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Dynamic graph representation learning is a task to learn node g | Honald Trump [oakeinacs
embeddings over dynamic networks, and has many important ap- g
plications, including knowledge graphs, citation networks to social C : J fb
networks. Graphs of this type are usually large-scale but only a - 3 it LN -
small subset of vertices are related in downstream tasks. Current ’ : ' E
methods are too expensive to this setting as the complexity is at &
best linear-dependent on both the number of nodes and edges. 12 13 14 15 16 17 18 19 20

In this paper, we propose a new method, namely Dynamic Per-
sonalized PageRank Embedding (DYNAMICPPE) for learning a target
subset of node representations over large-scale dynamic networks.
Based on recent advances in local node embedding and a novel
computation of dynamic personalized PageRank vector (PPV), Dy-
NAMICPPE has two key ingredients: 1) the per-PPV complexity is
O(md/e) where m,d, and € are the number of edges received, aver-
age degree, global precision error respectively. Thus, the per-edge
event update of a single node is only dependent on d in average;
and 2) by using these high quality PPVs and hash kernels, the
learned embeddings have properties of both locality and global
consistency. These two make it possible to capture the evolution of
graph structure effectively.

Experimental results demonstrate both the effectiveness and effi-
ciency of the proposed method over large-scale dynamic networks.
We apply DYyNAMICPPE to capture the embedding change of Chinese
cities in the Wikipedia graph during this ongoing COVID-19 pan-
demic !. Our results show that these representations successfully
encode the dynamics of the Wikipedia graph.
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(a) Dynamic graph model  (b) An application of DynamicPPE
Figure 1: (a) The model of dynamic network in two consecu-
tive snapshots. (b) An application of DyNnamIcPPE to keep
track embedding movements of interesting Wikipedia ar-
ticles (vertices). We learn embeddings of two presidents of
the United States on the whole English Wikipedia graph
from 2012 monthly, which cumulatively involves 6.2M ar-
ticles (nodes) and 170M internal links (edges). The embed-
ding movement between two time points is defined as 1 —
cos(wh,witl) where cos(-,-) is the cosine similarity. The sig-
nificant embedding movements may reflect big social status
changes of Donald_Trump and Joe_Biden 2in this dynamic
Wikipedia graph.

'21), August 14-18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/XXXXXXXXXXXXX

1 INTRODUCTION

Graph node representation learning aims to represent nodes from
graph structure data into lower dimensional vectors and has re-
ceived much attention in recent years [12, 15, 16, 23, 29, 31, 37]. Ef-
fective methods have been successfully applied to many real-world
applications where graphs are large-scale and static [43]. However,
networks such as social networks [4], knowledge graphs [20], and
citation networks [7] are usually time-evolving where edges and
nodes are inserted or deleted over time. Computing representations
of all vertices over time is prohibitively expensive because only a
small subset of nodes may be interesting in a particular application.
Therefore, it is important and technical challenging to efficiently
learn dynamic embeddings for these large-scale dynamic networks
under this typical use case.

Specifically, we study the following dynamic embedding problem:
We are given a subset S = {v1,02, ..., v} and an initial graph Gt
with t = 0. Between time ¢ and ¢ + 1, there are edge events of
insertions and/or deletions. The task is to design an algorithm to

2Two English Wikipedia articles are accessible at https://en.wikipedia.org/wiki/
Donald_Trump and https://en.wikipedia.org/wiki/Joe_Biden.
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learn embeddings for k nodes with time complexity independent
on the number of nodes n per time t where k < n. This problem
setting is both technically challenging and practically important.
For example, in the English Wikipedia graph, one need focus only
on embedding movements of articles related to political leaders,
a tiny portion of whole Wikipedia. Current dynamic embedding
methods [10, 28, 47, 49, 50] are not applicable to this large-scale
problem setting due to the lack of efficiency. More specifically,
current methods have the dependence issue where one must learn all
embedding vectors. This dependence issue leads to per-embedding
update is linear-dependent on n, which is inefficient when graphs
are large-scale. This obstacle motivates us to develop a new method.
In this paper, we propose a dynamic personalized PageRank
embedding (DyNAMICPPE) method for learning a subset of node
representations over large-sale dynamic networks. DynamicPPE
is based on an effective approach to compute dynamic PPVs [45].
There are two challenges of using Zhang et al. [45] directly: 1) the
quality of dynamic PPVs depend critically on precision parameter
€, which unfortunately is unknown under the dynamic setting; and
2) The update of per-edge event strategy is not suitable for batch
update between graph snapshots. To resolve these two difficulties,
first, we adaptively update € so that the estimation error is indepen-
dent of n, m, thus obtaining high quality PPVs. Yet previous work
does not give an estimation error guarantee. We prove that the
time complexity is only dependent on d. Second, we incorporate
a batch update strategy inspired from [13] to avoid frequent per-
edge update. Therefore, the total run time to keep track of k nodes
for given snapshots is O(kdm). Since real-world graphs have the
sparsity property d < n, it significantly improves the efficiency
compared with previous methods. Inspired by InstantEmbedding
[30] for static graph, we use hash kernels to project dynamic PPVs
into embedding space. Figure 1 shows an example of successfully
applying DYNAMICPPE to study the dynamics of social status in the
English Wikipedia graph. To summarize, our contributions are:

(1) We propose a new algorithm DynamicPPE, which is based
on the recent advances of local network embedding on static
graph and a novel computation of dynamic PPVs. DyNnamicPPE
effectively learns PPVs and then projects them into embedding
space using hash kernels.

(2) DynaMICPPE adaptively updates the precision parameter € so
that PPVs always have a provable estimation error guarantee.
In our subset problem setting, we prove that the time and space
complexity are all linear to the number of edges m but indepen-
dent on the number of nodes n, thus significantly improve the
efficiency.

