Since V; > 0 and V;(0) = 0, we immediately get F'(0) = 0. Hence,
F*(0) = 0. Thus the tuple (V1,--- , F*) satisfies V,(0) = --- = F*(0) = 0 and gives a
larger value to S.

Finally, it is sufficient to show that & is bounded for finite convex even functions V;
satisfying V;(0) = 0 and Za L Vi(z;) > E ij=1.i<;j(Ti,xj). We observe that for every

j#Em
k
Vim(zm) = sup ( Z (Ti,xs) ZVz(m ) >
T3 Ts,8,57M i,8=1,i<s i#m
k
wr([ 3 fomd - SHE] )~ ~e) = o)
T3 i,8=1,i<s itm e ’ T

If e=V5 is integrable, then by the functional Blaschke-Santalé inequality

/eV’“d:z:mferda:j < /evj*dmjfevfdmj < (2m)™.

Hence
1

k 1
er_v"da:k H / Vdmz/e_vjdmj) . < (27|')knTl
=1

4,J=1,i<g

If e=Y is not integrable, then again by the Blaschke-Santalé inequality f e Vi dr; =0,
hence f e~ Vmdz,, =0, but this contradicts to finiteness of V,,. O

A related natural question is whether there is a non-trivial lower bound for 87 For the
case of two functions this is a functional variant of the well-known open problem, known
as Mahler’s conjecture. More precisely, for k = 2 we are looking for the lower bound of

/evda:/ev

https://reader.elsevier.com/reader/sd/pii/S0001870821005491?token...FB8C7E95FD1&originRegion=us-east-1&originCreation=20220125144012 Page 15 of 88
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It is conjectured that the minimum is reached, in particular, when V(z) = ||z|; =
Yooy lzi| or V(z) = ||z|le = maxi<i<y |z;|, or their Legendre transform. See e.g.,
M. Fradelizi and M. Meyer [18], [19], where the conjecture was proved in dimension
1.

The natural generalization of this problem for the case of k > 2 functions however has a
trivial solution.
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Proposition 2.2. There ezist even functions Vi,Va, Vs such that the triple (Vi,Va,V3)

satisfies
k
TiiFEM Y 51 i< i#Em

and S(V1, Vs, V3) = 0.

Remark 2.3. Assumption (2.1) seems to be a natural generalization for £ > 2 functions
of the condition that two convex functions are related by the Legendre transform.

Proof. The desired functions are

0 ifz=0
Vi(z1) =
+0o else
T |2 x3|?
V(o) = 25, vigag) = 2L

The reader can easily check the claim. O

At the end of this section we recall basic facts on duality relations for the transportation
cost appearing in the theory of barycenters of measures. Recall that for a given family
of probability measures pq,- -, pr and weights A; € [0, 1] satisfying Zfﬂ A = 1 its
barycenter p is the minimum point of the functional

k
1 2
F) = 5;&% (i> v).
Here,
W22(V1:V2) = inf {/ |:B - y|2dP(3:, y) :Pe P(Rn X Rn): P(’aRn) = VI:P(Rna') = V2}

is the L2 Kantorovich distance of probability measures vy, v5. It is well-known that the
barycenter problem is closely related to the multimarginal (maximization) Kantorovich
problem with the cost function

https://reader.elsevier.com/reader/sd/pii/S0001870821005491?token...FB8C7E95FD1&originRegion=us-east-1&originCreation=20220125144012 Page 17 of 88



Blaschke-Santalé inequality for many functions and geodesic barycenters of measures | Elsevier Enhanced Reader 1/25/22, 9:40 AM

k
(mla"' amk) — Z /\i/\j(miaxj>

i,j=1,i#]

and marginals p;. Let m be the solution to this problem, i.e. a measure that gives a
maximum to the functional

https://reader.elsevier.com/reader/sd/pii/S0001870821005491?token...FB8C7E95FD1&originRegion=us-east-1&originCreation=20220125144012 Page 18 of 88
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4,j=1,i#]

among the measures on (R™)* having p1, ..., ux as marginals.
The following facts are collected from [1] and [21].

Theorem 2.4. [1/, [21] Assume that p; are absolutely continuous measures with finite
second moments and \; € (0,1) are numbers satisfying Zf=1 A; = 1. Then the following
facts hold.

1. There exists a unique absolutely continuous solution u to the barycenter problem and
a unique solution m to the problem (2.2).

2. The measure p is the push-forward measure of m under the mapping T(zq1,--- ,xk) =
Zi;l Aix; and the following relation holds:

k k
S AW (i, ) = / S iz — T(=)[Pdn.
=1 i=1

3. The optimal transportation mappings V®,; of p onto p; satisfy

k
=1

for p-a.e. z, and 7 is supported on the set {(V®(z), - ,VP;(z)): x € R"}.
4. There exists a tuple of convex functions (v;) solving the problem dual to (2.2), which
is unique up to addition of constants and modification of sets of zero measure, i.e. a

k-tuple of functions satisfying
k k
sz(ﬁiz) > Z Aidj(Ti, )
i=1 i,,i#]
with equality w-a.e. The following relation holds between v; and ®;:

P

®; (@) = A

Uz(ﬁfz)
5t G (2.3)

https://reader.elsevier.com/reader/sd/pii/S0001870821005491?token...FB8C7E95FD1&originRegion=us-east-1&originCreation=20220125144012
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for pi-almost all x;.

Remark 2.5. The results of item 1. are obtained in Section 3 of [1], item 2. is contained
in Proposition 4.2 [1], item 3. corresponds to Proposition 3.8 of [1]. Formula (2.3) needs
some explanations. It corresponds to formula (4.8) in [1], but in the presentation in [1]
there is no direct link to the optimal transportation of the barycenter u onto u;. Let us
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give some informal explanations.
By the Kantorovich duality 7 is concentrated on the zero set of the positive function

Mx

vi(x;) — Z AiXj(zi, zj).

i=1 1,787

Thus, for m-a.e. (z1, -+ ,xx) and all 1 < ¢ < k one has Vv;(z;) = Zj#i). Az ;. Equiva-
lently,

Aixi + V'vz 2:%) Z/\ zj, T— a.e. (2.4)

It remains to note that p is the image of m under 7' = Z?zl Ajz; and p; is the projection
of 7 onto the i-th factor. Thus relation (2.4) immediately implies that p is the image
of p; under the mapping z; = A\;jz; + M Since the latter is the gradient of the

convex function A; % + #
T

mapping that V& = \;z; + Vv;igm")

, we conclude by uniqueness of the optimal transportation

3. The unconditional case

In this section we verify our conjecture (inequality part) for the unconditional func-
tions. A function f : R™ — R is called unconditional, if

f(slxla T 78n$n) = f(xlamm .. 'axn):
for every (1, ,en) € {—1,1}" and every (z1,--- ,z,) € R™

Theorem 3.1. Let f;: R®™ — R, 1 < i < k, be measurable unconditional integrable
functions satisfying

k

k
Hfi(xi) <p Z (xi,z;) | for every x;,z; € RY,
= §,j=1,i<j

where p is a positive non-increasing function on [0, 00) such that [, p* (12)dt < oco. Then
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ﬁfﬁa(iﬂi)dﬂ < p% (w |u|2)d'u. ) (3.1)

‘i=1Rn n

In particular, if

https://reader.elsevier.com/reader/sd/pii/S0001870821005491?token...FB8C7E95FD1&originRegion=us-east-1&originCreation=20220125144012 Page 22 of 88



Blaschke-Santalé inequality for many functions and geodesic barycenters of measures | Elsevier Enhanced Reader 1/25/22, 9:40 AM

12 A.V. Kolesnikov, E.M. Werner / Advances in Mathematics 396 (2022) 108110
k k
Hfz(%) < e *Ziini<i T g e Ry,
=1
then

T [t —akztu? g \"
ER[ fi(zi)dz; < (]e du) .

