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Abstract

Discourse relations are typically modeled as
a discrete class that characterizes the relation
between segments of text (e.g. causal expla-
nations, expansions). However, such prede-
fined discrete classes limits the universe of po-
tential relationships and their nuanced differ-
ences. Analogous to contextual word embed-
dings, we propose representing discourse rela-
tions as points in high dimensional continuous
space. However, unlike words, discourse re-
lations often have no surface form (relations
are between two segments, often with no word
or phrase in that gap) which presents a chal-
lenge for existing embedding techniques. We
present a novel method for automatically cre-
ating discourse relation embeddings (DiscRE),
addressing the embedding challenge through
a weakly supervised, multitask approach to
learn diverse and nuanced relations between
discourse segments in social media. Results
show DiscRE can: (1) obtain the best perfor-
mance on Twitter discourse relation classifi-
cation task (macro F1=0.76) (2) improve the
state of the art in social media causality pre-
diction (from F'1 = .79 to .81), (3) perform
beyond modern sentence and contextual word
embeddings at traditional discourse relation
classification, and (4) capture novel nuanced
relations (e.g. relations semantically at the in-
tersection of causal explanations and counter-
factuals).

1 Introduction

Relations between discourse segments (i.e., phrases
rooted by a main verb phrases or clauses) have
mostly been studied as discrete classes; most no-
tably Penn Discourse Treebank (PDTB) (Prasad
et al., 2008) and Rhetorical Structure Theory Dis-
course Treebank (RST DT) (Carlson et al., 2001)
contain 43 and 72 types of discourse relations re-
spectively. At the same time, such work has taken
place over newswire, the domain of both the PDTB
and RST. With many different relation classes over
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Figure 1: Our model DiscRE predicts relations of ad-
jacent discourse arguments based on other text spans
of the whole message as context. By learning and em-
bedding fine-grained properties of discourse relation
with the posteriors from PDTB into a continuous vec-
tor space, DiscRE may learn existing discourse relation
tagsets like ‘causal’ relations, but also new latent dis-
course relations such as ‘counterfactual’ relations.

sophisticated schema, annotation is non-trivial pro-
hibiting extensive development in new domains
(e.g., social media). Thus, progress in develop-
ing, training and evaluating discourse relations ap-
proaches has happened over discrete models with
labeled newswire corpus (Pitler et al., 2009; Park
and Cardie, 2012; Ji and Eisenstein, 2014; Lin et al.,
2014; Popa et al., 2019).

To address this challenge and enable expansion
of discourse work to social media, we propose a
weakly supervised learning method which does not
require any labels but still can effectively capture
various types of discourse relations even in other
domains leveraging a multitask learning method
called “Discourse Relation Embeddings (DiscRE)”.
Our DiscRE model represents discourse relations
as continuous vectors rather than single discrete
classes.

As the first study of embedding discourse re-
lations into high dimensional continuous spaces,
we mainly focus on social media. Social media
is a challenging domain because it contains many
acronyms, emojis, unicode, and informal variations



of grammatical structure, but its personal nature
provides diverse and psychologically-relevant dis-
course patterns which are not often found from
newswire text. According to our best knowledge,
there are only relatively small datasets for specific
types of discourse relations for causal relation (Son
et al., 2018) and counterfactual relations (Son et al.,
2017), but they are not diverse and large enough to
learn general discourse relations.

Thus, in this paper, we propose a novel weakly
supervised learning method for deriving discourse
relation embeddings on social media. We created
a social media discourse relation dataset and val-
idated our new approach. Furthermore, we con-
ducted visual investigations on continuous dis-
course relation spaces and thorough qualitative
analysis on the behaviors of DiscRE in both PDTB
and social media. Then, we also validated how well
our learning method can generalize across different
domains by applying DiscRE as transfer learning
features for discourse relation downstream tasks.

Our contributions include: (1) the proposal of a
novel model structure which can produce latent dis-
course relation embeddings, (2) the creation of new
Twitter discourse relation dataset and the validation
of our approach for the discourse relation classi-
fication on the dataset, (3) qualitative analysis on
model predictions, (4) evaluations on downstream
social media discourse relation tasks in which Dis-
cRE outperformed strong modern contextual word
and sentence embeddings and obtained a new state-
of-the-art performance, (5) validation analysis on
PDTB, and (6) the release of all of our datasets and
models.