(3) Node classification results demonstrate the effectiveness and ef-
ficiency of the proposed. We compile three large-scale datasets
to validate our method. As an application, we showcase that
learned embeddings can be used to detect the changes of Chi-
nese cities during this ongoing COVID-19 pandemic articles on
a large-scale English Wikipedia.

The rest of this paper is organized as follows: In Section 2, we
give the overview of current dynamic embedding methods. The
problem definition and preliminaries are in Section 3. We present
our proposed method in Section 4. Experimental results are reported
in Section 5. The discussion and conclusion will be presented in

Section 6. Our code and created datasets are accessible at https:
//github.com/zjlxgxz/DynamicPPE.

2 RELATED WORK

There are two main categories of works for learning embeddings
from the dynamic graph structure data. The first type is focusing
on capturing the evolution of dynamics of graph structure [49].
The second type is focusing on both dynamics of graph structure
and features lie in these graph data [38]. In this paper, we focus
on the first type and give the overview of related works. Due to
the large mount of works in this area, some related works may not
be included, one can find more related works in a survey [22] and
references therein.

Dynamic latent space models The dynamic embedding models
had been initially explored by using latent space model [18]. The
dynamic latent space model of a network makes an assumption
that each node is associated with an d-dimensional vector and
distance between two vectors should be small if there is an edge
between these two nodes [32, 33]. Works of these assume that the
distance between two consecutive embeddings should be small. The
proposed dynamic models were applied to different applications
[17, 34]. Their methods are not scalable from the fact that the time
complexity of initial position estimation is at least O(n?) even if
the per-node update is log(n).

Incremental SVD and random walk based methods Zhang
et al. [48] proposed TIMERS that is an incremental SVD-based
method. To prevent the error accumulation, TIMERS properly set
the restart time so that the accumulated error can be reduced.
Nguyen et al. [28] proposed continuous-time dynamic network em-
beddings, namely CTDNE. The key idea of CTNDE is that instead
of using general random walks as DeepWalk [29], it uses temporal
random walks contain a sequence of edges in order. Similarly, the
work of Du et al. [10] was also based on the idea of DeepWalk. These
methods have time complexity dependent on n for per-snapshot
update. Zhou et al. [49] proposed to learn dynamic embeddings by
modeling the triadic closure to capture the dynamics.

Graph neural network methods Trivedi et al. [38] designed a
dynamic node representation model, namely DYREP, as modeling
a latent mediation process where it leverages the changes of node
between the node’s social interactions and its neighborhoods. More
specifically, DYREP contains a temporal attention layer to capture
the interactions of neighbors. Zang and Wang [44] proposed a neu-
ral network model to learn embeddings by solving a differential
equation with ReLU as its activation function. [24] presents a dy-
namic embedding, a recurrent neural network method, to learn
the interactions between users and items. However, these methods
either need to have features as input or cannot be applied to large-
scale dynamic graph. Kumar et al. [24] proposed an algorithm to
learn the trajectory of the dynamic embedding for temporal inter-
action networks. Since the learning task is different from ours, one
can find more details in their paper.

3 NOTATIONS AND PRELIMINARIES

Notations We use [n] to denote a ground set [n] := {0,1,...,n—
1}. The graph snapshot at time t is denoted as G* (V?,E?). The
degree of a node v is d(v). In the rest of this paper, the average
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degree at time ¢ is d’ and the subset of target nodes is S € V*. Bold
capitals, e.g. A, W are matrices and bold lower letters are vectors
w, x. More specifically, the embedding vector for node v at time
t denoted as w), € RY and d is the embedding dimension. The i-
th entry of w), is w/ (i) € R. The embedding of node v for all T
snapshots is written as W, = [w%,w%, .. .,wZ]T. We use n; and m;
as the number of nodes and edges in G* which we simply use n
and m if time ¢ is clear in the context.

Given the graph snapshot G* and a specific node v, the person-
alized PageRank vector (PPV) is an n-dimensional vector z} € R"
and the corresponding i-th entry is 7% (i). We use p?, € R™ to stand
for a calculated PPV obtained from a specific algorithm. Similarly,
the corresponding i-th entry is p? (i). The teleport probability of the
PageRank is denoted as a. The estimation error of an embedding vec-
tor is the difference between true embedding w/, and the estimated

embedding w/, is measure by || - ||1 := P |w£(i) - fvzt,(l)l

3.1 Dynamic graph model and its embedding

Given any initial graph (could be an empty graph), the correspond-
ing dynamic graph model describes how the graph structure evolves
over time. We first define the dynamic graph model, which is based
on Kazemi and Goel [22].

Definition 1 (Simple dynamic graph model [22]). A simple dy-
namic graph model is defined as an ordered of snapshots G°, G",
G2,...,GT where G¥ is the initial graph. The difference of graph
G! at timet = 1,2,...,T is AGt(AV?,AEY) := GI\G!™! with
AVE = VOV and AE! := E'\E'"L. Equivalently, AG* corre-
sponds to a sequence of edge events as the following

Agt = {e{,eé,...,efn,}, (1)

where each edge event eit has two types: insertion or deletion, i.e,
ei' = (u,v, event) where event € {Insert, Delete} 3.

The above model captures evolution of a real-world graph nat-
urally where the structure evolution can be treated as a sequence
of edge events occurred in this graph. To simplify our analysis, we
assume that the graph is undirected. Based on this, we define the
subset dynamic representation problem as the following.

Definition 2 (Subset dynamic network embedding problem). Given
a dynamic network model {QO, Gt G2 ..., QT} define in Definition
1and a subset of target nodes S = {v1,v2, ..., vk}, the subset dynamic
network embedding problem is to learn dynamic embeddings of T
snapshots for all k nodes S where k < n. That is, given any node
v € S, the goal is to learn embedding matrix for each nodev € S, i.e.