Rn

Proof. Clearly, for unconditional functions it is sufficient to check that

k
k
i=1R,+, "
provided that on RZ,
k k
Hfz(il?z) <p Z (zis 5)
i=1 i,j=1,i<j

We prove this using the Prékopa—Leindler inequality and a trick involving a change of
variables formula (see, for instance, [22] or [27], Lemma 5).
For w = (uq,- -+ ,u,), we denote e* = (e"!,---,e%"). We apply the change of variables
formula

z; = e, t; e R™,

and get
k k
H/.fa'(ma;)dxg =H/.f¢(et“f)ezi=l(“)mdt,;,
’lt.'=1]Ri i:an

where we write t; = ((¢;)1, (ti)2,- -, (ti)n). Next we apply the Prékopa—Leindler inequal-
ity (see, e.g., [22], formula (21) or (27)),

k N koo,
T[( [n.-rff,.-\k < f 1IN TT ak(+Ndt
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ll\ Jb“‘bj — A llaq‘ NTbyTTT
i=1 ]%1 ]R{n t=% i1 tii=1

After the change of variables and the application of the Prékopa—Leindler inequality,
we use the assumptions of the theorem in the second inequality below. We also use the
arithmetic-geometric mean inequality and the fact that p is non-increasing in the third
inequality below. We get
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k

(ﬁffz(mg)d:nz)% </ lsup H( %( )ekzm Lt )m)d
i=1R1

k
t=4% i1 tii=1

k n
1 1 k n
< E tt+tj)m) ® Juie Em: (fl)m]dt
<[ s (D 3 etrn)et Shamh
Rn Kk &i=177 i,j=1,2<j m=1
k n
[ (3 S etmn]esie
Rn k=1 i,j=1,2<j m=1
n
</ sup [p%(z Bk — 1) rny £F i (tirt m)] Sr s (B gy
¢ 1Ek t 2
Rn  k Za=17% m=1
n
=/ sp  [ph (MEZD 7 et mhaon) X Om gy
=+ 5k ot 2 -
R™ k i=1 "t m=1
n
_ /pi(k(k—l) 20 el O
R~ 2 m=1

Changing variables u,, = eY™ one gets

k n

(Hffi(mi)dmi)%ff ( k—1) Zufn)du—f _(@hdz)du. O

i=lphn n =1 n
R R7 R™

The above theorem and the affine isoperimetric inequalities of affine surface area for
log-concave functions of [11] lead to multi-functional affine isoperimetric inequalities for

log-concave functions.
We first recall that for A € R, the A-affine surface area of a convex function V was

introduced in [11] as

asx(V) = /e(z)‘_l)v(x)_)‘<x’vv(m)> (det DQV(:L'))A dzx, (3.2)

Qv

where Qy = int ({ € R™ : V(z) < +oo}) is the interior of the convex domain of
V and D?V is the Hessian of V. The gradient of V, denoted by VV, exists almost
everywhere by Rademacher s theorem (see €8 [8]), and a theorem of Alexandrov [2]

_— - . = - - -—— — - -

1/25/22, 9:40 AM
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and Busemann and Feller |1U] guarantees the existence ot the Hessian, denoted by D*V,
almost everywhere in {2y .
In the next theorem we collect several results that were shown in [11].

Theorem 3.2. [11] Let V : R® — R U {oo} be convez.
(i) For any linear invertible map A on R",  as\(V o A) = |det A|**~Lasx(V).
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(ii) For all A € R, asx(V) = as1—x(V*).
(iit) asy (V) < (/f e_Vd:r)% (f e_V*dm)%.
(i) Let V in addition be such that [g., e~V @ dxr =0, and let X € [0,1]. Then

A

asx(V) < (2m)™ L/ e Vdx . (3.3)

and equality holds for A # 0, if and only if there exists a € R and a positive definite
matriz A such that V(z) = (Az,x) + a, for every x € R™. For A = 0, equality holds
trivially.

Remark. Theorem 3.2 (iii) is just a special case for A = % of a more general statement
proved in [11].

We then get the following Proposition.

Proposition 3.3. Let V;: R — RU {oo}, 1 < i < k, be conver unconditional functions
and let p be a positive non-increasing function on [0,00) such that [ pk (t2)dt < oo.

(i) Let A € |0, %] and suppose the V; satisfy

k k
He*V"(”“) <p Z (xi,zj) |, for every zi,x; € R}
i=1 i,j=1,i<j
Then
. k(1—-2))
1 k(k—1
[Tass) < mf | [ ot (M52 uf?) . (3.4)
=1

In particular, if p(t) = e_ktTl, then

- [

iljlaSA(V,;) < (as). (T))k (3.5)

- . r1  aa - . -
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(ﬂ} Let A € [5, lJ and suppose the V,; are such that

k k
He*Vf @) < p E (xi,zj) | , for every z;,x; € R.
i=1 i,j=1,i<j

Then
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. k(2A—1)
k(k—1
[Tass(v) < enfr= ([ o (MEZD 102w @)
1=1

And again, if p(t) = e FT , then

[Tesi < (s (5)) a7

Proof. (i) We get immediately from Theorem 3.1 and inequality (3.3) that for A € [0, 3],

(1—2X) k(1—2))

ﬁas,\(mg(zw)km‘ f[ / Vi < (2m)knA / 1) |u|)

If p(t) = e*ﬁ, then

(2> /pk —1)|u| ) du = (2m)% = (asA (%))k

which shows the second part of (i).

(ii) We use Theorem 3.2 (iii) and (iv) and Theorem 3.1 and get that for A € [3, 1],

k(2A—1)

k k f
HGSA(%) — Ha'slf)\(vi*) S (211_)73,(1—,\) Hj-e_br:
= =1 i=1
k(2A-1)
- L rk(k—1)
< kn(1—-2X) 9
< (27) /P’“ (—2 |u| )du

The second part for p(t) = e~ 51 follows. O

Remark 3.4. (i) Please note that for A = 0, inequalities (3.4) and (3.5) are just the
inequalities of Theorem 3.1. For A = %, we do not need that the V; are unconditional
and the inequalities are just the inequalities of (3.3),
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k
[T as: (V) < (2m)*.
=1

See also Section 8 for more on as1.
(ii) For A > 1, we get an estimate from below with an absolute constant ¢, see [11],
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f[asA(I/;) > cknA C/ p% (k(k2—1) |u|2)du

4. Characterization of the equality cases

k(1—2X)

In the proof of Theorem 3.1 we have used the Prékopa—Leindler inequality which is a
particular case of the more general Brascamp—Lieb inequality (see [9], [7]). To analyze the
equality case we need the equality characterizations of the Prékopa—Leindler inequality.
We could not find those in the literature, except in the case of two functions, established
by Dubuc [14]. We therefore give a proof of the equality characterization.

