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Vector image representation methods that can faithfully reconstruct objects
and color variations in a raster image are desired in many practical applica-
tions. This paper presents triangular configuration B-spline (referred to as
TCB-spline)-based vector graphics for raster image vectorization. Based on
this new representation, an automatic raster image vectorization paradigm
is proposed. The proposed framework first detects sharp curvilinear features
in the image and constructs knot meshes based on the detected feature lines.
It iteratively optimizes color and position of control points and updates the
knot meshes. By using collinear knots at feature lines, both smooth and
discontinuous color variations can be efficiently modeled by the same set
of quadratic TCB-splines. A variational knot mesh generation method is
designed to adaptively introduce knots and update their connectivity in
order to satisfy the local reconstruction quality. Experiments and compar-
isons show that our framework outperforms the existing state-of-the-art
methods in providing more faithful reconstruction results. In particular,
our method is able to model undetected features and subtle or complicated
color variations in-between features, which the previous methods cannot
handle efficiently. Our vectorization representation also facilitates a variety
of editing operations performed directly over vector images.
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1 INTRODUCTION
Raster images are the most common format for saving raw data
acquired by imaging equipment. They use a grid of pixels to rep-
resent an image where each pixel has an individual color. While
raster images have the power to depict photo-quality pictures, the
manipulation of them without pixelating or losing image quality,
such as magnifying and editing, is very difficult. Vector images
provide an alternative representation to describe images. Unlike
pixel-based raster images, vector images use geometry primitives,
such as curves and patches, to mathematically define images. Owing
to their merits such as editability and scalability, vector images have
been increasingly adopted in major operating systems and multi-
media frameworks. Since raster images are still the most prevalent
image format with their simple and straightforward representation,
raster image vectorization, which converts raster images into vector
images with desired properties, is increasingly important.

In a full-color raster photograph, subtle details are present when
the scene is complex. Many of the existing raster image vectorization
methods are able to recover the specified semantically important
image features, such as the silhouettes and contours of objects,
e.g., [Chen et al. 2020; Lai et al. 2009; Orzan et al. 2008; Sun et al.
2007; Xia et al. 2009; Xie et al. 2014; Zhao et al. 2018]. However, the
finer-level details in-between detected curvilinear features, which
are also important visual cues for faithfully interpreting the original
complex images, may not be well simulated. To model complex color
variation, unintended discontinuity or artifacts may be introduced
at regions away from the curvilinear features, and high memory
footprint may be required in rasterization. Motivated by this obser-
vation, we aim to design a novel raster image vectorization method
to accurately and compactly approximate both major curvilinear
features and in-between color variations.
In this paper, we introduce an effective and flexible represen-

tation for vector images and tailor a fully automatic raster image
vectorization algorithm. Our image representation is inspired by
the TCB-splines [Liu 2007; Liu and Snoeyink 2007], which is a non-
tensor product spline space defined over high-order triangulations.
TCB-splines share excellent theoretic properties with classical uni-
variate B-splines, such as partition of unity, local support, polyno-
mial reproduction, and automatic built-in high-order smoothness.
We explore these properties of TCB-splines and apply them to vector
image representation. Compared to other existing methods, there
are several advantages of our TCB-spline-based representation and
the proposed raster image vectorization algorithm in the following:

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


111:2 • Trovato and Tobin, et al.

• Our TCB-spline-based representation is flexible and compati-
ble in modeling both smooth and sharp color variations. Both
the colors and the geometry of an object within a raster image
are explicitly represented by the same set of quadratic TCB-
splines. With a properly defined TCB-spline space, the color
values of the resulting image are 𝐶1 continuous everywhere
except across sharp features where color discontinuities are
desired. With an explicit expression, our vector represen-
tation can be rasterized efficiently with a significantly low
memory footprint. Our representation also supports a variety
of direct editing and interactive authoring.
• Our novel fitting-error-driven image vectorization algorithm
is able to provide a faithful reconstruction from the original
raster images. Benefiting from the proposed knot placement
and triangulation method, the detected curvilinear features
can be accurately recovered and complicated color variations
between them can be well modeled. Our knot placement and
triangulation adaptively introduce more basis functions in the
under-fitted regions, hence the undetected finer-level features
can also be faithfully and compactly simulated.

The remainder of this paper is organized as follows. Section 2
reviews some related work of image vectorization. Section 3 in-
troduces TCB-splines and their properties. Section 4 presents an
algorithm overview for image vectorization using TCB-splines and
Sections 5-8 describe details of the algorithm. Section 9 provides
experiments to illustrate the efficacy and flexibility of the proposed
representation and algorithm. Section 10 concludes this paper.

2 RELATED WORK
With the increasing need for converting raster images into vectors,
raster image vectorization has gained a great amount of research
interest in recent years. Many methods have been proposed for
vectorization of non-photographic images, such as fonts [ScanFont
2017], art-work [Kansal and Kumar 2015], line drawing [Bessmeltsev
and Solomon 2019; Dori and Liu 1999; Guo et al. 2019; Hilaire and
Tombre 2006], clip-art [Dominici et al. 2020; Hoshyari et al. 2018;
Reddy et al. 2021] and bi-tonal images [Kuo-Chin Fan et al. 1995]. As
non-photographic images contain relatively large areas of uniform
colors and gradients, vectorization algorithms are mainly based on
edge detection, corner detection, contour tracing, segmentation,
line pattern recognition and curves/patches fitting. Vectorization
results are usually represented by vector primitives, e.g., curves and
patches.