Wy = [w% w2 A..,wZ]T wherew!, € R? andov € S. (2)

sWoys

3.2 Personalized PageRank

Given any node v at time t, the personalized PageRank vector for
graph G' is defined as the following

Definition 3 (Personalized PageRank (PPR)). Given normalized
adjacency matrix Wy = Dt_lAt where Dy is a diagonal matrix with
Dy (i,i) = d(i)! and Ay is the adjacency matrix, the PageRank vector

3The node insertion can be treated as inserting a new edge and then delete it and node
deletion is a sequence of deleting its edges.

sl with respect to a source node s is the solution of the following
equation

nst:a*15+(1—a)7rstWt, (3)
where 15 is the unit vector with 15(v) = 1 when v = s, 0 otherwise.

There are several works on computing PPVs for static graph
[1, 2, 5]. The idea is based a local push operation proposed in [2].
Interestingly, Zhang et al. [45] extends this idea and proposes a
novel updating strategy for calculating dynamic PPVs. We use a
modified version of it as presented in Algorithm 1.

Algorithm 1 FORWARDPUSH [45]
1: Input: ps,r, G, e, =0
2: while Ju, rg(u) > ed(u) do
PusH(u)
4: while Ju, rg(u) < —ed(u) do
5 PusH(u)

w

: return (ps, r)

: procedure PusH(u)

ps(u) += ars(u)

for v € Nei(u) do

10: rs(v) += (1 - a)rs(u)(1 - B)/d(u)
rs(u) = (1 - a)rs(u)p

—_
—_

Algorithm 1 is a generalization from Andersen et al. [2] and there
are several variants of forward push [2, 5, 26], which are dependent
on how f is chosen (we assume f = 0). The essential idea of forward
push is that, at each PusH step, the frontier node u transforms her a
residual probability rs (u) into estimation probability ps (u) and then
pushes the rest residual to its neighbors. The algorithm repeats this
push operation until all residuals are small enough #. Methods based
on local push operations have the following invariant property.

Lemma 4 (Invariant property [19]). FORWARDPUSH has the follow-
ing invariant property

75 (u) = ps(u) + Z rs(0)my(u),Yu € V. 4)
veV
The local push algorithm can guarantee that the each entry of
the estimation vector ps(v) is very close to the true value s (v).
We state this property as in the following

Lemma 5 ([2, 45]). Given any graph G(V,E) with ps = 0,rs = 1
and a constant €, the run time for FORWARDLOCALPUSH is at most
Llrslh g the estimation error of 75 (v) for each node v is at most

€, i.e. |ps(v) — s (v)|/d(v)| < €

The main challenge to directly use forward push algorithm to
obtain high quality PPVs in our setting is that: 1) the quality ps
return by forward push algorithm will critically depend on the
precision parameter € which unfortunately is unknown under our
dynamic problem setting. Furthermore, the original update of per-
edge event strategy proposed in [45] is not suitable for batch update

“There are two implementation of forward push depends on how frontier is selected.
One is to use a first-in-first-out (FIFO) queue [11] to maintain the frontiers while the
other one maintains nodes using a priority queue is used [5] so that the operation cost
is O(1/ea) instead of O (logn/ea).



between graph snapshots. Guo et al. [13] propose to use a batch
strategy, which is more practical in real-world scenario where there
is a sequence of edge events between two consecutive snapshots.
This motivates us to develop a new algorithm for dynamic PPVs
and then use these PPVs to obtain high quality dynamic embedding
vectors.

4 PROPOSED METHOD

To obtain dynamic embedding vectors, the general idea is to obtain
dynamic PPVs and then project these PPVs into embedding space
by using two kernel functions [30, 42]. In this section, we present
our proposed method DyNAMICPPE where it contains two main
components: 1) an adaptive precision strategy to control the esti-
mation error of PPVs. We then prove that the time complexity of
this dynamic strategy is still independent on n. With this quality
guarantee, learned PPVs will be used as proximity vectors and be
"projected" into lower dimensional space based on ideas of Verse
[39] and InstantEmbedding [30]. We first show how can we get high
quality PPVs and then present how use PPVs to obtain dynamic
embeddings. Finally, we give the complexity analysis.

4.1 Dynamic graph embedding for single batch

For each batch update AG?, the key idea is to dynamically maintain
PPVs where the algorithm updates the estimate from p%~! to pf and
its residuals from 75! to rf. Our method is inspired from Guo et al.
[13] where they proposed to update a personalized contribution
vector by using the local reverse push °. The proposed dynamic
single node embedding, DYNAMICSNE is illustrated in Algorithm 2.
It takes an update batch AG? (a sequence of edge events), a target
node s with a precision €!, estimation vector of s and residual vector
as inputs. It then obtains an updated embedding vector of s by the
following three steps: 1) It first updates the estimate vector p’ and r!
from Line 2 to Line 9; 2) It then calls the forward local push method
to obtain the updated estimations, pé ; 3) We then use the hash
kernel projection step to get an updated embedding. This projection
step is from InstantEmbedding where two universal hash functions
are defined as hy : N — [d] and hsgn : N — {1} 6. Then the hash
kernel based on these two hash functions is defined as Hy,__ 5, (x) :
R" — RY where each entity i is Zjehgl(i) Xjhsgn (j). Different
from random projection used in RandNE [47] and FastRP [6], hash
functions has O(1) memory cost while random projection based
method has O(dn) if the Gaussian matrix is used. Furthermore,
hash kernel keeps unbiased estimator for the inner product [42].

In the rest of this section, we show that the time complexity
is O(md/e) in average and the estimation error of learned PPVs
measure by || - ||1 can also be bounded. Our proof is based on the
following lemma which follows from Guo et al. [13], Zhang et al.
[45].

Lemma 6. Given current graph G' and an update batch AG?, the
total run time of the dynamic single node embedding, DYNAMICSNE

5One should notice that, for undirected graph, PPVs can be calculated by using the
invariant property from the contribution vectors. However, the invariant property
does not hold for directed graph. It means that one cannot use reverse local push to get
a personalized PageRank vector directly. In this sense, using forward push algorithm
is more general for our problem setting.