Theorem 4.1 (Prékopa—Leindler). Let f;, 1 < i < k, and h be nonnegative integrable real
functions on R™ such that for all x; and for all \; >0, 1 <i < k, with Zi.;l A =1,

k k
=1 i=1

Then

f[(/fz'ﬂhffa))hi < /hdm. (4.1)

i=1 R~ Rn

Equality holds in the Prékopa—Leindler inequality if and only if there exist vectors
Y1, Yk tn R™ such that, after modification on a set of measure zero, the functions f;

satisfy

HhE—y) _ fole—y) _ fulz—uk) _ o ¥(a) (4.2)
Jrn rdz Jrn fodz Jrn frdz ’ :

where 1 is a convex function such that fRﬂ e~ Y@ dx = 1. In addition, after modification
on a set of zero measure, the function h can be chosen to satisfy

=38 ) Xi®i =1

k k 7
hz)= swp  J]fM@)= H(/ fidwi)AleW(“ELlM%)
=1 R~
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for all x.

Proof. It is clear that equality holds in inequality (4.1), if the functions satisfy the
condition (4.2).

The proof of the inequality is well known and can be found in, e.g., [22,34]. We give a
proof of the inequality by induction on the number of functions. This allows to establish
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the equality characterizations, as for two functions, those were established by Dubuc

[14]. We have

k
sup [ fM@) = s i (z)g' M),
$=Zf:l)\i Tij=1 z=Xz1+(1-A)y
where
k ER.Y
g(‘y) e Sup Hf,jl_)\l (ill'-,:).

— 1 k
Y= 1057 Lim2 Ni Ti §=2

Applying the Prékopa—Leindler inequality for two functions gives

[ o T ([nen)" (fon) ™
Z=) 01 Ai T =1

Applying the induction step, one gets

fgdy > }l (f f@(ﬂfa’)dmi) o

This completes the proof of the inequality. The equality characterization follows from
the equality characterization for two functions. O

Theorem 4.2. Let f;: R® — R., 1 < i < k, be measurable unconditional integrable
functions satisfying

k k
Hf@(:.r:@) <p Z (iyx;) | for every m;,x; € R, (4.3)
i=1 ij=1,i<j

where p is a positive non-increasing function on [0,00). Then for k > 2 equality holds in
inequality (3.1), i.e.,

ﬁ/fz(:nz)dm,, = /p% (@ |$|2)d$

i=1gy, n
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if and only if there exist positive constants c;, 1 < i < k, such that H,’f:l c; =1, and
such that for all 1 <i <k,
1.

k(k — 1)
2

C; P% |x'z|2 ; (4-4)

Ji(z;)
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for almost all z € R™,
2. The function p satisfies the inequality

k ) k
ot (M55 ) <o 3 e (45)
for all z;,z; in R

Proof. Obviously, if (4.4) and (4.5) hold, then one has equality in (3.1) and the assump-
tion (4.3) is satisfied.

If equality holds in Theorem 3.1, then we have equality everywhere in the proof of The-
orem 3.1. We have equality in the Prékopa—Leindler inequality. Note that the Prékopa—
Leindler inequality is applied to the functions

fi(et)eEmatm,

Hence by the above equality characterizations in the Prékopa—Leindler inequality one
can modify the functions f; on a set of zero measure in such a way, that there exist
Y1, - .Yk such that and all 1 <7 <k

filet) = (/ fidm)e_ Y1 (ti)m o= (tit+yi) (4.6)

where 1 is a convex function such that f]Rn e %@ dz = 1. In addition, the following
equality must hold for almost all ¢

k

sup H( %( ek Lm l(fi)m) —  sup [ %( Z Ze(t1+t )m)]ezg:l(t)m

t=1% 2i—1 ti i=1 t=% Yim1 ti i,7=1,i<j m=1
_ ( ‘1)26 ") eSO,

In particular, changing variables x; = e* one gets

o [ot (X ()] = ot (M ). (@.7)
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Gg=1,i<]

1/25/22, 9:40 AM
Further, substituting (4.6), one gets that for a.e. ¢

[0/ 5)" o 1

sup  [JemwvCtv) = p%(
i=1 gn t=g ioitii=1

k(k—1) <~ 200\ .50 (m
Tmzzle )e m=1("m
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Applying convexity of v, one gets that SUD;_1 vk Hf=1 e~ k¥(tity:) = e ¥(t+Y) where
k . -
Y= 1> i1 Y. Finally,

k 1 n
k v rk(k—1 n

| I(/ fzdm) Fe¥(tty) _ pF ((2) E 62(t)m)e m=1()m

=1 gn m=1

almost everywhere. Note that, if fact, equality holds pointwise, because e~¥ is a contin-
uous function on {¢ < oo} and p is non-increasing. Substitute ¢ = ¢; + y; — y into this
identity. One gets

li( / fidx)

Hence (4.6) implies that for all ¢;,

(fRn fidm)
[T (Jfpn fida)

=

gty _ 2 (EE= 1) S oty )m) S (bt gi—)m
e Y —pk( 5 mzzle Yi—¥)m | e V(Eityi—y)m

: Lrk(kE—1) & B —
fz’(g%) — ipt( ( 5 ) Z e2(tity: y)m)ezmﬂ(y@ Wm
m=1

We make a change of variables x = e'i and get

1 rk(k =1
fi(x) = cip* ((2) |6yi—ym|2)’

where e¥s Yz € R™ is defined by (e¥~Yx),, = e(¥~¥)= (z),, and where

(fRn f idm)

C‘i — 82;:1(y1_y)m.

T (fo fid) "

Note that H,’f:l c; = 1. Then we have by assumption (4.3) for all z;, z; € R%,

a k kL k(k—1) . 2
ol D oo | 2] A =[]o* (Z55— e v ail).
i,j=1,i<j i=1 i=1

However, inequality
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k k
p Z .(:nz-,:sj) EHP}C(@ }gyi*y;gi}Z) (4.8)

only holds if y; = y for all 7. To see that, note that (4.8) holds in particular for z; = e~
which leads to
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k k
1 k(k — 1) 2
—Yi U & -y -y
p| X tememy | 2 TLoH (M o) = o (MR o)
4,J=1,2<7 i=1

and, as p is decreasing, to

k
k(k—1
Z (e ¥, e ¥) < (2) |e*y|2' (4.9)
1,7=1,4<7
Note that for k > 2 inequality (4.9) only holds if y; = y for all 4. Indeed, by Jensen’s
inequality,

e F X Wim — = |e7¥|2.

Equality in Jensen’s inequality shows that thus y; = y for all 4.
Consequently, equality in (3.1) is equivalent to

1. fi(z)=¢ p* (k(};—_l) |a:|2), almost everywhere and

E 1 [ k(k—1 k
2. iz pF (% |$z|2) < p(Z’i,j=1,z‘<j(m’:’mj>)' O

Equation (4.4) says in particular that if equality holds, then all f; are equal modulo
normalization.

Under some natural assumptions on the function p, one can show that inequality (4.5)
always holds.

Remark 4.3. Let p(t) = e W), where W is convex and increasing. Then (4.5) holds.

Proof. If p(t) = e~ () inequality (4.5) is equivalent to

kZW( 1)|$1|2)>W( Z (26,25) ).

i,j=1,4<g
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By convexity of W, %Zle W (@ |3:3|2) > W ((162;1) Zi;l |3:,,|2) Therefore it is
enough to have that

w(E=D5 ) sw( s
7 Dl | 2w ( Y (we)
=1 ,j=1,i<3
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or, as W is increasing,

(k—1) k k
DS mps Y (),
i=1 i,j=1,i<j

which holds, because

k k k

> ey Y (mP k) =R Y me o

i,7=1,1<g 1,7=1,i<j i=1

Theorems 3.1 and 4.2 and Remark 4.3 immediately yield the following corollary.