2 Related Work

Most researchers trained and evaluated their dis-
course relation parsers on the annotated newswire
dataset (PDTB and RST DT); some researchers
focused on feature engineering for discourse rela-
tion predictions with an assumption that they were
given segmented discourse argument (Pitler et al.,
2009; Park and Cardie, 2012) while others built
full end-to-end discourse parsers (Ji and Eisenstein,
2014; Lin et al., 2014). Bhatia et al. (2015) and Ji
and Smith (2017) applied RST discourse parsing to
social media movie review sentiment analysis, but
discourse structure was built by pretrained model
which is optimized for RST DT, so the model suf-
fered from domain differences when it was run on
documents which have drastically different formats

(e.g., legislative bill).

Some have studied single discourse relations
over social media. Son et al. (2017) used a hybrid
rule-based and feature based supervised classifier
to capture counterfactual statements from tweets.
Son et al. (2018) developed a causal relation ex-
traction model using hierarchical RNNs to parse
social media. Since hierarchical RNN-based mod-
els have worked well in general for capturing spe-
cific relations in social media and other discourse
relations outside social media (Son et al., 2018; Ji
and Smith, 2017; Bhatia et al., 2015), we devel-
oped our weakly supervised, multi-class discourse
relation embeddings around a hierarchical bidirec-
tional RNN model with word-level attention for
discourse relation parsing on Twitter. Since tweets
tend to have many noisy features (e.g., hashtags,
URL, or dropping subjects) and informal grammar
in short length, it is difficult to obtain accurate RST-
style comprehensive hierarchical discourse struc-
tures. Thus, we also employed PDTB-style method
in which discourse relation is predicted between
only adjacent discourse arguments, but we capture
the context across all other discourse arguments by
using hidden vectors of argument pairs from Dis-
course Argument LSTM which ran on the whole
tweet (Figure 1).

Our work is related to modern multi-purpose
contextual word embeddings (Devlin et al., 2018;
Peters et al., 2018) in the motivation to utilize latent
representations in order to capture context-specific
meaning. However, our model generates contextual
discourse relation embeddings by learning proba-
bilities rather than discrete labels and, it can learn
all possible relations even from the same text lever-
aging posterior probabilities from well-established
study (Prasad et al., 2008).

Other researchers collected their own discourse
relation datasets or created training instances from
existing datasets using discourse connectives (Jer-
nite et al., 2017; Nie et al., 2019; Sileo et al., 2019).
Jernite et al. (2017) designed an objective function
to learn discourse relation categories (conjunction)
based on discourse connectives along with other
discourse coherence measurements while Nie et al.
(2019) and Sileo et al. (2019) used objectives to
predict discourse connectives. Here, we devised an
objective function for learning posterior probabil-
ities of discourse relations of the given discourse
connectives, so the model can capture more fine-
grained senses and discourse relation properties



Explicit Training Instance Generation Arg1

Pseudo Labels (Tweet k) ®USER Having a baby is awesome

Class: P(Contingency | ‘as’), ... Arg2
L Type: P(Cause | ‘as’), ...

L Subtype: P(Reason | ‘as’), ... as you can go to bed early on NYE !

Implicit Training Instance Generation Arg1
Pseudo Labels (Tweet k) @USER Having a baby is awesome
Class: P(Contingency | 'as’impicic), - Arg2

LType: P(Cause | 'as’imppicic)s -

LSubtype: P(Reason | ‘as’smpiicic): --- you can go to bed early on NYE !

Figure 2: Training instance generation example. For
explicit relation training, the training instance is labeled
with the posterior probabilities of all possible Class,
Type, and Subtype given the explicit connective ‘as’
from PDTB.

of the connectives!. Also, all of them used sen-
tence encoders to learn sentence representations
and compared their learned representations with
other state-of-the-art sentence embeddings such as
Infersent (Conneau et al., 2017). However, our
DiscRE model learns “discourse relation” represen-
tation between discourse arguments rather than the
representation of a respective text span of the pair
(Figure 1).