For example, in our implementation, we use MurmurHash https://github.com/
aappleby/smhasher

for obtaining embedding wt is bounded by the following

e Ml = el 2-apit(w)

t
ae wgt a du)

T; <

©)

ProoF. We first make an assumption that there is only one edge
update (u, v, event) in AG?, then based Lemma 14 of [46], the run
time of per-edge update is at most:

Irs = Il Ad(s)
+ s
aet aet

(6)

_ 2-api (W) :
where A;(s) = = FIORE Suppose there are k edge events in

AG*. We still obtain a similar bound, by the fact that forward push
algorithm has monotonicity property: the entries of estimates pZ ()
only increase when it pushes positive residuals (Line 2 and 3 of Al-
gorithm 1). Similarly, estimates p%(v) only decrease when it pushes
negative residuals (Line 4 and 5 of Algorithm 1). In other words, the
amount of work for per-edge update is not less than the amount of
work for per-batch update. Similar idea is also used in [13]. O

Algorithm 2 DyNaMICSNE(G?, AGE, s, pé‘l, ré‘l, e, a)

1. Input: graph G', AG?, target node s, precision e, teleport
2: for (u,v,0p) € AG! do

3 if op == INSERT(u, v) then

& Ap = p5H(w)/(dw)' = 1)
5 if op == DELETE(u, v) then

6: Ap = —p5 (W) /(dw)' +1)
7 P < piT W) + By

g ritw) it u) - Ap/a

9: ri o) « ri o) + Apfa - A

10: p! = ForwarpPusu(pi=1,ri=1, 6!, €, a)

1: wh=0

12: for i € {v: pL(v) # 0,0 € V!} do

3 wi(hg(i)) += hggn (i) max (log (pL(i)n),0)

—_

Theorem 7. Given any graph snapshot G' and an update batch AG*
where there are m; edge events and suppose the precision parameter
is €' and teleport probability is a, DyNaMICSNE runs in O (my/a® +
mydt [ (ea®) + m;/(ea)) with et = e/m;

Proor. Based lemma 6, the proof directly follows from Theorem
12 of [46]. o

The above theorem has an important difference from the pre-
vious one [45]. We require that the precision parameter will be
small enough so that || p% — 7! ||; can be bound ( will be discussed
later). As we did the experiments in Figure 2, the fixed epsilon will
make the embedding vector bad. We propose to use a dynamic
precision parameter, where €’ ~ O(e’/my), so that the £, -norm can
be properly bounded. Interestingly, this high precision parameter
strategy will not case too high time complexity cost from O(m/a?)
to O(md/(ea?)). The bounded estimation error is presented in the
following theorem.


https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher

Theorem 8 (Estimation error). Given any node s, define the estima-
tion error of PPVs learned from DYNAmICSNE at time t as || pt — ! ||1,
if we are given the precision parameter €' = €/m;, the estimation
error can be bounded by the following

lps - 7l <e ™)

where we require € < 27 and € is a global precision parameter of
DyNamicPPE independent on m; and n;.

Proor. Notice that for any node u, by Lemma 5, we have the
following inequality

|75 (u) = 75 (w)] < ed’ (u).

Summing all these inequalities over all nodes u, we have

t t t ¢
lps =il =" [ph(w) = x5 (w)
uevt
¢t t €
< Z ed(u)y=¢e'm=—my=e.
mg
uevt

Micro-F1
=) = =
= > =

Macro-F1

=
=

=
<

01 03 05 07 09 11 13 15 17 19 01 03 05 07 09 11 13 15 17 19
Year Year

Figure 2: ¢ as a function of year for the task of node clas-
sification on the English Wikipedia graph. Each line corre-
sponds to a fixed precision strategy of DyNamMICSNE. Clearly,
when the precision parameter ¢ decreases, the performance
of node classification improves.

The above theorem gives estimation error guarantee of p, which
is critically important for learning high quality embeddings. First
of all, the dynamic precision strategy is inevitable because the pre-
cision is unknown parameter for dynamic graph where the num-
ber of nodes and edges could increase dramatically over time. To
demonstrate this issue, we conduct an experiments on the English
Wikipedia graph where we learn embeddings over years and vali-
date these embeddings by using node classification task. As shown
in Figure 2, when we use the fixed parameter, the performance
of node classification is getting worse when the graph is getting
bigger. This is mainly due to the lower quality of PPVs. Fortunately,
the adaptive precision parameter €/m; does not make the run time
increase dramatically. It only dependents on the average degree d’.
In practice, we found € = 0.1 are sufficient for learning effective
embeddings.

"By noticing that ||p% — % |l < |lpilli + l|®L]l1 < 2, any precision parameter
larger than 2 will be meaningless.

4.2 DynamicPPE

Our finally algorithm DyNaMICPPE is presented in Algorithm 3.
At every beginning, estimators p’ are set to be zero vectors and
residual vectors r{ are set to be unit vectors with mass all on one
entry (Line 4). The algorithm then call the procedure DynamIcCSNE
with an empty batch as input to get initial PPVs for all target nodes
8 (Line 5). From Line 6 to Line 9, at each snapshot ¢, it gets an
update batch AG! at Line 7 and then calls DynaMIcSNE to obtain

the updated embeddings for every node .

Algorithm 3 DynamICPPE(G, S, €, @)

1: Input: initial graph G0, target set S, global precision e, teleport

probability «
2: t=0
3: fors € S := {v1,v2,...,0;} do
& pl=0, rl=1;
5: DyNaMICSNE(G?, 0, s, pt, L, 1/mg, a)
6: fort € {1,2,...,T} do
7: read a sequence of edge events AG' := Ggih\gt !
8: fors e S :={v1,02,...,0;} do
9: w! = DYynamIcSNE(GY, AGY, s, pi= L riL e /my, @)

10: returnWst = [wsl,wsz,...,wsT],Vs e€Ss.