In this paper, we focus on automatic vectorization of photographic
quality images. One well-known challenge of photographic images
is that within certain resolution they cannot well contain both in-
homogeneous salient features and fine details and also suffer from
complex color variations in-between these features. Hence, a power-
ful vector representation that is able to faithfully reconstruct color
variations across the image space in addition to smooth or sharp fea-
tures is desired. We discuss different image vectorization approaches
below.
Approximation on partitions. There are several methods at-

tempting to represent images using functions individually defined

on partitions. The linear approximations on triangulations are typi-
cal instances of such representations [Dyn et al. 1990; Kreylos and
Hamann 2001; Su and Willis 2004]. Some other methods approxi-
mate raster images using higher-order polynomials or generalized
barycentric coordinates on optimized Voronoi tessellations [Arm-
strong 2006; Cao et al. 2018; Chen et al. 2014]. The subregions of a
partition are allowed to be of arbitrary shapes and zigzag boundaries
in [Lecot and Lévy 2006]. However, due to the inherent piecewise
structure, image patches on adjacent subregions are𝐶0 continuously
or even discontinuously jointed in the partition-based representa-
tion. In addition, the curvilinear features in images are approximated
by sequences of line segments in general. These artifacts become
more obvious when the image is scaled up to larger sizes. Our
method is able to represent the curvilinear feature using quadratic
splines, where reconstructed feature curves joining𝐶1 almost every-
where except at joints, where the spline curves are𝐺1 continuous.
The vector images are naturally 𝐶1 continuous in color variation
everywhere except at the curvilinear features, where we enforce the
discontinuous color variation to match the original color variation
of the input raster image. We can also obtain vector images with
higher-order continuities by using higher-order splines.

Parametric patch-basedmethods.Gradientmeshes are a draw-
ing tool introduced in commercial software that is used to inter-
actively create multicolored vector objects. They are another type
of vector image representation that can efficiently model smooth
color transitions. The image elements of a gradient mesh based
representation are planar rectangular Ferguson patches interpo-
lating specified information, e.g., position, color, and gradient. A
gradient mesh is typically used for representing a single object. The
creation of gradient meshes for complex objects is labor-intensive.
A semi-automatic method was provided to help convert images into
gradient meshes [Sun et al. 2007]. However, this method relies on
the user’s assistances for guiding grid construction. Later, a fully au-
tomatic algorithm was proposed to generate a topology-preserving
gradient mesh [Lai et al. 2009]. Due to the tensor-product restriction
of Ferguson patches, it is challenging for a gradient mesh based im-
age vectorization method to automatically align patch boundaries
and preserve detailed curvilinear features with a general spatial lay-
out. Vector image representation based on triangular Bézier patches
is proposed in [Xia et al. 2009], where a network of triangular Bézier
patches was constructed on a planar triangular mesh. This repre-
sentation supports a flexible topology and facilitates adaptive patch
distributions. However, the color is only 𝐶0 continuous across the
patch boundaries, even though the boundaries are not curvilinear
features. A hybrid vector representation using parametric patches
is proposed in [Chen et al. 2020] for real-time editing. The post-
processing of repeatedly computing the weighted averages across
samples of multiple patches is applied, which could only reduce
artifacts at the patch boundaries instead of eliminating them.

Subdivision surface-based methods. To achieve continuous
color transitions with higher orders, subdivision-based vector image
representations are independently presented in [Zhou et al. 2014]
and [Liao et al. 2012], where a vector image is defined as a subdivi-
sion surface on a triangular mesh. In [Zhou et al. 2014], triangular
meshes used for defining subdivision surfaces are required to be
free of triangles with small angles and vertices with large valences
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to guarantee the continuity of the final image representation. To
obtain a satisfying mesh, the constrained Delaunay triangulation is
used, and additional points should be inserted. Due to the restriction
on triangulation, more triangles or vertices would be introduced
in regions with minor color variations, increasing the difficulty of
editing the image. In [Liao et al. 2012], the triangular mesh for defin-
ing a subdivision surface is obtained by simplifying a dense mesh
while preserving the detected features. As the mesh simplification
process heavily relies on the feature detection results, without con-
sidering approximation errors between the vectorized output and
the input raster image, complicated color variations in-between
features would be ignored. Besides, artifacts may also occur around
high/low valence vertices or slim triangles. As there is generally
no specific requirement on the triangular mesh used for spline con-
struction, TCB-spline-based representation can highly adaptive to
complex geometry and color variations. Our method optimizes the
triangular mesh driven by approximation errors, hence can faith-
fully and compactly recover more details. Moreover, owing to their
explicit expression, the TCB-spline-based vector image can be effi-
ciently rasterized, requiring a much lower footprint memory than
the subdivision surface-based representation.
Diffusion curve-basedmethods.Diffusion curves are the fourth

category of vector-based primitives used for smoothly shaded image
representation [Orzan et al. 2008]. By diffusing a given set of auto-
matically or manually selected curves in the image space, the final
vector image contains sharp features along the selected curves with
smoothly shaded regions between them. The diffusion curve-based
image vectorization is well suited for interactive design. However,
to rasterize a diffusion curve-based vector image, one needs to solve
a partial differential equation defined on the entire image domain,
which usually suffers from bad runtime performances and stabil-
ity problems [Jeschke et al. 2009; Sun et al. 2014, 2012; Xie et al.
2014; Zhao et al. 2018]. Also, the diffusion curve methods may not
faithfully represent the subtle color variations in natural images
due to the limitations with Poisson equations. Although extensions
of the diffusion curves framework were developed to improve the
expression control (e.g., [Finch et al. 2011; Hou et al. 2018; Hu et al.
2019]), these methods mainly focus on applications such as image
authoring and synthesis, rather than automatic vectorization of
given images in our paper.