Finally, some researchers recently studied an
RNN-based with attention mechanism with mul-
titask learning for discourse relation predictions
in PDTB (Lan et al., 2017; Ji et al., 2016) and a
sentence encoder with multi-purpose learning for
discourse-based objectives (Jernite et al., 2017).
Also, Liu et al. (2016) leveraged a multi-task neu-
ral network for discourse parsing across existing
discourse trees and discourse connectives. From
these sets of prior work, a particular challenge on
their main focus has been to improve performance
when no connective is explicitly mentioned in the
text. All of these works utilized predefined dis-
crete classes of possible discourse relations. While
we were inspired and build on some of their tech-
niques, our task is more broadly defined as pro-
ducing vector representations of the relationship
between discourse segments not limited to prede-
fined discourse relations (whether either of explicit
connectives or conventional discourse signals exist
or not).

3 Methods

The basis for our model is a hierarchical BiRNN,
following work on capturing causal relations in so-
cial media (Son et al., 2018), but we have added

le.g., ‘since’ can signal a temporal relation in ‘T have been
working for this company since I graduated’, but might signal
a causal relation ‘I like him since he is very kind to me’.
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Figure 3: Our model learns different nuances and high
dimensional contextual discourse relations by learning
probabilities of all possible discourse relations in the
relation hierarchy (Class, Type, and Subtype).

word-level attention, because many word-level fea-
tures have been useful for discourse relation pars-
ing (e.g., word pairs, modality, or N-grams) (Pitler
et al., 2009).

3.1 Data Collection

DiscRE Weakly-Supervised Learning Training
Set. There was no existing annotated discourse
relation dataset in social media. Therefore, we col-
lected random tweets from December 2018 through
January 2019 for training. For preprocessing, we
filtered out non-English tweets. Also, we replaced
URLSs and user mentions with separate special to-
kens respectively. For training, we collected only
messages which contained at least one of the most
frequent discourse connectives from each PDTB
discourse sense (Type) annotation’ among random
tweets from January 2019: up to 3,000 messages
for each type of discourse relation which is similar
to the numbers in existing social media discourse
relation datasets With this process, we 1) balance
our training set to have similar effect sizes of target
datasets, 2) minimize potential biases towards a
few dominant discourse relations in Twitter, and
3) keep the minimal numbers of discourse relation
data samples to validate the effectiveness of the
computationally efficient objective function for di-
rectly capturing discourse relations. Originally we
found 20,787 tweets with our keyword search, but
our discourse connective disambiguation process
(see details in Section 3.2) left us 11,517 tweets.
We chose random 10% of them as our development
set to tune hyperparameters.

2after, before, when, but, though, nevertheless, however,
because, if, and, for example, or, except, also.



Qualitative Analysis Evaluation Set. For our
qualitative analysis, we separately collected 10,000
random tweets from December 2018 without any
restrictions so we can test our model on an un-
seen and unbiased natural social media test set as
possible. This setting also allows us to conduct
qualitative analysis with minimized potential bi-
ases which might exaggerate the capabilities of our
model (e.g., our model would be evaluated on dis-
course relations and discourse connectives it had
never seen during its training, so it would not be
able to depend only on posterior probabilities of
certain discourse connectives used as keywords for
training set collection to obtain coherent qualitative
analysis results).

PDTB-style Twitter Discourse Relation Dataset.
As an additional social media evaluation, we cre-
ated a Twitter discourse relation classification
dataset. We collected 360 tweets from Septem-
ber 2020 using the same preprocessing methods
for DiscRE training set. Specifically, first, we
collected 30 tweets using all discourse connec-
tives of each discourse relation class (i.e., Con-
tingency, Temporal, Comparison, and Expansion)
as search keywords from random tweets, so 120
tweets in total. Then, three well-trained anno-
tators annotated whether each set of 30 tweets
have its target relations as a binary classification 3.
We also added 240 random tweets without us-
ing any keywords. Finally, we randomly shuffled
120 keyword tweets and 240 non-keyword random
tweets, and annotators classified four discourse re-
lation classes. Pairwise inter-rater agreement was
85%, with three-way reliable in the moderate range
(Fleiss k = 0.49). We used majority vote as our
discourse relation labels. Among 360 tweets, there
were 36 Contigency, 8 Temporal, 22 Comparison,
and 43 Expansion relations.

3.2 Discourse Argument Extraction

We adopted the PDTB-style argument extraction
method as it is relatively simple and thus more
robust in noisy texts of social media. For argument
extraction, we combined approaches of Biran and
McKeown (2015) and Son et al. (2018).

We extract all sentences and if there is discourse
connective inside a sentence we identify an argu-
ment to which a discourse connective attached as
Arg2 , and the other as Arg/ (Prasad et al., 2007).