Based on our analysis, DYNAMICPPE is an dynamic version of
InstantEmbedding. Therefore, DyNAMICPPE has two key properties
observed in [30]: locality and global consistency. The embedding
quality is guaranteed from the fact that InstantEmbedding implicitly
factorizes the proximity matrix based on PPVs [39].

4.3 Complexity analysis

Time complexity The overall time complexity of DynamicPPE
is the k times of the run time of DyNAMICSNE. We summarize the
time complexity of DYNAMICPPE as in the following theorem

Theorem 9. The time complexity of DYNAMICPPE for learning a

subset of k nodes is O(k% + kma’—ff,it + % +kT min{n, 22 })
Proor. We follow Theorem 7 and summarize all run time to-

gether to get the final time complexity. O

Space complexity The overall space complexity has two parts:
1) O(m) to store the graph structure information; and 2) the storage
of keeping nonzeros of p’ and rf. From the fact that local push oper-
ation [2], the number of nonzeros in p? is at most % Thus, the total
storage for saving these vectors are O(k min{n, 22 }). Therefore,
the total space complexity is O(m + k min(n, ZZ)).
Implementation Since learning the dynamic node embedding
for any node v is independent with each other, DyNaMICPPE is are
easy to parallel. Our current implementation can take advantage of
multi-cores and compute the embeddings of S in parallel.

8For the situation that some nodes of S has not appeared in G* yet, it checks every
batch update until all nodes are initialized.



5 EXPERIMENTS

To demonstrate the effectiveness and efficiency of DynaMmICPPE,
in this section, we first conduct experiments on several small and
large scale real-world dynamic graphs on the task of node classifi-
cation, followed by a case study about changes of Chinese cities in
Wikipedia graph during the COVID-19 pandemic.

5.1 Datasets

We compile the following three real-world dynamic graphs, more
details can be found in Appendix C.

Enwiki20 English Wikipedia Network ~ We collect the internal
Wikipedia Links (WikiLinks) of English Wikipedia from the begin-
ning of Wikipedia, January 11th, 2001, to December 31, 2020 °. The
internal links are extracted using a regular expression proposed in
[8]. During the entire period, we collection 6,151,779 valid articles!®.
We generated the WikiLink graphs only containing edge insertion
events. We keep all the edges existing before Dec. 31 2020, and sort
the edge insertion order by the creation time. There are 6,216,199
nodes and 177,862,656 edges during the entire period. Each node
either has one label (Food, Person, Place,...) or no label.

Patent (US Patent Graph)  The citation network of US patent[14]
contains 2,738,011 nodes with 13,960,811 citations range from year
1963 to 1999. For any two patents u and v, there is an edge (u,v)
if the patent u cites patent v. Each patent belongs to six different
types of patent categories. We extract a small weakly-connected
component of 46,753 nodes and 425,732 edges with timestamp,
called Patent-small.

Coauthor We extracted the co-authorship network from the
Microsoft Academic Graph [35] dumped on September 21, 2019. We
collect the papers with less than six coauthors, keeping those who
has more than 10 publications, then build undirected edges between
each coauthor with a timestamp of the publication date. In addition,
we gather temporal label (e.g.: Computer Science, Art, ...) of authors
based on their publication’s field of study. Specifically we assign
the label of an author to be the field of study where s/he published
the most up to that date. The original graph contains 4,894,639
authors and 26,894,397 edges ranging from year 1800 to 2019. We
also sampled a small connected component containing 49,767 nodes
and 755,446 edges with timestamp, called Coauthor-small.
Academic The co-authorship network is from the academic net-
work [36, 49] where it contains 51,060 nodes and 794,552 edges.
The nodes are generated from 1980 to 2015. According to the node
classification setting in Zhou et al. [49], each node has either one
binary label or no label.

5.2 Node Classification Task

Experimental settings We evaluate embedding quality on bi-
nary classification for Academic graph (as same as in [49]), while
using multi-class classification for other tasks. We use balanced
logistic regression with > penalty in on-vs-rest setting, and report
the Macro-F1 and Macro-AUC (ROC) from 5 repeated trials with
10% training ratio on the labeled nodes in each snapshot, excluding
dangling nodes. Between each snapshot, we insert new edges and
keep the previous edges.

9We collect the data from the dump https://dumps.wikimedia.org/enwiki/20210101/
107 valid Wikipedia article must be in the 0 namespace

We conduct the experiments on the aforementioned small and
large scale graph. In small scale graphs, we calculate the embed-
dings of all nodes and compare our proposed method (DynPPE.)
against other state-of-the-art models from three categories!!. 1)
Random walk based static graph embeddings (Deepwalk!? [29],
Node2Vec!? [12]); 2) Random Projection-based embedding method
which supports online update: RandNE'# [47]; 3) Dynamic graph
embedding method: DynamicTriad (DynTri.) !> [49] which mod-
els the dynamics of the graph and optimized on link prediction.

Table 1: Node classification task on the Academic, Patent
Small, Coauthor Small graph on the final snapshot

Academic Patent Small | Coauthor Small
FI | AUC |F1 | AUC |F1 | AUC
d=128
Static Node2Vec | 0.833 | 0.975| 0.648 | 0.917 | 0.477 | 0.955
method | Deepwalk | 0.834] 0.975| 0.650| 0.919| 0.476| 0.950
DynTri. 0.817 | 0.969 | 0.560 | 0.866 | 0.435 | 0.943
Dynamic| RandNE 0.587 | 0.867 | 0.428 | 0.756 | 0.337 | 0.830
method | DynPPE. | 0.808 | 0.962 | 0.630 | 0.911 | 0.448 | 0.951
d=512
Static Node2Vec | 0.841 | 0.975| 0.677 | 0.931 | 0.486 | 0.955
method | Deepwalk | 0.842| 0.975| 0.680 | 0.931 | 0.495 | 0.955
DynTri. 0.811 | 0.965 | 0.659 | 0.915 | 0.492 | 0.952
Dynamic| RandNE 0.722 | 0.942 | 0.560 | 0.858 | 0.493 | 0.895
method | DynPPE. 0.842| 0.973 | 0.682| 0.934| 0.509| 0.958

Table 2: Total CPU time for small graphs (in second).
RandNE-I is with orthogonal projection, the performance
is slightly better, but the running time is significantly in-
creased. RandNE-II is without orthogonal projection.