3 TCB-SPLINES
In our vector image representation, the entire image is represented
as a spline surface with control points in a 5D space (i.e., position +
color). We here adopt the triangle configuration B-splines or TCB-
splines to represent images. TCB-splines are linear combinations of
simplex splines [De Boor 1976] defined over triangle configurations
(t-configs for short) [Cao et al. 2019; Liu and Snoeyink 2007; Zhang
et al. 2017]. Simplex splines and triangle configurations are the two
main ingredients for TCB-spline construction. In the following, we
will provide a brief introduction to simplex splines, t-configs, and
TCB-splines. A detailed introduction to TCB-splines can be found
in [Cao et al. 2019; Liu and Snoeyink 2007; Schmitt 2019].

(a) (b) (c) (d) (e)

Fig. 1. Recursive evaluation of quadratic simplex splines. (a) Five knots
for defining a quadratic simplex spline and the arbitrarily chosen non-
degenerate triangle (red dot lines); (b) the quadratic simplex spline defined
over (a), which can be computed as a linear combination of three linear
simplex splines in (c-e).

3.1 Simplex Spline
A degree 𝑘 simplex spline is a piecewise polynomial defined by a set
of points (referred to as knots) 𝑉 = {t0, · · · , t𝑘+2} ⊂ R2 that maps
a point u ∈ R2 to a real number as [De Boor 1976]:

𝑀 (u|𝑉 ) =
2
𝑗=0

𝜆 𝑗 (u|{t𝑖0 , t𝑖1 , t𝑖2 })𝑀 (u|𝑉 \{t𝑖 𝑗 }), u ∈ R2, (1)

where 𝜆 𝑗 (u|{t𝑖0 , t𝑖1 , t𝑖2 }) are barycentric coordinates of u with re-
spect to a non-degenerated triangle {t𝑖0 , t𝑖1 , t𝑖2 } ⊂ 𝑉 , satisfying2

𝑗=0 𝜆 𝑗 (u|{t𝑖0 , t𝑖1 , t𝑖2 }) = 1 and
2

𝑗=0 𝜆 𝑗 (u|{t𝑖0 , t𝑖1 , t𝑖2 })t𝑖 𝑗 = u.
When 𝑘 = 0,

𝑀 (u|{t0, t1, t2}) =


0, u ∉ [𝑉 ),
1/|𝑎𝑟𝑒𝑎(𝑉 ) |, u ∈ [𝑉 ), (2)

is a normalized characteristic function over the triangle𝑉 = {t0, t1, t2},
where [· · · ) is the half-open convex hull of a set of points [Franssen
1995]. We show an example for recursive evaluation of a quadratic
simplex spline in Figure 1, where values of simplex splines are color-
coded. Note that, the non-degenerated triangle {t𝑖0 , t𝑖1 , t𝑖2 } in Eq. (1)
can be chosen arbitrarily from 𝑉 , i.e., the simplex spline is well-
defined, independent of the specific choice of the non-degenerated
triangle [Franssen 1995]. A degree 𝑘 simplex spline defined in Eq. (1)
is automatically 𝐶𝑘−1 smooth on the convex hull of 𝑉 when knots
in𝑉 are in general position (i.e., there are no duplicate knots and no
three knots are collinear). Otherwise, if 𝑠 knots in 𝑉 are collinear,
then the simplex spline is 𝐶𝑘+1−𝑠 continuous across this line. In
particular, a degree 𝑘 simplex spline with 𝑘 + 2 collinear knots is
𝐶−1 continuous across this line; see a quadratic example in Figure
S1 of Supplementary Material.

3.2 T-configs and TCB-splines
Given a set 𝐾 of 𝑛 knots, a subset of 𝑘 + 3 knots of 𝐾 is referred
to as a degree 𝑘 configuration. Different methods have been pro-
posed to select configurations such that simplex splines defined
over these subsets span a bivariate spline space over 𝐾 with de-
sired properties [Neamtu 2001]. Configurations used in this paper
are t-configs [Liu 2007]. An algorithmic method, the so-called link
triangulation procedure (LTP), is proposed to recursively generate
the family of t-configs [Liu 2007; Liu and Snoeyink 2007]. In the
following, we briefly introduce the basic concept of t-configs, the
LTP, and TCB-splines. We refer the reader to [Cao et al. 2019; Liu
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(a) (b)

(c) (d)

Fig. 2. Linear TCB-splines defined over different triangulations, where Γ0 is
shown in solid black lines and the polygons formed by the links of {t3 } are
filled in gray and triangulated by dotted blue lines. (a) Degree one t-configs
{( {t1, t2, t6 }, {t3 }), ( {t2, t4, t6 }, {t3 }), ( {t5, t1, t6 }, {t3 }), ( {t5, t6, t8 },
{t3 }) }; (b) linear TCB-spline basis 𝐵{t3} defined over t-configs in
(a); (c) degree one t-configs {( {t1, t2, t6 }, {t3 }), ( {t2, t4, t6 }, {t3 }),
( {t5, t1, t6 }, {t3 }) }; and (d) linear TCB-spline basis 𝐵{t3} defined over
t-configs in (c).