3e.g., whether 30 tweets collected using discourse connnec-
tives of contigency actually contain contigency relations?

For discourse connectives at the beginning of a
tweet, we identify the text from the beginning until
the end of the first verb phrase separated by punc-
tuation Tweet POS tags or other discourse connec-
tives as Arg2, and the rest as Argl; if a discourse
connective or coordinating conjunction Tweet POS
tag is in the middle, we identify the text from start
to the middle connective as Argl, and from the
connective to the end as Arg2 (Biran and McKe-
own, 2015). Also, we identify emojis as separate
discourse arguments as suggested by (Son et al.,
2018) since they plays a critical role for signaling
implicit relations.

For discourse connective disambiguation*, we
identified discourse connectives only if there are
verb phrases’ before and after them as Son et al.
(2018) found that this simplified method was effec-
tive for capturing social media discourse relations.

3.3 Training

We use weakly supervised multitask learning with
a hierarchy of PDTB-style discourse relation learn-
ers (Figure 2). Note that this method, as opposed to
entirely self-supervised (i.e. predict next discourse
argument), enables us to capture the relationships
beyond the likelihood of one discourse argument
to appear after another (i.e. how BERT models sen-
tences), which would not necessarily distinguish
one relationship from another.

Pseudo Labeling and Training Instance Gen-
eration. We extract discourse connectives of a
given discourse argument pair and label that pair
with all of the possible relations that are found
in PDTB. Then, we use the ratio of those possi-
ble discourse relations given the discourse con-
nective as a weight within binary cross-entropy
loss — this idea of using probabilistic labels fol-
low work in pseudo labeling for image recogni-
tion (Lee, 2013). More specifically, we generated
two types of training instances for the weekly super-
vised learning of DiscRE: explicit relation pairs and
implicit relation pairs. For explicit relation train-
ing pairs, we define the discourse argument which
contains discourse connectives as Arg2 and the rest
text span of the pair as Arg/ as this segmentation
method obtained state-of-the-art performances for
previous discourse relation tasks (Biran and McKe-

%e.g., ‘and’ can be used as a discourse connective (‘I fell
asleep again and I got late’) or a simple connections of two
words (‘I want apple and banana’).

>minimal discourse units defined in Prasad et al. (2008).



own, 2015; Son et al., 2018). For implicit relation
training pairs, we remove the discourse connec-
tive from Arg2 of each pair; Rutherford and Xue
(2015) found this approach can learn strong addi-
tional signals quite well although it is not perfectly
equivalent to learning implicit discourse relations®.
Then, we input each of these generated pairs along
with its whole tweet as its context to our DiscRE
model optimize the model towards the objective
function to learn the posterior distributions of all
possible relations given the discourse connective in
PDTB (Figure 3). Importantly, this mode of label-
ing is self scalable, yet it also enables a relatively
delicate learning objective which considers all pos-
sible discourse relations rather than predicting just
discourse connectives.

3.4 Discourse Relation Embeddings

We used a hierarchical bidirectional LSTM model;
the first layer LSTM (Word LSTM) captures inter-
action between words of each discourse argument
with attention and the second layer LSTM (Dis-
course Argument LSTM) captures relations among
all discourse arguments across the whole tweet.
This architecture was inspired by Son et al. (2018)
and Ji and Smith (2017) as they found that their
similar hierarchical model architecture performed
well in related discourse relation tasks.

Then, we optimized this model on each tweet for
training towards the following objective function:

N;
J(0)=— Z Z wijyijlog(fi(wij)))

i j=1

where ¢ is three levels of discourse relation hierar-
chy from PDTB (Class, Type, and Subtype) and N;
is the dimension of all existing relations in each
level and wj; is the posterior from PDTB of the re-
lations given the discourse connective in the current
pair of arguments. This can be viewed as multitask
learning of shared RNN layers for three different
level outputs (Figure 3). We concatenate the hid-
den vectors of Argl and Arg2 from Discourse Argu-
ment LSTM to learn Class output and Type output
as these are relations between two arguments while
we use only the hidden vector of Arg2 from Dis-
course Argument LSTM for learning Subtype as it

® Among the discourse connectives we used for our training,
only ‘if” belongs to the ‘Non-omissible’ discourse connective
class and even this class showed relatively high effectiveness
for implicit relation training when omitted (Rutherford and
Xue, 2015).

is rather a role of Arg2 given the Class and Type
relations (Figure 3). We put dropout layer between
Word LSTM and Discourse Argument LSTM and
used 0.3 for its rate as suggested in Ji and Smith
(2017) and Son et al. (2018).