Academic Patent Small Coauthor Small
Deepwalk!® | 498211.75 | 181865.56 211684.86
Node2vec | 4584618.79 | 2031090.75 1660984.42
DynTri. 24723755 | 117993.36 108279.4
RandNE-I | 12732.64 9637.15 8436.79
RandNE-II | 1583.08 9208.03 177.89
DynPPE. 18419.10 3651.59 21323.74

Table 1 shows the classification results on the final snapshot.
When we restrict the dimension to be 128, we observe that static
methods outperform all dynamic methods. However, the static
methods independently model each snapshot and the running time
grows with number of snapshots, regardless of the number of edge
changes. In addition, our proposed method (DynPPE.) outperforms
other dynamic baselines, except that in the academic graph, where
DynTri. is slightly better. However, their CPU time is 13 times

1 Appendix D shows the hyper-parameter settings of baseline methods
https://pypi.org/project/deepwalk/

Bhttps://github.com/aditya-grover/node2vec

Yhttps://github.com/ZW- ZHANG/RandNE/tree/master/Python
https://github.com/luckiezhou/DynamicTriad

16We ran static graph embedding methods over a set of sampled snapshots and estimate
the total CPU time for all snapshots.
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Figure 3: Macro-F1 scores of node classification as a function of time. The results of the small and large graphs are on the first
and second row respectively (dim=512). Our proposed methods achieves the best performance on the last snapshot when all
edges arrived and performance curve matches to the static methods as the graph becomes more and more complete.

more than ours as shown in Table 2. According to the Johnson-
Lindenstrauss lemmal9, 21], we suspect that the poor result of
RandNE is partially caused by the dimension size. As we increase
the dimension to 512, we see a great performance improvement
of RandNE. Also, our proposed method takes the same advantage,
and outperform all others baselines in F1-score. Specifically, the
increase of dimension makes hash projection step (Line 12-13 in
Algorithm 2) retain more information and yield better embeddings.
We attach the visualization of embeddings in Appendix.E.

The first row in the Figure 3 shows the F1-scores in each snap-
shot when the dimension is 512. We observe that in the earlier
snapshots where many edges are not arrived, the performance of
DynamicTriad [49] is better. One possible reason is that it models
the dynamics of the graph, thus the node feature is more robust
to the "missing" of the future links. While other methods, includ-
ing ours, focus on an online feature updates incurred by the edge
changes without explicitly modeling the temporal dynamics of a
graph. Meanwhile, the performance curve of our method matches
to the static methods, demonstrating the embedding quality of the
intermediate snapshots is comparable to the state-of-the-art.

Table 2 shows the CPU time of each method (Dim=512). As
we expected, static methods is very expensive as they calculate
embeddings for each snapshot individually. Although our method
is not blazingly fast compared to RandNE, it has a good trade-off
between running time and embedding quality, especially without
much hyper-parameter tuning. Most importantly, it can be easily
parallelized by distributing the calculation of each node to clusters.

We also conduct experiment on large scale graphs (EnWiki20,
Patent, Coauthor). We keep track of the vertices in a subset contain-
ing |S| = 3, 000 nodes randomly selected from the first snapshot in
each dataset, and similarly evaluate the quality of the embeddings
of each snapshot on the node classification task. Due to scale of the
graph, we compare our method against RandNE [47] and an fast
heuristic Algorithm 4. Our method can calculate the embeddings
for a subset of useful nodes only, while other methods have to cal-
culate the embeddings of all nodes, which is not necessary under

our scenario detailed in Sec. 5.3. The second row in Figure 3 shows
that our proposed method has the best performance.

Table 3: Total CPU time for large graphs (in second)

Enwiki20 Patent Coauthor
Commute 6702.1 639.94 1340.74
RandNE-II 47992.81 6524.04 20771.19
DynPPE. 1538215.88 | 139222.01 411708.9
DynPPE (Per-node) 512.73 46.407 137.236

Table 3 shows the total CPU time of each method (Dim=512).
Although total CPU time of our proposed method seems to be the
greatest, the average CPU time for one node (as shown in row 4) is
significantly smaller. This benefits a lot of downstream applications
where only a subset of nodes are interesting to people in a large
dynamic graph. For example, if we want to monitor the weekly
embedding changes of a single node (e.g., the city of Wuhan, China)
in English Wikipedia network from year 2020 to 2021, we can
have the results in roughly 8.5 minutes. Meanwhile, other baselines
have to calculate the embeddings of all nodes, and this expensive
calculation may become the bottleneck in a downstream application
with real-time constraints. To demonstrate the usefulness of our
method, we conduct a case study in the following subsection.

5.3 Change Detection

Thanks to the contributors timely maintaining Wikipedia, we be-
lieve that the evolution of the Wikipedia graph reflects how the
real world is going on. We assume that when the structure of a
node greatly changes, there must be underlying interesting events
or anomalies. Since the structural changes can be well-captured
by graph embedding, we use our proposed method to investi-
gate whether anomalies happened to the Chinese cities during
the COVID-19 pandemic (from Jan. 2020 to Dec. 2020).