Algorithm 1: Link triangulation procedure
Input: Γ𝑘 .
Output: Γ𝑘+1.
Γ𝑘+1 ← ∅;
for each vertex 𝐼

{t𝑖 } of Γ𝑘 do
let 𝐿 be the link of 𝐼

{t𝑖 };
if 𝐿 is a non-degenerated polygon;
then

compute a constrained triangulation of 𝐿;
for each triangle 𝑇 ∗ of this triangulation do

Γ𝑘+1 = Γ𝑘+1
(𝑇 ∗, 𝐼 {t𝑖 });

end
end

end

2007; Liu and Snoeyink 2007; Schmitt 2019] for more details of the
theory and algorithms.
A degree 𝑘 t-config of 𝐾 generated by the LTP is a pair of knot

subsets (𝑇, 𝐼 ) such that 𝑇

𝐼 = ∅, #𝐼 = 𝑘 and #𝑇 = 3. Denote

a family of degree 𝑘 t-configs of 𝐾 as Γ𝑘 . For a degree 𝑘 t-config
({t𝑖0 , t𝑖1 , t𝑖2 }, 𝐼 ) ∈ Γ𝑘 , the subset 𝐼

{t𝑖0 } is called a vertex of the
t-config, and is also called a vertex of Γ𝑘 . The segment [t𝑖1 , t𝑖2 ] ori-
ented such that t𝑖0 is on the right hand side is called an oriented edge
of 𝐼

{t𝑖0 } in the configuration ({t𝑖0 , t𝑖1 , t𝑖2 }, 𝐼 ). Note that, different
degree 𝑘 t-configs may have the same vertex. If we connect all the
oriented edges of 𝐼

{t𝑖0 } in all t-configs of Γ𝑘 , we get a polygon
or a degenerated polygon with zero area, and we call it the link

of 𝐼
{t𝑖0 } [Schmitt 2019]. The LTP described in Algorithm 1 uses

links to generate a family of degree (𝑘 + 1) t-configs, starting from a
family of degree 𝑘 t-configs. Note that, an arbitrary triangulation of
the given knot set𝐾 corresponds to a family of degree zero t-configs
Γ0, as each face of the triangulation {t𝑖0 , t𝑖1 , t𝑖2 } corresponds to a
degree zero t-config ({t𝑖0 , t𝑖1 , t𝑖2 }, ∅).

Assume that𝑋𝐼 = {(𝑇, 𝐼∗) |𝐼∗ = 𝐼 , (𝑇, 𝐼∗) ∈ Γ𝑘 } is a set of t-configs
sharing the common second knot subset 𝐼 . ℑ𝑘 is the collection of
all the different second knot subsets 𝐼 in Γ𝑘 . A degree 𝑘 TCB-spline
basis function associated with a knot subset 𝐼 ∈ ℑ𝑘 is defined by a
linear combination of simplex splines as in [Liu 2007]

𝐵𝐼 (u) =


(𝑇,𝐼 ) ∈𝑋𝐼

𝑎𝑟𝑒𝑎(𝑇 )𝑀 (u|𝑇 ∪ 𝐼 ),u ∈ R2 . (3)

The average of the knot subset 𝐼 , denoted by g𝐼 =


t𝑖 ∈𝐼 t𝑖
𝑘

, is called
the Greville site of 𝐵𝐼 . There is a one-to-one correspondence be-
tween the control points and TCB-spline basis functions (or Greville
sites). T-configs give rise to a bivariate spline space that retains the
fundamental properties of univariate B-splines. Hence, the splines
defined over t-configs are referred to as TCB-splines. Figure S2 of
Supplementary Material shows examples of LTP up to degree 2 and
the associated TCB-spline basis functions.

It should be pointed out that the LTP can yield different t-config
families, then a different spline space for a given set of knots if it
starts with a different triangulation of 𝐾 ; see Figure 2 for exam-
ples of linear basis functions defined over different triangulations.
Since the computation of t-configs has freedom in the selection
of triangulations in generating degree zero t-configs, TCB-splines
also provide great flexibility for applications such as reconstructing
surfaces [Zhang et al. 2017] and solving partial differential equa-
tions [Cao et al. 2019; Jia et al. 2013]. We will propose a triangulation
method to generate spline basis functions that are suitable for mod-
eling both smooth and sharp color changes in an image.

4 ALGORITHM OVERVIEW
In this paper, a vector image is considered as a TCB-spline surface
in a 5D space, which is represented by a linear combination of
TCB-spline basis functions as:

S(u) =

𝐼 ∈ℑ𝑘

𝐵𝐼 (u)c𝐼 ,u ∈ R2, (4)

where the control point c𝐼 = (𝑥𝐼 , 𝑦𝐼 , 𝑟𝐼 , 𝑔𝐼 , 𝑏𝐼 ) is a 5D vector with
the first two and last three components representing geometry and
color information, respectively. To ease the later discussion, we
let cgeo

𝐼
= (𝑥𝐼 , 𝑦𝐼 ) and ccol

𝐼
= (𝑟𝐼 , 𝑔𝐼 , 𝑏𝐼 ) denote the geometry part

and the color part of c𝐼 , respectively; and call them the geometry
control point and the color control point of 𝐵𝐼 (u), respectively.
Similarly, we denote Sgeo (u) and Scol (u) (resp. pgeo and pcol) as
the geometry part and color part of the 5D surface (4) (resp. a pixel
p = (𝑥,𝑦, 𝑟, 𝑔, 𝑏)), respectively. Figure 3 shows a toy example of the
image representation based on the quadratic TCB-splines. Note that,
there are pairs of 𝐶−1 continuous basis functions along the feature
lines (see Section 7.1), and only the ones above the feature lines are
shown in the top row of Figure 3(b). The corresponding degree 2
t-configs are shown in the bottom row of Figure 3(b), where the
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(a) (b)

(c) (d) (e) (f)