Finally, for generating DiscRE, we concatenated
the hidden vectors of Argl and Arg2 to the con-
catenation of output vectors of Class, Type, and
Subtype. With this structure, DiscRE can capture a
latent features of discourse relations between the
given argument pair based on the context across all
other discourse arguments in addition to probabili-
ties of predefined discourse relations with contex-
tual nuances (Figure 3).

Model Configuration. Our DiscRE model is im-
plemented in PyTorch (Paszke et al., 2019). For hy-
perparameter tuning, we explored both dimensions
of pretrained word embeddings’ and hidden vectors
25, 50, 100, and 200 with SGD and Adam (Kingma
and Ba, 2014). We chose the models which obtain
best performances on our development set within
at most 1,000 epochs®. We implemented a word-
level attention as defined in (Yang et al., 2016) but
with ReLU function for its activation. For BERT
extraction, we used BERT base uncased model (12
layers, 768 hidden dimensions, and 12 heads) by
HuggingFace and for infersent we used a pretrained
model trained with 300 dimension glove vectors as
inputs and 2,048 LSTM hidden dimensions’.

4 Results

We validated DiscRE on both newswire and social
media discourse relation tasks. Then, we conducted
qualitative analysis on the internal representations
of our model and its DiscRE prediction on both
Twitter and PDTB.

4.1 Evaluations

First, we examined whether DiscRE can capture
discourse relations in PDTB, even though grammat-
ical properties and general text formats of newswire
and social media are quite different. Then, we eval-
uated our model for social media discourse rela-
tion tasks: causal relation prediction and Twitter
discourse relation classification. We used linear

"http://nlp.stanford.edu/data/glove.
twitter.27B.zip

8200 dimension with Adam was the best setting for Dis-
cRE.

*https://github.com/facebookresearch/
InferSent
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Models | CON. TEM. COM. EXP. | Mic. Mac.
Ngrams | 0.575 0.693 0.757 0.757 | 0.709 0.695
BERT 0.612 0.724 0.746 0.748 | 0.714 0.708
Inferse. | 0.604 0.670 0.738 0.726 | 0.693 0.685
DiscRE | 0.598 0.736 0.768 0.768 | 0.726 0.718
Table 1: F1 scores of the four-wary PDTB dis-

course class prediction (‘CON.’: Contingency, ‘TEM.’:
Temporal, ‘COM.’: Comparison, ‘EXP.: Expansion).
Then, we report both micro F1 and macro F1. Dis-
cRE obtained the best performances across all four dis-
course relation clasees except for the second best per-
formance for Contingency class prediction F1.

SVMs for all transfer learner classifiers for evalu-
ation as this model obtained the best performance
from the previous related work (Son et al., 2018).

Transfer Learning on PDTB. In order to mea-
sure how well our model can generalize to dif-
ferent domains and capture predefined newswire
discourse relations, we conducted similar trans-
fer learning experiments for predicting four senses
of Level 1 discourse relation classes (Contin-
gency,Temporal,Comparison, and Expansion).

In PDTB, annotators first segmented texts into
discourse arguments, then annotated a discourse re-
lation between each pair of neighboring discourse
arguments (marked as Arg/ and Arg2). Therefore,
we extracted BERT, Ngrams, and Infersent from
Argl and Arg2 and the concatenation of Arg/ and
Arg2 and use them as separate features, so the trans-
fer learner model can recognize the notion of Argl
and Arg2 and utilize the whole text context as well.
Then, we extract DiscREs from the pairs of Argl
and Arg2 and used them as transfer learning fea-
tures. Then, we trained classifiers with each of
those embeddings and compared the performances.

As suggested in Prasad et al. (2007), we used
Sections 2 to 21 for training and Section 23 for test-
ing in PDTB. Despite the relatively small number
of the training set and larger domain differences
with newswire target domains in its pretraining
procedures, DiscRE still obtained the best perfor-
mances for overall discourse relation predictions
except for Contingency classification f1. This may
indicate that DiscRE learns domain-agnostic sig-
nals for discourse relations leveraging discourse
connectives in the weakly supervised multitask
learning settings (Table 1).