Changes of major Chinese Cities We target nine Chinese ma-
jor cities (Shanghai, Guangzhou, Nanjing, Beijing, Tianjin, Wuhan,
Shenzhen, Chengdu, Chongqing) and keep track of the embeddings



Table 4: The top cities ranked by the z-score along time. The corresponding news titles are from the news in each time period.
d(v) is node degree, Ad(v) is the degree changes from the previous timestamp.

Date City d(v) | Ad(v)| Z-score | Top News Title

1/22/20 | Wuhan 2890 | 54 2.210 NBC: "New virus prompts U.S. to screen passengers from Wuhan, China"

2/2/20 Wuhan 2937 | 47 1.928 WSJ: "U.S. Sets Evacuation Plan From Coronavirus-Infected Wuhan"

2/13/20 | Hohhot 631 20 1.370 Poeple.cn: "26 people in Hohhot were notified of dereliction of duty for prevention and control, and the
director of the Health Commission was removed" (Translated from Chinese).

2/24/20 | Wuhan 3012 | 38 2.063 USA Today: "Coronavirus 20 times more lethal than the flu? Death toll passes 2,000"

3/6/20 Wuhan 3095 | 83 1.723 Reuters: "Infelctions may drop to zero by end-March in Wuhan: Chinese government expert"

3/17/20 | Wuhan 3173 | 78 1.690 NYT: "Politicians Use of "Wuhan Virus’ Starts a Debate Health Experets Wanted to Avoid"

3/28/20 | Zhangjiakou | 517 15 1.217 "Logo revealed for Freestyle Ski and Snowboard World Championships in Zhangjiakou"

4/8/20 Wuhan 3314 | 47 2.118 CNN:"China lifts 76-day lockdown on Wuhan as city reemerges from conronavirus crisis"

4/19/20 | Luohe 106 15 2.640 Forbes: "The Chinese Billionaire Whose Company Owns Troubled Pork Processor Smithfield Foods"

4/30/20 | Zunhua 52 17 2.449 XINHUA: "Export companies resume production in Zunhua, Hebei"

5/11/20 | Shulan 88 46 2.449 CGTN: "NE China’s Shulan City to reimpose community lockdown in *wartime’ battle against COVID-19"

in a 10-day time window. From our prior knowledge, we expect
that Wuhan should greatly change since it is the first reported place
of the COVID-19 outbreak in early Jan. 2020.
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Figure 4: The changes of major Chinese cities in 2020.
Left:Changes in Node Degree. Right: Changes in Cosine dis-
tance

Figure.4(a) shows the node degree changes of each city every 10

days. The curve is quite noisy, but we can still see several major
peaks from Wuhan around 3/6/20 and Chengdu around 8/18/20.
When using embedding changes !7 as the measurement, Figure.4
(b) provides a more clear view of the changed cities. We observe
strong signals from the curve of Wuhan, correlating to the initial
COVID-19 outbreak and the declaration of pandemic 18 Tn addition,
we observed an peak from the curve of Chengdu around 8/18/20
when U.S. closed the consulate in Chengdu, China, reflecting the
U.S.-China diplomatic tension®’.
Top changed city along time  We keep track of the embedding
movement of 533 Chinese cities from year 2020 to 2021 in a 10-
day time window, and filter out the inactive records by setting the
threshold of degree changes (e.g. greater than 10). The final results
are 51 Chinese cities from the major ones listed above and less
famous cities like Zhangjiakou, Hohhot, Shulan, ...

Furthermore, we define the z-score of a target node u as Z; (u)
based on the embedding changes within a specific period of time

17 Again, the embedding movement Dist (-, -) is defined as 1 — cos(-, -)
18COIVD-19: https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
19US Consulate: https://china.usembassy-china.org.cn/embassy-consulates/chengdu/
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In Table 4, we list the highest ranked cities by the z-score from
Jan.22 to May 11, 2020. In addition, we also attach the top news
titles corresponding to the city within each specific time period.
We found that Wuhan generally appears more frequently as the
situation of the pandemic kept changing. Meanwhile, we found the
appearance of Hohhot and Shulan reflects the time when COVID-19
outbreak happened in those cities. We also discovered cities unre-
lated to the pandemic. For example, Luohe, on 4/19/20, turns out
to be the city where the headquarter of the organization which
acquired Smithfield Foods (as mentioned in the news). In addition,
Zhangjiakou, on 3/28/20, is the city, which will host World Snow-
board competition, released the Logo of that competition.

6 DISCUSSION AND CONCLUSION

In this paper, we propose a new method to learn dynamic node
embeddings over large-scale dynamic networks for a subset of
interesting nodes. Our proposed method has time complexity that
is linear-dependent on the number of edges m but independent
on the number of nodes n. This makes our method applicable to
applications of subset representations on very large-scale dynamic
graphs. For the future work, as shown in Trivedi et al. [38], there
are two dynamics on dynamic graph data, structure evolution and
dynamics of node interaction. It would be interesting to study how
one can incorporate dynamic of node interaction into our model. It
is also worth to study how different version of local push operation
affect the performance of our method.
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A PROOF OF LEMMAS

To prove Lemma 4, we first introduce the property of uniqueness
of PPR 5 for any s.

Proposition 10 (Uniqueness of PPR [3]). For any starting vector
15, and any constant o € (0, 1], there is a unique vector s satisfying

).
Proor. Recall the PPR equation
ms=alg+(1-a)D ™ Am.