Fig. 3. A toy example of quadratic TCB-splines based image representation. (a) A unit square domain with knots (marked in solid points), degree zero t-configs
(corresponding to the triangulation of knots), and feature lines (marked in green); (b) five quadratic TCB-splines along the right segment of the feature lines
(top row) and the corresponding degree 2 t-configs (bottom row); (c) the control points (net) in 5D space; (d) the image represented by qudratic TCB-splines
with control net in (c) and quadratic TCB-spline basis functions partially shown in (b); (e) a close-up view of the top right corner of control net in (c) with five
locally labeled control points (marked in yellow); and (f) a close-up view of the image and the control net, where the right segment of the feature lines in (a)
are mapped to the feature curves in (f), represented by control points 1-5.

polygons formed by the links of second knot subset (marked by
red points) are filled in gray and triangulated by dotted blue lines.
Figure 3(e) gives a close-up view of the top right corner of control
net in Figure 3(c) with five locally labeled control points (marked
in yellow), which are associated with the five basis functions in
the top row of Figure 3(b) and one-to-one corresponding to the
labeled Greville sites (marked by blue circles in the bottom row
of Figure 3(b), respectively. Each pair of 𝐶−1 basis functions are
associated with a pair of control points sharing the same positions
but with different colors. The pairs of control points are slightly
perturbed to ease the visualization in Figure 3(e&f).

Our goal is to create a TCB-spline surface that best approximates
the input raster image, where each pixel has 𝑥 and 𝑦 coordinates
and RGB color values. We divide each pixel into two subpixel sized
triangles by connecting the diagonal. Then we consider the input
full-color raster image as a 5D triangular surface mesh (hereinafter
referred to as image mesh) with each vertex associated with a 5D
vector p, where the components for geometry parts are normalized
to [0, 1] and color components for color parts range from 0 to 255.
We work on this triangular mesh instead of the original pixel gird
for image reconstruction with a sub-pixel accuracy. It also provides
convenience for computations in the reconstruction framework,
such as parametrization (Section 5.4).
A TCB-spline in Eq. (4) is computed in a parametric domain (a

unit square) to approximate the 5D triangular mesh. As shown in
Figure 4, we first detect curvilinear features in an image which will
be preserved in the later vectorization procedure; see Figure 4(b).

Second, the image mesh is parameterized onto the parametric do-
main, where the detected curvilinear features are parameterized
onto simplified polylines; see Figure 4(c). Third, a knot mesh is con-
structed by considering both sharp features and tone variations of
the image; see Figure 4(d). Then, a TCB-spline surface is computed
to approximate the 5D image mesh (see Figure 4(e)), where each con-
trol point at feature lines is split into a pair of points to achieve color
discontinuities. Assume a pixel p of input raster image is mapped
to point u, then the pixelwise fitting errors between the raster im-
age and the vector image (4) in the color part and geometry part
are defined as | |Sgeo (u) − pgeo | | and | |Scol (u) − pcol | |, respectively.
Figure 4(f) shows the visualization of the pixel-wise fitting error
of the color part. Finally, the approximation results are adaptively
refined according to approximation errors; see Figure 4(g-h). The
main procedure is shown in Figure 4 and details of each step are
described in the following sections.

5 MESH PARAMETRIZATION
To parameterize the input 5D image mesh, we first detect features
in the original raster image and map them onto polylines on the
parametric domain. These polylines induce parametrization of the
5D image mesh.

5.1 Feature Detection
Image feature detection is a fundamental operation that has vast
applications. There exist numerous algorithms in the literature for
detecting and extracting features in images, such as the Canny
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. TCB-spline-based image vectorization pipeline. (a) Input image, which is considered a 5D triangular mesh and referred to as an image mesh; (b)
detected curvilinear features; (c) parametrization of image mesh (Section 5) onto the unit 2D domain (left) and a close-up of the parametrization in the
blue rectangle box (right), where the detected features are mapped onto the feature lines marked by solid green lines; (d) initial knot mesh (Section 6); (e)
vectorization result on (d), where signal-to-noise ratio (SNR) is 28.8; (f) the visualization of the pixel-wise fitting error of the color part of the result in (e),
where red and blue stand for 255 and 0, respectively; (g) adaptively refined knot mesh (Section 8); and (h) final vectorization result.

(a) (b) (c) (d) (e)

Fig. 5. Feature detection. (a) Input image; (b) feature detected by the ED
method [Topal and Akinlar 2012]; (c) vectorization result with the ED
method; (d) feature detected by our modified ED method; and (e) vec-
torization with the modified ED method.

(a) (b) (c) (d)

Fig. 6. Feature fairing and color correction. (a) Detected feature points
marked in blue color; (b) connectivity update; (c) feature fairing; and (d)
color correction.

edge detection [Canny 1986] and the edge drawing [Topal and
Akinlar 2012]. For the application of image vectorization in this
paper, we revise the edge drawing (ED) method and apply it to
extract features in the input image. The basic idea of the ED method
is to connect anchors, i.e., pixels with local gradient extremum,
by drawing edges between them under the guidance of gradient
magnitude and edge direction map. The edge direction at a pixel
is vertical if |𝐺𝑥 | > |𝐺𝑦 |; otherwise, it is horizontal. The outputs
are one-pixel wide, contiguous chains of pixels. In the original ED
method, gradient magnitudes are computed as


𝐺2
𝑥 +𝐺2

𝑦 , where
𝐺𝑥 and𝐺𝑦 represent horizontal and vertical gradients, respectively.
However, the corners of feature lines are not well located when the
value of |𝐺𝑥 | is close to the value of |𝐺𝑦 | (see Figure 5(b)), which
may cause blurred colors nearby sharp features in the later color
fitting procedure (see Figure 5(c)). Instead, we compute the gradient
magnitude as max{|𝐺𝑥 |, |𝐺𝑦 |} at each pixel to obtain more accurate
feature detection results; see Figure 5(d,e) for a comparison result.
Experimentally, we find that the feature curves obtained from our
modified ED method are within one pixel from the underlying “true”
feature curves.