Causal Relation Prediction on Social Media.
We evaluated our model on a causality prediction
task on social media messages collected by Son

Model F1

(Son et al., 2018) | 0.791
BERT 0.746
Infersent 0.709
DiscRE 0.752
BERT Fine-Tuned | 0.789
DiscRE + ALL 0.807

Table 2: Causality prediction performance of DiscRE
compared to other models. DiscRE-based classifier ob-
tained the new state-of-the-art performance.

et al. (2018). We extracted DiscRE and BERT of
the messages and average all embeddings in each
message as transfer learning features for causal-
ity prediction of each message. Then, we ex-
tracted Infersent sentence embeddings from mes-
sages. Then, we trained classifiers with each of
those embeddings and compared the performances
as this model obtained the best result from the previ-
ous work (Son et al., 2018). DiscRE obtained better
performances (F1=0.752) than BERT (F1=0.746)
and Infersent (F1=0.709) and overall, this simple
transfer learning approach using obtained a com-
parable performance to the models used in Son
etal. (2018) (F1=0.791) (Table 2). For further train-
ing, we directly fine-tuned BERT for the causality
prediction task and the performance increased to
F1=0.789. Also, when we used DiscRE along with
best performing text features from Son et al. (2018)
(N-grams, Tweet POS tags, Word Pairs (Pitler et al.,
2009), sentiment tags) of the messages for trans-
fer learning, we obtained the new state-of-the-art
performance.

Discourse Relation Classification on Social Me-
dia. In order to validate a main objective of Dis-
cRE for extending effective discourse relation pars-
ing beyond the existing corpus of newswire domain,
we applied DiscRE to a discourse relation classifi-
cation task on our new Twitter discourse relation
dataset. We extracted DiscRE, BERT, Ngrams, and
Infersent from tweets with the same methods used
in the previous causality prediction task. We con-
ducted 10 fold cross validations and reported F1
scores of the embedding models on each class. The
result showed that DiscRE obtains the best perfor-
mances across all classes and average F1 scores
(Micro F1=0.758).
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Figure 4: Distribution plot with attention weights as a variable in x-axis, ‘Key DC’: discourse connectives used
as keywords for the training set collection, ‘Non-Key DC’: discourse connectives which were not included in
the keywords. We analyzed the average attention weight distributions of discourse connectives vs other words.
Discourse connectives tend to receive higher attention on both PDTB and Twitter'?.

Models | CON. TEM. COM. EXP. None | Mic. Mac.
Ngrams | 0386 0.386 0.353 0.119 0.813 | 0.686 0.407
BERT | 0412 0.000 0426 0.086 0.857 |0.706 0316
Inferse. | 0390 0.111 0566 0324 0.867 | 0.719 0.452
DiscRE | 0478 0.421 0591 0.400 0.883 | 0.758 0.554
Table 3: FI1 scores of the discourse class prediction

on Twitter (‘CON.’: Contingency, ‘TEM.: Temporal,
‘COM.: Comparison, ‘EXP’: Expansion). Then, we
report both micro F1 and macro F1. DiscRE obtained
the best performances across all relations.

4.2 Qualitative Analysis on DiscRE model

Attention Analysis. First, we ran our trained
DiscRE model on evaluation tweet dataset and in-
vestigated average attention weights of words when
they were embedded into DiscRE. Even though
there are some outliers due to noisy unigram social-
media-specific discourse arguments (e.g., emojis
or verb phrases with omitted subjects), generally
discourse connectives gained higher attention than
non-discourse-connective words (Figure 4). This
suggests that discourse connectives play a quite
significant role when our model produces DiscRE.

Furthermore, we observed that both discourse
connectives used as keywords for training set
collection and the other relatively less frequent
discourse connectives obtained higher attention
weights than other words on the random tweet eval-
uation set. This pattern supports that our model

Interestingly, on Twitter, the attention weights of social-
media-specific variations of ‘because’ obtained similar
weights even though the DiscRE model was not systemat-
ically designed to capture domain differences of discourse
connectives: ‘because’: 0.16, ‘bcuz’: 0.18, ‘cos’: 0.16, ‘cuz’:
0.15, ‘cause’: 0.16.

was not biased towards only prevailing discourse
connectives it has seen from the training set but
generalized quite well on unseen discourse rela-
tions.