_t

1/25/22, 9:40 AM

21

Corollary 4.4. Let p(t) = e *1. Let f;: R" = R, 1 < i <k, be measurable uncondi-

tional integrable functions satisfying

1

k
k o
Hf%(x%) < e k-1 (Ei,j:l,t’(j(mum.’.i)) fOT every x;,T; c Ri
i=1

Then

k

ﬁ/fi(fi)dﬂ% < /e_%ﬁdm = (2m)*2

i=1Rﬂ n

and for k > 2 equality holds if and only if there exist positive constants ¢;, 1 < i < k,

such that Hfﬂ c; = 1 and such that for almost all x € R™, for all1 <i < k,

2.2
fz(:r:z) = C; 67%‘;.

The next proposition addresses the equality characterizations of Proposition 3.3.

Proposition 4.5. Let V;: R™ — RU {00}, 1 < i < k, be conver unconditional functions

and let p be a positive non-increasing function on [0,00) such that [ pk (t2)dt < oco.

(i) Let X € |0, %] and suppose the V; satisfy

k k
He_vi(xi) <p ( Z (;r:i,:zj)) , for every z;,z; € R™ satisfying (x;,z;) > 0.

0
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t—1 \"',J—J—a"'\J /
(4.10)
Then equality holds in inequality (3.4), i.e.,

Has; = (2m)F™* / % — 1) |u|2)du ,

https://reader.elsevier.com/reader/sd/pii/S0001870821005491?token...F88C7E95FD1&originRegion=us-east-1&originCreation=20220125144012 Page 42 of 88



Blaschke-Santalé inequality for many functions and geodesic barycenters of measures | Elsevier Enhanced Reader 1/25/22, 9:40 AM

22 A.V. Kolesnikov, E.M. Werner / Advances in Mathematics 396 (2022) 108110

if and only if for all i, there are a; € R such that for almost all z € R™,

|24
2
p(t) = e STt Yio @i (4.12)

Vi(z;) =c + a;, (4.11)

for some ¢ > 0 and numbers a,;.

(ii) Let X € [3,1] and suppose the Vi are such that

k k
He_vﬂm(:“) <p Z (i, zj) |, for every x;,z; € R™ satisfying (x;,z;) > 0.
i=1 4,j=1,i<j

Then the equality characterizations in inequality (3.6) respectively (3.7) are as in (i) with
V.* instead of V;.

1

Proof. (i) It is clear that if (4.11) and (4.12) hold, then there is equality in (3.4) and the
assumption (4.10) holds. On the other hand, by Theorem 3.2, equality holds in the first
inequality of the proof of Proposition 3.3, if and only if there exist a; € R and positive
definite matrices A; such that for every x € R", for all 1 <i < k,

Vi(z) = (Aiz, x) + a;. (4.13)

By Theorem 4.2, equality holds in the second inequality of the proof of Proposition 3.3,
if and only if there exist constants ¢;, 1 < ¢ < k, such that Hf=1 ¢; = 1 and such that
forall 1 <i <k,

e~ Vil@) = ¢, p¥ (@m?) ’ (4.14)

almost everywhere, and the function p satisfies the inequality

k k
s (k(k—1)
[t (45 r) 0| 32 s
=1 t,j=1,4<3

It follows from (4.13) and (4.14) that for almost all z, for all %

Y NN 1\ N\
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e—(Aizc,:r) e % = ¢ p% (nkmz— L) |$|2) )

In particular, for x = 0, we get that for all i, pi (0) = e;:i and thus for all ¢
e~ (4T3 = p=1(0) pk k(k —1) z?

2
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This clearly means that A; = § Id for some ¢ > 0 and p(t) = Ce 1t and we easily
complete the proof.

(ii) The proof of (ii) is done in the same way. O

5. The Blaschke—Santalé inequality and the affine isoperimetric inequality for many
sets

The classical Blaschke—Santal6é inequality for symmetric sets can be stated in the
following way,

/ fidz f g"dy < n” (voln(B3))* = (volo—1(5" ™))",

where f, g are positive symmetric functions on S~ satisfying

f(x)g(y) < T

and where for a € R, a;+ = max{a,0}. Note that if z and y are orthogonal, then the
right hand side of the inequality is infinite. This happens only for set of measure zero.
The latter inequality is satisfied, in particular, if

f@) = (@), o) = e = ke 1),

where ri(r) = max{A > 0 : Az € K} is the radial function of the convex body K,
hi(y) = sup{(z,y) : z € K} is the support function of K and where for a 0-symmetric
convex body K with non-empty interior,

K°={yeR":(z,y) <1Vzx € K}

is the polar body of K. We can then write the above as follows,

vol,, (K1) vol,, (K3) < (vol,,(BJ))?,
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provided
(z,y) <1, Vx € Ky, Vy € Ks.

We now prove a Blaschke—Santald inequality for multiple sets. We recall that a subset
K in R"™ is unconditional if its characteristic function 1 is unconditional.
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Theorem 5.1. Let K;, 1 < i <k, be unconditional convex bodies in R™ such that

k k

1012
I I e~zleillk, < E (ziyz;) | for every m;,z; € RY,
i=1 1,7=1,i<g

where p is a positive non-increasing function on [0, 00) such that [ p% (t?)dt < oo. Then

[ ot (5 )

For k > 2, equality holds if and only if K; = r B} and p(t) = ¢ G for some r > 0.
In particular, if p(t) = efﬁ, then, if Zf=1,z'<j<93i:33j> < %Ele ||3:2-||§{i, we have
that

Hvol ) < (vol, (B}))*

and for k > 2 equality holds if and only if K; = B} for all1 <i < k.

Proof. As for a convex body with 0 in its interior vol, (K) = “212—()5:2_ f %I\x\lfcd;[;j
we get from Theorem 3.1 that

gvoln(K,;)z (V‘éﬂ)g ) H/ ~ Hllell, g

i= 1]R

(Gt L/lk(k ol |

?r

provided that

& k
[Te 2"l < 3> p(ai,a;).
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i=1 i,j=1,2<j
The equality characterizations follow from Theorem 4.2 and Corollary 4.4. Indeed, by

Theorem 4.2, equality holds for k£ > 2 if and only if there exist constants ¢;, 1 < i < k,
such that Hle ¢; = 1, and such that

1. e 3l = ¢, pi (@MP) and
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2. The function p satisfies

k k
1 (k(k—1
I1+ (% |:z:1-|2) <ol O (mum)
i=1 2,j=1,2<3
From the first identity we get for x = 0 that ¢; = LI(O) for all 7. As HLI ¢ = 1,
pk

this implies that p(0) = 1 and hence ¢; = 1 for all . In particular, this implies that
almost everywhere on R", for all i, 7, |z||x, = ||z||x, = ||z||x and thus K; = K for
all i. From the relation e 2/I7lk: = pF (@MP) we get that K; = K = rBf, hence
e a2 = Pk (@t), equivalently e P21 = p (s). The proof is complete. O
Remark 5.2. Note that for £ = 2 the above equality characterization clearly fails: the
equality vol, (K)vol,(K®°) = (vol,(B%))? holds if and only if K is an ellipsoid. This
follows obviously from the linear invariance of the Blaschke-Santalo functional for two
sets.