5.2 Feature Fairing
When feature detection is done, we obtain chains of pixels. We mod-
ify the image mesh connectivity using edge flipping. In particular,
an edge flipping should be performed only if the new edge connects
two contiguous points (pixels) of a detected feature chain; see Fig-
ure 6(b). Note that the features are zigzag chains of points (image
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(a) (b) (c) (d)

Fig. 7. The performance of our algorithm without feature fairing or color-
correction. (a) Input image; (b) result without feature fairing; (c) result
without color-correction; and (d) the result with feature fairing and color-
correction.

Fig. 8. One-ring non-feature neighbors p1𝑟 and two-ring non-feature neigh-
bors p2𝑟 of point p, where the feature curves is colored in red.

pixels), which would lead to unpleasant volatility in the fitted fea-
ture results; see Figure 7(b). Thus, we smooth out the features using
Laplacian smoothing [Sorkine et al. 2004]. In particular, a point p𝑖
of the feature chain is replaced by

p𝑖 ← (1 − 𝜆)p𝑖 +
𝜆

4
(p𝑖−2 + p𝑖−1 + p𝑖+1 + p𝑖+2) (5)

with 𝜆 = 0.5. The positions of points that are not labelled as feature
points are then slightly adjusted using the Tutte parameterization
method [Tutte 1963] under the constraints of the fixed borders and
feature points; see Figure 6(c).

5.3 Color Correction
We assume that the color varies smoothly within an image except
for feature curves, where it changes discontinuously. However, the
color change usually shows some smoothness around the feature
curves for general images. As illustrated in Figure 6(c), the pixels
inside and outside the feature curve are supposed to be pure orange
and white, respectively. However, there are several pixels near the
feature curve with colors in-between the orange and white. Besides,
there may exist some pixels in the one-ring neighborhood of feature
curves with quite different colors from other pixels on the same
side of feature curves, due to the inaccuracy of the above feature
detection method. The inconsistent colors of pixels on different
sides of feature curves would lead to blurred reconstruction results;
see Figure 7(c). We resolve this problem by correcting the color of
pixels in the one-ring neighborhood of feature curves. In particular,
the color of a pixel p is replaced by the weighted average color of
its one-ring non-feature neighbors p1𝑟 and two-ring non-feature

neighbors p2𝑟 as (see Figure 8):

pcol = 𝜔1p̄col1𝑟 + 𝜔2p̄col2𝑟 , (6)

where p̄col1𝑟 and p̄col2𝑟 are the average colors of p1𝑟 and p2𝑟 , and
weights 𝜔1 and 𝜔2 are set to 0.4 and 0.6, respectively. As shown in
Figure 6(d), points near feature curves have a consistent color after
color correction.

5.4 Image Mesh Parametrization
Parameterization is considered as a crucial step in the spline curve or
surface fitting problem, since the quality of fitting or reconstruction
results heavily relies on the parametrization. In our image fitting
problem, a low-distortion bijective mapping between the input im-
age mesh and a unit squared domain is required. To achieve this
goal, we first map each original feature curve to a simplified poly-
line on the parametric domain such that the mapping is one-to-one.
Then we obtain the parametric coordinates of other points using
the Tutte parameterization method [Tutte 1963].
Here we adapt the framework of the classic Douglas-Peucker

(D-P) algorithm [Douglas and Peucker 1973] to the parametrization
of feature curves. With a pre-specified distance threshold 𝜀𝑑 (three-
pixel width in this paper), the basic process of the D-P algorithm
for simplifying a given feature curve with vertices p1, · · · , p𝑛 is as
follows:

Step 1 Find the farthest point p𝑖 from the line segment formed
by the first and the last points p1, p𝑛 .

Step 2 If the distance between p𝑖 and p1p𝑛 is smaller than 𝜀𝑑 ,
all the points between p1 and p𝑛 are discarded; otherwise, p𝑖
is included in the simplified polyline.

Step 3 Two new segments p1p𝑖 and p𝑖p𝑛 are then recursively
handled by D-P algorithm.

The D-P algorithm repeats until no more points are needed to add
to the resulting set. To guarantee a one-to-one mapping between
the unit parametric-domain and triangular image mesh, we first
have to ensure a one-to-one mapping between the feature curve and
the simplified polyline. To this goal, we slightly modify the classic
D-P algorithm by also including p𝑖 in the resulting set in Step 2,
if the projection of points p1, · · · , p𝑛 to the segment p1p𝑛 is not
consecutively located.

Polylines generated by the D-P algorithm provide a close approxi-
mation to the original feature curves. We can obtain low distortions
of the parameterization by directly projecting the feature points to
the polylines. An example is shown in Figure 9. From these overlap-
free constraints, a continuous mapping from the image mesh to
the parametric domain is derived using the Tutte parameterization
method [Tutte 1963]. Although there is no guarantee that the map-
ping is bijective with the feature curves and boundary constraints,
numerically, we never find overlapping in our experiments. It is
owing to the very low distortion introduced by feature curve param-
eterization. Note that we can also directly use the geometry part
of the faired feature curve as the parameter values. However, this
straightforward approach will introduce redundant knots around
the curved features, as shown in Section 6.1 for the details of knot
placement for modeling discontinuous color variations. Therefore,
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(a) (b)

Fig. 9. Parametrization of the image in Figure 5. (a) Feature polylines; and (b)
parametrization derived by using the Tutte parameterization method [Tutte
1963] with the constraints shown in (a).

there are many more control points than the feature points around
the curved features, leading to overfitting.