Additionally, when we analyzed attention
weights our DiscRE model when it embedded dis-
course relations on PDTB, it showed the simi-
lar pattern. Although all words in the PDTB vo-
cabulary generally obtained lower attention, still
discourse connectives obtained higher attention
weights than other words and DiscRE distributed
relatively high attention weights on both keyword
and non-keyword discourse connectives in PDTB
as well. These results suggest that DiscRE can cap-
ture words with important discourse signals even
on the other domains.

DiscRE Analysis. We explored DiscREs on dis-
course relations in social media which are publicly
available: causality (Son et al., 2017) and coun-
terfactual (Son et al., 2018) social media dataset.
We averaged all DiscREs of all adjacent pairs of
discourse arguments per message and visualized
two dimensional tSNE of them. In general, types of
discourse relations are diverse and even same type
show up in various different forms in both explicit
and implicit relations, so the distinctions between
them are very hard to be captured within just two
dimensions. Nevertheless, we found fairly clear
patterns which distinguish two different discourse
relations; majority counterfactual messages tend
to cluster separately to the left side compared to
causality messages (Figure 5). Especially, Con-
Jjunctive Normal and Conjunctive Converse forms



of counterfactuals are clustered at the left side sep-
arately (e.g., “I would be healthier, if I had worked
out regularly”) (Son et al., 2017).

It is noteworthy that the counterfactual relation
does not exist as a discourse relation tag in PDTB,
still DiscRE captured distinguishable unique prop-
erties of it compared to causal relations and even
different forms of counterfactuals (i.e., Wish verb
forms and Conjunctive forms). This visualization
analysis provided significant insights about seman-
tic differences of discourse relations, but at the
same time, further analysis over coherent clusters
helped us see some discourse-based properties in
common (e.g., see ‘Message A’ and ‘Message B’
on Figure 5).

Additionally, we investigated how well DiscRE
can generalize to newswire domain by projecting
DiscRE:s of discourse relations in the PDTB testset
into 2D tSNE in the same setting used for the vi-
sualization of causal and counterfatual relations
(Figure 6). Even though we used most coarse-
grained discourse relation classes, DiscRE captured
quite coherent patterns of clusters for different re-
lations. Nevertheless, many implicit discourse rela-
tions were clustered together on the upper left part
as they are generally harder to be captured (Pitler
et al., 2008; Rutherford and Xue, 2015).
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Figure 5: DiscRE differences between counterfactual
messages and causality messages. Counterfactual mes-
sages are generally positioned at the left side com-
pared to causality messages. When we investigated
edge cases of causality messages clustered closely with
counterfactuals, we found causality messages which
contained counterfactual relations inside (‘Message A’
and ‘Message B’!!))

“Message A’: “is doing great.... lol. If T had learned this
stuff when I was supposed to I guess I wouldn’t have to cram
right now. Oh well. There’s always next year... or grade 12.
‘Message B’: ‘i wish there was not any snow outside so i could
skate’.
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Figure 6: DiscRE differences between Four discourse
relation classes of PDTB test set. Many examples of
implicit discourse relations were clustered on the upper
left side. Expansion is a quite general class which may
overlap semantically with other types of relations, so
they were more widely spread than other relations.

5 Conclusion

We explored a new task of creating latent discourse
relation embeddings, designing a novel weakly su-
pervised multitask learning method and evaluat-
ing it both quantitatively and qualitatively over so-
cial media and newswire domains. While we built
on previous work over discourse relation classes,
our results suggest the continuous discourse rela-
tion embeddings (DiscRE) has certain benefits over
manual categorizations. Continuous representa-
tions of relations between segments of text have
been relatively unexplored yet they can yield sub-
tle attributes of discourse relations, yielding strong
performance in applications and perhaps new orga-
nizations of functional discourse relations.

Our model obtained the best performance on
the discourse relation classification tasks in both
PDTB and our new Twitter discourse dataset. Also,
our model obtained a new state-of-the-art perfor-
mance using DiscRE in the social media causal
relation prediction task. Further, for predicting
discourse relations over PDTB, we found DiscRE
achieved the higher performance than other embed-
dings, suggesting a focus on embedding relations
(i.e. the space between text segments) can capture
information not available in other types of modern
embeddings which focus on representing particular
word or phrase instances rather than their relation-
ships. We release our dataset, code and pretrained
models, for others to explore this new task, better
develop continuous representations of discourse
relations, as well as to extend discourse relation
parsing beyond newswire to other domains.
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