The Blaschke-Santalé inequality for convex bodies is closely related to affine isoperi-
metric inequalities which involve the L,-affine surface area. For a convex body K with
centroid at 0, and for —oo < p < o0, p# —n it is defined as (see, e.g., [28,35]),

ki (z)mor
aSp(K) = n(p—1 d K(x)ﬂ (5’1)
4 (o, Nc(a) 5

where pyx the Hausdorff measure on 0K, the boundary of K, Nk (z) is the outer unit
normal at € 0K and Kk (z) is the generalized Gauss curvature at z € 0K. Note that
aso(K) = nvol,(K), and if K is C%, then asi.(K) = nvol,(K°).

The L,-affine isoperimetric inequalities state that for 0 < p < oo,

as,(K) vol,, (K) i
i = (e 52

and for —n < p <0,
n—p

asp(K) S (Voln(K) ) ntp .

ne (RN — -l RN
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wep\+~2) \ YV~ )/
Equality holds trivially if p = 0. In both cases equality holds for p # 0 if and only if K
is an ellipsoid. If —oco < p < —n and K is C%, then

n—p
2 vol, (K) \ "t» < asp(K)

vol, (B%) ~ asy(BY)’ (5.3)
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with a constant ¢ > 0 not depending on the dimension. These inequalities were proved
by Lutwak [28] for p > 1 and for all other p by Werner and Ye [37]. The case p = 1 is
the classical case.

Theorem 5.1 leads to a multi-set “affine” isoperimetric inequality.

Proposition 5.3. Let K;, 1 < i < k, be unconditional convex bodies in R™ such that

k k

-1 &I, 2 .
I I e 2“ ”K1 S p E (m’ij $J> fo'f' e’lje’!‘y Ei,mj (= Ri,
i=1 1=1,i<j

where p is a positive non-increasing function on [0, 00) such that [p pE (t?)dt < co. Then
we have for 0 <p<n

n=p
k k n+p

Ha“—j:’(ﬁ’i)) : (2;)% / pt (052 1aP) o

= R»

For k > 2, equality holds if and only if

1. K;=rBf% for all i, where r > 0 is a constant,

2. p(t)= e~ GO

k

In particular, if p(t) = e 1 and if Zi=1’i<j

that

(Ti,z;) < ESL S |lzill%., then we have

[Lesn(K0) < (asp(B5))" (5.4)

and equality holds if and only if K; = B} for all1 <i < k.
If p =n, then

_Hasp(K«;) < (asp(B3))" (5.5)

and equality holds if and only if K; is an ellipsoid for all 1 <1 < k.
Proof. Let 0 < p < n. By the affine isoperimetric inequality and Theorem 5.1 we get
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k k n—p
” vol, (K;) \ »t»
[T ass(K:) < (asp(BE)" [ T((Bg))
i=1 i=1 "

n—p
k n+p

(@ |:r:|2)d$ . (5.6)

Eal ]

n 1
< @ (Bi)* | Gy f p

Rn
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The first inequality shows that for p = n,

If p(t) = e_ﬁ, then we have for all 0 < p < n,

k n¥p
Hasp(Ki) < (asp(By)) H (:211 (gn))) < (asp(B;))k

i=1 =1

1/25/22, 9:40 AM

27

(5.7)

The equality characterizations follow from Theorem 5.1 and the equality characteriza-

tions of the above affine isoperimetric inequalities.

Indeed, by the affine isoperimetric inequality, equality holds in the first inequality of

(5.6) if and only if K; = T;B%, where T; is a linear invertible map. By Theorem 5.1,

equality holds in the second inequality of (5.6) if and only if K; = » Bf for all 4, where

r > 0 is a constant, and p(t) = e *-D?. O

Remark 5.4. (i) For p = n, the inequality is just the affine isoperimetric inequality (5.2).

As aso(K) = nvol, (K), the inequalities of the theorem for p = 0 are just the inequalities

of Theorem 5.1.

(ii) The corresponding inequalities for —oo < p < —n also hold, using (5.3).

A further multiple set version of the Blaschke—Santalé inequality is given in the next

proposition.

Proposition 5.5. Let K;, 1 < i < k, be unconditional convex bodies in R™ with non-empty

interior and radial functions r; = rg,. Assume that for all z; = ((xi)1,
Sn—l’

k

1
HT?; (.’L’z) S %
(S5 (sl - I@e)sl1)?)
=1 1)3 k

Then

Hvol ) < voln(Bg))k

R (‘T’&)n) €

(5.8)
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=1
k
Proof. Let m € R, 1 <m < n and put z; = eti. Set w = %Ziﬂ t;. Then

k > (ti)s EYT_ L (w);
m . AP ]l w|<1 e—u7 7 ]l w|<] e i=1 2
H‘rz (851) n{‘etl|£1} eZu,J(t‘l)J S {lE |— } — '{‘8 |_ } . (5.9)

km kEm
=1 n 2w, 2 7 2w\ 2
t (Zj:le j) (Zj:l € J)
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We now apply again the change of variables z; = e!i, 1 < i < k, the Prékopa—Leindler
inequality and (5.9),
+ 1

k k

k
11 / ritde | = H/T?l(e“)ﬂuemq;tezj'(t")j dt;

=lpprrn t=1gn

k

5/ g H(?"i%(et“)11{|etf|s1}8%2”(*”f) dw

1 k
w=g Yt Li=1

R'ﬂ
Triw iy (w)j
</ U< ® = dw = / Idlf’“'
N\ 2 x
R™ (Z?:l 32%) BpnR™

Hence by symmetry

k

k
H/'r;nda:i S[d—a;.
|z|

=iBy Bp

Next we observe that every radial function r; satisfies

ZT; 1
) =n (57)

For every 1 < m < n, m € R, we introduce the finite probability measure du,, =

1gn
IBZ% |:j|l:n . The inequality above can then be rewritten as follows,
B

" ki
] [u]
k
m Ly
"\ ]
i=1Yn Li
B2

Since p,, is rotational invariant, the above inequality can be rewritten as

)d#m<1.

H / r™ () do(8) < a(S™H)F, (5.10)
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where o is the (n — 1)-dimensional Hausdorff measure. Passing to the limit m — n and
applying the Fatou’s Lemma one gets that (5.10) holds for m = n. On the other hand,
for m = n one has for all ¢

f r™(0) do(8) = a(sn—l)%. (5.11)

gn—1
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From this we derive the desired estimate. O

6. Prékopa—Leindler and displacement convexity inequalities: refinement of the
transportational argument

In this section we recall the transportational arguments of F. Barthe [7] in his proof of
the reverse Brascamp—Lieb inequality. We show that the use of barycenters gives certain
refinements of the Prékopa—Leindler inequality.

In this section we do not assume that the functions f; are even.

Let f;, 1 < i < k, be nonnegative integrable functions and A; € [0, 1] be numbers such
that Zf:l A; = 1, and let du = p(z)dz be a probability measure. For every i, V®, is the
optimal transportation mapping that pushes forward p onto p; = f; dx.