6 KNOT MESH GENERATION
In TCB-spline-based image vectorization, the quality of reconstructed
image relies heavily on both the position and connectivity of knots.
However, the approximation error function, depending on knot
position and connectivity, is highly nonlinear and hard to be opti-
mized efficiently. In fact, there is generally no effective and intu-
itive method for instructing knot placement of spline-based recon-
struction or approximation. Even for the simplest case, e.g., classic
B-spline curve fitting, we need to solve a complex optimization
problem to compute the optimal knot number and position, which
is extremely time-consuming in general [Gálvez and Iglesias 2012;
Xie et al. 2012; Yoshimoto et al. 2003]. In this section, we introduce a
variational method to effectively generate knot meshes with optimal
position and connectivity according to minimization of approxima-
tion errors. Instead of directly solving the original high nonlinear
optimization problem, we solve a reasonably simplified optimization
problem, which generate knot mesh close to optimal for TCB-spline
approximations.

6.1 Initial Knot Placement
A natural raster image has noticeable curved features and exhibits
color discontinuities across these features. We have to represent
curved features and smooth/discontinuous color variations in the
entire image using TCB-splines faithfully. Recall that TCB-splines
possess built-in smoothness properties if all knots are in general
position. We focus on quadratic TCB-splines, which are the lowest
degree TCB-splines that automatically possess 𝐶1 continuity.
To approximate discontinuity, we introduce collinear knots and

multiple knots along the feature lines to locally reduce the continuity
of TCB-spline bases. In particular, we evenly distribute one to three
knots on each segment of feature lines, and increase the multiplicity
of the knot at each vertex of the segment by two, i.e., each vertex is
considered as a triple knot; see Figure 10(b) and Figure 11. Besides,
the four corners of the unit parametric domain are also considered
as triple knots and included in the knot set. Note that, there is

a one-to-one correspondence between the input image and the
parametric domain by the parametrization method in Section 5.4.

Fig. 11. Collinear knots along
feature lines. The triple knots at
corners are slightly perturbed to
ease the visualization.

In other words, there is a color
function defined over the para-
metric domain, denoted by 𝜙 (u).
We then greedily insert knots be-
tween feature lines within the
parametric domain according to
the error of the piecewise linear
approximation to the color func-
tion. More precisely, we trian-
gulate the existing knots on the
parametric domain by the Delau-
nay triangulation method; then,

we compute the best linear approximation to the color data within
each triangle face; a point randomly sampled from the triangle face
with the maximum approximation error is added into the knot set
of the triangulation; and the Delaunay connectivity is locally up-
dated. The vertex insertion procedure is carried out until a specific
threshold 𝜀𝑐 of the mean of the pixel-wise fitting error of the color
part (MEC) is reached; see Figure 10(b-d).

6.2 Knot Mesh Optimization
We denote the knot mesh obtained in the previous section by 𝑇 =

(𝑉 , 𝐸, 𝐹 ), where𝑉 = {t1, · · · , t𝑙 },𝐸 = {𝑒1, · · · , 𝑒𝑚}, and 𝐹 = {𝑓1, · · · , 𝑓𝑛}
are the sets of knots, edges, and faces, respectively. Based on the
knot mesh 𝑇 , we obtain a piecewise linear approximation to the
target color function 𝜙 (u) with an approximation error in the 𝐿2
norm:

𝜀 (𝑇 ) =
𝑛

𝑘=1

∫
𝑓𝑘

|𝜙 (u) − 𝜙 𝑓𝑘 (u) |
2𝑑u, (7)

where 𝑓𝑘 ∈ 𝐹 is a face of the knot mesh𝑇 and 𝜙 𝑓𝑘 (u) is the optimal
linear approximation to 𝜙 (u) on 𝑓𝑘 . Note that, TCB-splines defined
over the knot mesh𝑇 are also piecewise polynomials over a partition
induced by the associated knots, where the partition is much finer
than the knot mesh 𝑇 [Cao et al. 2019]. Hence, the piecewise linear
functions on the knot mesh𝑇 as defined in Eq. (7) can be viewed as a
simplified model of our TCB-splines. The energy function in Eq. (7)
is possible to be further minimized with respect to the knot positions
and connectivity of the knot mesh𝑇 . Although the minimizer of the
above energy function only provides a knot distribution that is best
for piecewise linear approximation to the given image, the proposed
energy minimization still provides a heuristic to generate knots that
are reasonable for our TCB-spline approximation. The proposed
energy function is very difficult to be globally optimized due to its
high non-convexity and non-linearity. In the following, we resort
to finding a close to optimal minimizer of the energy function by
alternating between two steps: knot position optimization and mesh
connectivity optimization.

6.2.1 Knot position optimization.
In the knot position optimization, we optimize the positions of knots
while fixing the connectivity of the mesh. We propose to minimize
the energy function by a gradient-based minimization algorithm.
We first need to compute gradient of the energy function. Note
that any changes to the knot positions not only affect the integral
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 10. Knot mesh optimization and adaptive knot mesh updating. (a) Input image; (b) initial knot placement and feature lines (marked in green); (c) and (d)
are results of knot position and connectivity optimization after the first iteration of alternating optimization, respectively; (e) plot of the energy versus the
number of iterations for the alternating optimization; (f) the knot mesh after the alternating optimization algorithm converges; (g) reconstruction result based
on the knot mesh in (f); (h) fitting error of the reconstruction result in (g); (i) pixels with a large fitting error; (j) clusters of pixels in (i) and initial position of
new knots (marked in green); (k) the optimized knot mesh with new knots inserted; and (l) the fitting result based on the knot mesh in (k).