We can rewrite it as (I—(1—a)D ™1 A) s = arl. Notice the fact that
matrix I — (1 — a)D™L A is strictly diagonally dominant matrix. To
see this, foreachi € V,we have 1-(1-a) 3. ;4; [1/d(i)| = a > 0.By
[25], strictly diagonally dominant matrix is always invertible. O

Proposition 11 (Symmetry property [27]). Given any undirected
graph G, for any a € (0, 1) and for any node pair (u,v), we have

d(u)my(0) = d(v) 1y (w). ®)

PrOOF OF LEMMA 7. Assume there are T iterations. For each for-
ward push operation t = 1,2,...T, we assume the frontier node
is uz, the run time of one push operation is then d(u;). For total
T push operations, the total run time is ZiT=1 d(u;). Notice that
during each push operation, the amount of ||r§_1 |1 is reduced at
least ead(u;), then we always have the following inequality

t-1 t
ead(us) < |lrs™[l1 = llrslis

Apply the above inequality from ¢ = 1,2, to T, we will have

T
T
ea E d(uy) < Pl = 1Ird 1l = 1= s, ©
t=1

where r; is the final residual vector. The total time is then O(1/ea).
To show the estimation error, we follow the idea of [26]. Notice
that, the forward local push algorithm always has the invariant
property by Lemma 4, that is

75 (u) = ps(u) + ) rs(0)7o(u), Vu € V. (10)
veV

By proposition 11, we have

ws(u) = ps(u) + Z rs(v)my(u),Yu € V

veV
d(u
=ps(u) + ) ro(@) 2 1 (0).Vu €V
d(v)
veV
< ps(u)+ Y ed(u)my(v),Yu € V = pg(u) + ed(u),
veV
where the first inequality by the fact that rs(v) < ed(v) and the
last equality is due to ||, |1 = 1. |

Proposition 12 ([45]). Let G = (V, E) be undirected and let t be a

vertex of V, then Y, cv 72‘((:)) <1l

Proor. By using Proposition 11, we have

m(t) _  mi(x) _
x; a0 " g 2,70 =1

xeV

B HEURISTIC METHOD: COMMUTE

We update the embeddings by their pairwise relationship (resistance
distance). The commute distance (i.e. resistance distance) Cy, =
Hyy + Hyy, where rescaled hitting time Hy,, converges to 1/d(v).
As proved in [41], when the number of nodes in the graph is large
enough, we can show that the commute distance tends to 1/d, +
1/dy.

Algorithm 4 CoMMUTE

1: Input: An graph G%(V9, &%) and embedding WP, dimension d.
2: Output: wT

3. for e’ (u,0,t) € {el(ul,vl, t1),. ..,eT(uT, oT, tT)} do

4: Add e? to G

If u¢ Vil then

5:

6: generate w!, = N'(0,0.1 - I) or U(-0.5,0.5)/d

7: If v¢ Vil then

8 generate w), = N'(0,0.1 - I) or U(-0.5,0.5)/d
t_ _dw) -1 1 .t

9: w, = d(u)+1wu + mwv
t_ _d  r-1 1 .t

10: Wy = T T o Ve

11: Return Wr

One can treat the Commute method, i.e. Algorithm 4, as the first-
order approximation of RandNE [47]. The embedding generated by
RandNE is given as the following

U= (a01+a1A+a2A2+...+anq) R, (11)
where A is the normalized adjacency matrix and I is the identity

matrix. At any time ¢, the dynamic embedding of node i of Commute
is given by

dw) ., 1
P R B
YiTam+1”t YA
1 1 1
= w? + - _Wzt)
G +1" TN 22 A

C DETAILS OF DATA PREPROCESSING

In this section, we describe the preprocessing steps of three datasets.
Enwiki20: In Enwiki20 graph, the edge stream is divided into
6 snapshots, containing edges before 2005, 2005-2008, ..., 2017-
2020. The sampled nodes in the first snapshot fall into 5 categories.
Patent: In full patent graph, we divide edge stream into 4 snap-
shots, containing patents citation links before 1985, 1985-1990....,
1995-1999. In node classification tasks, we sampled 3,000 nodes
in the first snapshot, which fall into 6 categories. In patent small
graph, we divide into 13 snapshots with a 2-year window. All the
nodes in each snapshot fall into 6 categories.Coauthor graph: In
full Coauthor graph, we divide edge stream into 7 snapshots (before
1990, 1990-1995, ..., 2015-2019). The sampled nodes in the first snap-
shot fall into 9 categories. In Coauthor small graph, the edge stream
is divided into 9 snapshots (before 1978, 1978-1983,..., 2013-2017).
All the nodes in each snapshot have 14 labels in common.



T-SNE: DeepWalk

Figure 6: We randomly select 2,000 nodes from Coauthor- .
small graph and visualize their embeddings using T-SNE[40] of %

D DETAILS OF PARAMETER SETTINGS

Deepwalk: number-walks=40, walk-length=40, window-size=5

Node2Vec: Same as Deepwalk, p = 0.5, q = 0.5
DynamicTriad: iteration=10, beta-smooth=10, beta-triad=10. Each
input snapshot contains the previous existing edges and newly ar-

0 20 0 20 40

TN Rondie rived edges.
RandNE: q=3, default weight for node classification [1, 1e2, 1e4, 1e5],
input is the transition matrix, the output feature is normalized (I-2

norm) row-wise.
DynamicPPE: a = 0.15, ¢ = 0.1, projection method=hash. our

T-SNE: DynamicPPE

T-SNE: DeepWalk

S0

1

25 —doo 75 50 25 0 25 50

T-SNE: DynamicTriad

T-SNE: DynamicPPE

method is relatively insensitive to the hyper-parameters.

E VISUALIZATIONS OF EMBEDDINGS
We visualize the embeddings of small scale graphs using T-SNE[40]
in Fig.5,6,7.

T-SNE: DeepWalk T-SNE: Node2vec

T-SNE: Node2vec

T 0 6 20 40 60

T-SNE: RandNE

T-SNE: DynamicTriad

60 )

oo o [ 50

T-SNE: RandNE

B

i 20 © 20 40 &0
a0

Figure 5: We randomly select 2,000 nodes from patent-small
and visualize their embeddings using T-SNE[40]

Figure 7: We select all labeled nodes from Academic graph
and visualize their embeddings using T-SNE[40]
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