In what follows we apply the change of variables formula for the optimal transportation
mapping. In that form it was established by R. McCann (see [36], Theorem 4.8),

p(z) = 1Y q))detD?I@i(:r:),

[ fidz

where D2®; is the absolutely continuous part of the distributional Hessian D?®; of
®;. In particular, it is a nonnegative matrix-valued measure. This formula holds almost
everywhere with respect to Lebesgue measure. We will also apply below the following
results

¢ The arithmetic-geometric mean inequality

k k
H (det Az-))”' < det (Z /\iA'E) )
=1 =1

where the A; are symmetric nonnegative matrices, \; > 0, ZLl A =1,
¢ The inequality between the distributional Hessian and its absolutely continuous part

0< D2®;, < D*®,.
First, we get by the arithmetic-geometric mean inequality

o) T (P20 g )™ < TT (L0220 g (3 020,00)
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i=1 N J s 7 i=1 N J ey \i=1 /

Bl fily) \ i
< sup (H) det MND2®;(z) | . (6.1)
{wid2; M=), iV (z)} E f f"dm" ;

In the proof of Barthe, one fixes an arbitrary measure u and integrates inequality (6.1).
By the change of variables y = > . A\;V®;(z), we get the Prékopa-Leindler inequality
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k A
dx; < i )d
1:11 (/f ﬁi) /{% ng?yi—y}Hf )

If instead of an arbitrary measure p, we apply this result to the barycenter of the p.s,
we obtain the following pointwise refinement of the Prékopa—Leindler inequality.

Theorem 6.1 (Pointwise Prékopa—Leindler inequality). Let p be the barycenter of the u;
with weights ;. Then it has a density p satisfying

k

(/ fﬁdm%) p(z) <  sup Hfz.)‘“‘(yz-), for p—a.e.x. (6.2)
=37 1 Aivi i=1

Proof. By the arithmetic-geometric mean inequality one has

k

H (det Di@i (m)) » < det (i /\Z-DgfIJz- (:a:)) .

=1 =1

Since Y ,_; Xi®i(z) = % for p(z) dz-almost all z, (see Theorem 2.4, 3), one gets

Z/\D2 )<D2(Z)\(I>($ =

p(z) dz-a.e. Using this inequality and inequality (6.1) one gets the result. O

Remark 6.2. Following the proof, one can easily get the equality characterization for
the Prékopa—Leindler inequality. Indeed, we have equality in the arithmetic-geometric
mean inequality if and only if D2®;(x) are all equal for almost all z. Next, from the
relation ) ._; \i®;(z) = % one can easily get that every ®; has the form ®;(z) =
J%li + (z,a;) + b;. This easily implies that the f; differ by shifts. The rest of the proof is

standard.
_l=|?
Let us rewrite (6.1) in terms of the standard Gaussian reference measure dy = ﬁdw.
™
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Corollary 6.3. Let fidx; = p; - dy be probability measures and let du = p - dvy be their
barycenter. Then p-a.e.

k
15k ; z)—z|? i
p(z) e? 2z XilVei(2)—2]” < H pi (V®,). (6.3)

=1
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Jﬂi 2] 2

Proof. Applying the first inequality of (6.1) to f; = and p = p & ) , we get

(2m)% (2

k
|V‘1’g\
p(z)e” H .

Also using Theorem 2.4, 3., we finally observe that

i)\%(w@ o) _ ) Z,\ ('V‘I’ (@)° |$2|2—(V¢°%-(m)—x,3:))

1
=3 Z).”V@z-(:z:) —z|*. O
=1

Integrating pointwise inequality (6.2) we get the Prékopa—Leindler inequality. Taking
logarithm of (6.3) and integrating we get the displacement convexity property of the
Gaussian entropy,

k k
1
Ent, (1) + 2 Z W3 (s i) < ZA Ent, (). (6.4)

=1

This result was proved in [1].
Mimicking the arguments that were used in the proof of (6.1) leads to the following
result.

Theorem 6.4. Let f;, 1 < i <k, be integrable functions satisfying

H i) <g (Z /\faiﬂi) ; (6.5)

where \; € [0, 1], ZLl Ai = 1 and g is a nonegative function. Then for pdx-almost all z,

}i[l ([ 5n) otor < o0, 66)

where p(z)dz is the barycenter of the measures T i _dg, with weights A;.

fd
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Proof. Applying inequality (6.1) and the relation Z§=1 AiV®,(z) = z one immediately
gets

k

H(/ fi(a:i)d:.r:i)&p(x) < sup f?(y,,) det(z ).z-D2<I>1-(a:)) <g(z). O

{yz:Ei ’\'iy'i=m} =
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Remark 6.5. Assuming (6.5) and integrating (6.6) one gets the inequality

H( / fa'dﬂ?»a)h < / g(z)dz, (6.7)

which can be considered as a weak form of the Blaschke-Santalé functional inequality,
because it is equivalent to (7.16) (see the explanations in Remark 7.4), which is a weaker
version of the displacement convexity property (6.4). Inequality (6.7) follows, of course,
directly from the Prékopa—Leindler inequality.

In particular, assuming that the functions V; satisfy

k
Z)\avz(&‘?z) > ;‘Z AiZ; ’
=1 i=1

1

one gets

k y A ol?
(er_ i(@) da:%-) plz) <e 7.
=1

Rewriting this inequality with respect to the Gaussian reference measure v, one gets the
following equivalent formulation.

Corollary 6.6. Assume that the measurable functions F; satisfy
k 1 , k 0
;,\iﬂ-( E[ZA |2 — ‘;/\jx}} |-
Then

Hf *dfy p(z) <1,

where p -7y is the barycenter of je ”17 -y,

7. Talagrand-type estimates for the barycenter functional
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In this section we show that a weak form of the Blaschke—Santalé inequality is related
to the displacement convexity property of the Gaussian entropy. The conjectured strong
form of the Blaschke-Santalé inequality is equivalent to a certain strong entropy-Ws-
bound, a particular case of this bound for two functions was proved by M. Fathi in
[15].

Let us briefly recall the main transportation Gaussian inequalities.
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1. Every probability measure f-v (not necessary centered) satisfies the Talagrand trans-
portation inequality

1
3WA(F 9 < Ent,f = [ flog fan

2. In the case when one of the measures f -+, g-+ is centered, a stronger inequality holds
(see Remark 7.2 and the comments after it)

%Wf(f'%g"y) < fflogfd“/+fgloggd7- (7.1)

3. Displacement convexity of the Gaussian entropy for arbitrary measures p;, 1 <1 <k,
which states that

k k
1
Ent. (p) + 3 Z A@-WQQ (s i) < ; MEnt. (1), (7.2)

=1

where p is the barycenter of the p; with weights A;.

We have seen above that (7.2) follows from Theorem 6.1 (pointwise Prékopa-Leindler
inequality). We show below that the following weaker version of (7.2)

k k
1
5 2 AW3 () < ) AEnty (1) (7.3)

i=1 i=1

is equivalent to some form of the Prékopa—Leindler inequality (see Remark 7.4).
In this section we establish the equivalence (and verify it in the unconditional case in
Theorem 7.1) between the conjectured Blaschke-Santalé inequality and the inequality

1 S, k-1
@E W2 (kis 1) < — > Ent, (1),
=1 =1

for symmetric measures, which is stronger than (7.3) for the choice of weights \; = %
and generalizes (7.1) for k > 2.

In what follows, 7 denotes the solution to the multimarginal Kantorovich problem with

1/25/22, 9:40 AM

Page 65 of 88



Blaschke-Santalé inequality for many functions and geodesic barycenters of measures | Elsevier Enhanced Reader 1/25/22, 9:40 AM

marginals p;. Note that

k k k
1 2 1
E |.’L‘2—EE .’L‘,'| :E : .|33,5—.’Ej2.
=1 71=1

i,i=1,i<j

Hence one gets by Theorem 2.4
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k
Fo) =g [ X - mldr= 50 Y Wi p)
_ P = S Wh )
” 2k2 N - 1 7 2k . 2 H’MIJ’
1,7=1,1<j 1=1

Theorem 7.1. Assume that for 1 < i < k, p; = p; -y are probability measures and the p;
are unconditional and let p be the barycenter of the p; with weights A\; = % Then

k-1 k-1
Fp) < 12 prz log p;dy = 12 ZEnt.,,(;L,;). (7.4)
=1 =1

Proof. Using standard approximation arguments and lower semicontinuity of the func-
tional F one can reduce the general case to the case of compactly supported densities
pi- By the Kantorovich duality (see e.g., [36]),

1 s, k-1 1 )
f(#)—@/ Y. lwi—ayfdr = 12 2(k—1)/‘z | — 5[ "dm

i,j=1,i<j 2, j=1,1<j
k=1 [ k—1 g
=1 i=1
for some measurable functions f; satisfying
k 1 k
i=1 i,j=1,i<j

with equality m-a.e.
Note that we can assume that the functions f; are unconditional. Indeed, if not, replace

f; for all i by
(@) = 5 3 ilew)
g’.! 1) 2ﬂ . T E Ty

where ex; = (e1x},e02%, -+ ,en2z?) and g, = £1, 1 < I < n. Then the functions g; are
unconditional. They also satisfy the dual problem as the measures p; are unconditional
and as the cost function does not change under x; — cx;.

Inequality (7.5) is equivalent to
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i(ﬂ;(m@) — %|$z‘|2) < —ﬁ Z (@i, x5).

i=1 i,j=1,i<j

We will apply Theorem 3.1 to the functions f;(z;) — %|2‘:i|2. To this end we need to show
that efi(#)~ 212" are integrable functions. Moreover, let us show that fi(z;) — slzil? €
L>(u;) for every i.
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Let R > 0 be a number such that supp(u;) C Bg. Then it follows from Theorem 6.1 that
supp(pz) C Bgr. Hence the optimal transportation mapping V& of 4 onto p; satisfies
the estimate |V®}| < R. By Theorem 2.4 &} (x;) = ﬁ|$i|2 + kvi(x;) + Ci, where v; and
fi are related as follows

k2 1,
o qvil@) = glzil” — fi(za).

To show that 3|z;|? — f;(z;) € L™ (u;) it is sufficient to show that Vv, is bounded on

the support of y1;. Indeed, |Vv;| = £|V®} (x;) — 15| < k;jélR-

It now follows from Theorem 3.1 that

k
11 ] efi@)—sleil gy, < (2m)k3
=1

or, equivalently,

H/-eff(mi)d'y <1 (7.6)

The claim follows from the estimates

/gfi(ﬁfi)dﬂi < fg(fi_log/ffﬁ‘d’y)mdv

k
S Z /(pt IOg Pi — Pi -+ ef(fi*logfefudv))d’y
=1

k
=> f pilog pidry.
1=1

Here the first inequality follows from (7.6) and in the second inequality we apply the
inequality zy < e* + ylogy — y, which is valid for z € R,y > 0. O

Remark 7.2. This result is a generalization in the unconditional setting of a result of
M. Fathi [15] for two functions:

Let po,p1 be two Gaussian unconditional probability densities and p;/o be the corre-
sponding barycenter. Then inequality (7.4) implies
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1
EWS(PO'7:91‘7) =2W3(po - v, p1/2-7) = Wa(po -1, p1/2 - 7) + Walp1 -7, pis2-7)
< f polog pody + / p1log prdy. (7.7)

This is a particular case of Fathi’s inequality.
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Fathi has shown that in the class of symmetric functions inequality (7.7) is equivalent
to a Blaschke—-Santal6 inequality involving two exponential functions. Already earlier, in
[3], it was noted that the Blaschke-Santal6 inequality can be re-written in terms of a
property 7 introduced by Maurey [29] which is dual to the transportation inequality. We
follow the approach in [15] to show that the inequality of Theorem 7.1 is also equivalent
to a functional Blaschke-Santalé for multiple exponential functions.

Indeed, letting p(t) = e -1 in Theorem 3.1, we get the following multifunctional
Blaschke—Santal6 inequality:

Let fi: R™ — R4, 1 <i < k, be measurable unconditional functions with [ efi integrable

such that
1 k
Zfz xz S _j Z (E'E:xj>“ (78)
t,J=1,4<]
Then

H / elidz < (2m)*7 | (7.9)

i= 1]R"
Proposition 7.3. Inequality (7.4) is equivalent to the functional Blaschke—Santald inequal-
ity (7.9).

Proof. One implication is just Theorem 7.1.

For the other implication, we first rewrite inequality (7.4). Thus, let u be the barycenter
of the u; = p; -y with coeflicients % and unconditional p;. We recall that for a probability
measure v

Ent,(v) = Entg,(v) + glog(%r) + % / |z |2dv

and use this and the definition of the Kantorovich distance to get that (7.4) is equivalent
to

2 2 k "
— i inf J;qf T, x;)dP < ( ZEntdx(,uz (k — 1) log(2m)™. (7.10)

Let now the f; be unconditional and such that thev satisfv (7.8). We applv (7.10) to
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- - - - “. .
efi

Hi = piY = 7er We also use that for a probability measure v

Enty,(v) = Sup/fdy — logfefdx (7.11)
i

and get
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——mf Z / (i, x;)d

1,7=1,2<j
k— k
<21 ”z( [ s —t0g [ etea) + (k- 1)toglany. (2

By the Kantorovich duality, the left hand side of this inequality equals

——mf Z /.a:z,:r;j

1,j=1,4<7

— @ sup Z/h dp; (7.13)

i‘=lhi(mi) - 1213 11<_—,<$um3 i=1
2 k
k-1 z ] s

Putting this into (7.12) and removing terms that appear on both sides gives the inequality
(79). O

Remark 7.4. Mimicking the proofs of Theorem 7.1 and Proposition 7.3 one can show
that the inequality

(ﬁ / eFidfy)Ai <1, (7.14)

where the functions F; satisfy

k k 9
S AF () %[Z/\ il = [ A ] (7.15)
i=1 j=1

is equivalent to the inequality

k mn
1
i=1 i=1
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where p is the barycenter of the ps with weights A;.

Letting V; = —F;, + ‘x;‘z and \; = ¢, 1 < < k, we note that inequality (7.14) has the

following equivalent “Euclidean” formulation:

-

k
H/e_vfdm,; < (271')’“%
1=1
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provided ZLI Vi(z;) > i }:1:1 4+t |2. This inequality is a direct consequence of the
Prékopa—Leindler inequality and here we do not assume that the V; are even.

Remark 7.5. See also the notes to the first version of the article which contained another
proof of (7.14) based on a symmetrization procedure.

Inequality (7.16) is, in fact, a weaker version of the displacement convexity property

(6.4). It follows, for instance, from inequality (6.3).

What happens, if in the derivation of the Talagrand type bounds instead of (7.14) one
Ad

applies the stronger pointwise inequality (Hf:]L [ efi d’y) p(z) < 1, (see Corollary 6.6)?

The answer is given in the next theorem.

Theorem 7.6. Let p; = p; -~y be probability measures and f;(z;) be the solution to the dual

multimarginal problem with marginals p; and the cost functz’gn i Ei imt1,ici |Ti — z;|%.
Let = p(x) -7 be the barycenter of probability measures f:f;:&y -y with weights % Then
p(z) < ek Tica( pilog pidy—3 W3 (ki) (7.17)

Proof. Let 7 be the solution to the corresponding primary problem. By the Kantorovich

duality

1 & 1 1E

= WEp ) =55 [ Jmi—wPdr= 2> [ fudu

2k 4 2k | k <

=1 i,j=1,i<j i=1

Then
1 K 1 k k % 1 k
il 20 S Ay — fi - ._ fi ,
2k;W2 (pis ) k;fﬁd#z log(E/e d’y) +k;/(ﬁ log/e dy)pidry.

Using Corollary 6.6 one has

k 1
10g(H/ef"'d*}f) < —log p(z).
=1

Then we apply Young inequality and get that [(f; — log [ efidy)p:dy < [ p;ilog pidry.
Finally one obtains logp(z) < L S, ([ pilog pidy — *W3(u,ui)). O
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- - — . . U m—u— a1 cu v - . ) -

Taking logarithm of both sides of (7.17) and integrating with respect to v = p -y we
obtain, in particular, the following estimate

k k
1 1
Ent, (v) + 51 Y W3 (i) < % ) Ent. (1),
i=1 1=1
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which is reminiscent to (7.2), but it is not completely clear how they can be compared.
8. Monotonicity of the Blaschke-Santalo functional

In this section we prove a remarkable monotonicity property of the Blaschke-Santalo
functional which appears naturally with respect to the barycenter problem.

8.1. The case of two functions
We start with the case of two functions, k = 2. We first recall for A € R, the definition
of the A-affine surface area of a convex function V introduced in [11] and already given

in (3.2).

as (V) = /6(2A—1)V($)—)\($,VV(3:)) (det DzV(:L'))Adm,

Qv

where D?V is the Hessian of V.
We consider now two functionals on convex functions V', the Blaschke—Santal6 functional

BS(V) = fe_vd:r/e_vwd:r;

and the ;-affine surface area functional,
JV)=as: (V)= ]e_%“”vv(m))\/det D?Vdzx.

To avoid technicalities, we assume that V is C? and strictly convex.

Proposition 8.1. Let V be a strictly convex C2-function such thate™" e~V are integrable
functions. Let V¥ be the optimal transportation of % onto %. Then
BS(V) < J*(¥) < BS(V). (8.1)

Equivalently

/e‘vdm [e_V*da: < ([1'3_%<$’V‘I'>\/cle1:D2‘I*“d:z:\2 < [e_‘pdx [e_‘p*dm.
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Proof. The second inequality is just Theorem 3.2 (iii). To prove the first inequality, we
apply the change of variables formula

e—V e—V“(V\I’)

_ 2
e Vdr [eVidx det D™V
Il
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Note that regularity of V,V* implies that ¥ is sufficiently regular, hence D>V is abso-
lutely continuous (see, for instance, [36]). Then

V*d
; V) 2 e xT VI (VI)— v (z) = (=, V)
f —2(&V¥y/det D2Wdz = 4| e—Vd:n_/ de.

The result follows from the inequality V*(V¥) + V(z) > (z,V¥). O

Let us outline (without rigorous justifications) the idea of alternative proof of the
Blaschke—Santalé inequality. It can be easily seen from the proof that equality in
V*(V¥) + V(z) > (z,V¥) (and hence in (8.1)) is attained if and only if V = ¥ + a for
some constant a. Thus, within a certain appropriate class of functions, e.g., Symmetrlc,

the maximum of the Blaschke—Santalo functional must satisfy that the measure m

is the push-forward measure of Te under the mapping VW. This means that ¥ solves

—7‘1’4
the following Monge-Ampére equation

=Y =T (VD)

fe_‘l’dx - fe_'l”d:t:

det D*W, (8.2)

It was shown in [12] that this equation admits the following family of solutions, provided
fe——*l'd has logarithmic derivatives,

where A is a positive definite matrix and ¢ is a constant. These are exactly the maximizers
of the Blaschke—Santal6 functional.
Thus, this observation suggests the following (so far heuristic) approach to the Blaschke—

Santalé inequality. Let ¥o = V, and consider iterations ¥;, | € N, where ¥;;; is the
e Vidz e Mdx
Je Yida fef'l’f‘d,:n

tion 8.1, one gets an increasing sequence BS(¥;), I € N. From this, one can try to

optimal transportation potential pushing forward onto . By Proposi-
extract convergence of ¥; to a potential ¥, which gives a maximum to the Blaschke—
Santalé functional. Then prove that ¥ solves (8.2), and by uniqueness deduce that ¥ is

quadratic.
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8.2. The multimarginal case

Next we generalize the previous result to the multimarginal case, k > 2.

Theorem 8.2. Assume that Vi(z;), 1 < i < k, are measurable functions such that e~

are integrable, satisfying
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k k
Z/\iV;;(xi) >C Z AiXj (i, )
=1

t,J=1,2<g

for some C >0 and ; € (0,1) with 35, A = 1.
Let the tuple of functions \;U;(x;) be the solution to the dual multimarginal mazimization

problem with marginals I‘Z;_Vf,fé”n;_ and the cost function CZf,j=1,z‘<j AiXj(zi, z;). Then
k A, k A,
H(/ e_v’idm,;) < H(/ e_U*dm,;) .

Proof. Let pdz be the barycenter of du; = e Vide with weights A; and V&, be the

e Vidz;

optimal transportation mapping pushing forward pdx onto du;. Recall that for pdzx-
almost all y one has (see Theorem 2.4),

Z ANU(VE: () =C Y AA(VOi(y), VO, (1))

1,7=1,i<g
Apply the change of variables formula

efv': (\_/'CI)! ('y))

= det D2®,(y).
p(y) [eVida, 9P ()
One has
k i k k A
H(/G—Vidmi) ply) = e~ T MATEW) T] (det D20 (y)) ™
i=1 i=1

k

k
< e—C Zi,j:l,i(j Aidi (Vi (), VE;() H (dEtDc%.(I)i (y)) »

i =1
k
_ H oMU (Ve (y) (dethqu (y)) * :

i=1

Integrating both sides and using Holder’s inequality, we get

k k
I1( [ e_v”‘da:i)'\l < / [T eV (V%) (detD2@,(y))  dy
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k A k Ai
< H( e Ui(V®i) (detDECIJi (y))dy) = H( e*U"d:E,;)
1=1 =1 Vo, (R™)

( e Vi daci))‘t.

-
[
—

IA
.m?f
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Here we use the change of variables and the fact that the image of detD2®,(y)dy under
V®; is the Lebesgue measure on V®;(R"™). This follows, for instance from the aforemen-
tioned result of McCann ([36], Theorem 4.8). O

Let us informally analyze the equality case. Clearly, in this case one has for almost all y,

ZA Vi(V®i(y Z/\U (Vi(y))-

Integrating over pdy we get that ()\;V;) is a dual Kantorovich solution as well. Hence,
by uniqueness of the dual solution

k
Vi=U; +C,, ZC'L:O-

In addition, one has for all 7 that

e—U,(V‘I'l) 0
i
or, equivalently,
e~ Vi 9
i

In particular, since (see Theorem 2.4)

: Ile Ui(zi)
@ 1) — (2
(zi) = 5 + C +C
every function U; must satisfy
B_U' VUIL(.’L}) D2Ui
—— =p| ————= + \jz; | det NI ). .
[ e-Vidz; P ( C AT ) ¢ ( C * ) (8:3)

Thus, a maximizer of the Blaschke—-Santalé inequality, if it exists, must satisfy the system
of equations (8.3), where every U; is convex.

Remark 8.3. Equation (8. 3) is an equation of the Kéhler-Einstein type. We do not know

I, FRUYS U < TS I W (AU R SO PRES S 4 1 PP | . (P (T M, PR P T - T DR
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was proved under broad assumptions in [13].
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