domain 𝑓𝑘 in the energy function in Eq. (7) but all the optimal
linear approximation function 𝜙 𝑓𝑘 (u) to 𝜙 (u) on 𝑓𝑘 . To simplify
the gradient computation, we assume that 𝜙 𝑓𝑘 (u) is independent
of knot positions. Therefore, by applying the generalized Leibniz
rule [Flanders 1973], we obtain the gradient formula as:

𝜕𝜀 (𝑇 )
𝜕t𝑖

=


𝑗 ∈𝑁𝑖

∫
−−→t𝑖 t 𝑗


|𝜙 (u) − 𝜙 𝑓𝑖 𝑗 (u) |

2 − |𝜙 (u) − 𝜙 𝑓𝑗𝑖 (u) |
2
 
t 𝑗 − u

⊥
𝑑ut 𝑗 − t𝑖 ,

(8)

where 𝑁𝑖 is the set of indices of one-ring neighboring vertices of t𝑖 ,
𝑓𝑖 𝑗 and 𝑓𝑗𝑖 are the triangles on the left- and right-hand sides of the
directed edge −−→t𝑖 t 𝑗 , respectively, and (·)⊥ means rotating a vector
by 90𝑜 in the clockwise direction.
Now, we are left with choosing step size such that all variables

move an appropriate amount in the steepest descent direction. Note
that the energy function depends on the knot positions t𝑖 . In the
classic gradient descent algorithm, we update all the variables si-
multaneously according to a certain step size 𝛿 in each iteration.
In the context of optimizing our energy functions, a knot t𝑖 with
corresponding gradient components 𝜕𝜀 (𝑇 )

𝜕t𝑖 is moved by a distance

𝛿 ∥ 𝜕𝜀 (𝑇 )𝜕t𝑖 ∥. The moving distances may vary considerably from knot
to knot and give rise to overlaps in the knot mesh, leading to a
sharp increase in the energy function. Typically, the step size can
be initiated from a unit length and then be reduced by half until

the energy decreases. However, this is straightforward yet expen-
sive way to decrease the energy function proposed in this paper.
Instead, we provide an efficient and intuitive choice of step size
to guarantee the convergence of the gradient descent method. In
particular, assume 𝐼max is the maximal number of iterations of our
gradient-based optimization algorithm, then each knot t𝑖 is updated
according to the position of its neighboring knots as:

t (𝑘+1)
𝑖

= t (𝑘)
𝑖
− 𝛿 (𝑘)

𝑖

𝜕𝜀 (𝑇 )
𝜕t𝑖

 𝜕𝜀 (𝑇 )𝜕t𝑖

 , (9)

where 𝑘 is the index of the current iteration and

𝛿
(𝑘)
𝑖

= 𝛼 · ( 1
2
)

𝑘
𝐼max−𝑘 min

𝑗 ∈𝑁𝑖

| |t𝑖 − t 𝑗 | | (10)

is the step length for t𝑖 in iteration 𝑘 with 𝛼 a constant scaling
factor. In our experiments, 𝛼 ∈ [0.3, 0.5] usually gives a satisfactory
result. The knot updating is terminated if the maximum number of
iterations is exceeded. If any flipped faces appear at some iteration
steps, we reduce the step sizes of the corresponding knots by half
until these situations are eliminated. The plot of the energy function
with respect to the iteration number is presented in Figure 10(e),
fromwhichwe can observe that our optimization algorithm achieves
a fast convergence. Figure 10(c) shows the optimized knot mesh
after an iteration of knot position optimization.

6.2.2 Knot connectivity updating.
The connectivity of the knot mesh also plays an important role in
TCB-spline-based approximation. To obtain the optimal connec-
tivity of the knot mesh, we start from the constrained Delaunay
triangulation of the obtained knot set, followed by an edge-flipping
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(a) (b)

(c) (d)

Fig. 12. Basis split. (a) Collinear knots t0, t2 and t3, where the three-
fold t0 is pulled apart into three separate knots for t-config com-
putation and illustration; (b) 𝐶0 TCB-splines defined over T-configs
{( {t0, t1, t2 }, 𝐼 ), ( {t0, t2, t4 }, 𝐼 ), ( {t0, t4, t5 }, 𝐼 ) }, where 𝐼 = {t0, t3 }; (c) and
(d)𝐶−1 basis functions obtained by the trimming TCB-spline in (b) along
the feature line t0t3t2.

operation to progressively improve the connectivity. In particu-
lar, we create a Delaunay triangulation with constrained edges on
feature lines obtained in Section 5.4. Then, an edge that is not con-
strained is flipped if this would decrease the sum of the energy on
its incident triangles. We repeatedly perform the edge flipping until
no further decrease of energy is possible; see Figure 10(d) for an
example of the knot mesh after connectivity optimization. Note
that our knot mesh generation method here may introduce long
and skinny triangles to reduce the fitting errors. We observe no
numerical trouble in our application with long and thin triangles.
However, the extraordinarily long and skinny triangles make our
adaptive TCB-spline representation redundant. To achieve more
compact representations, we remove knots whose distances to the
closest feature curves are smaller than one pixel-width, or adja-
cent triangles have inner angles smaller than 5 degrees or greater
than 175 degrees. Then, local knot connectivity optimization will
be re-applied instantly.

7 IMAGE APPROXIMATION
The goal of image vectorization in this paper is to represent both the
geometry information and the color variation using TCB-splines.
In particular, we need to approximate the detected salient edges or
contours and preserve sharp color variation across features while
representing smooth color variation in-between feature lines in an
image. To achieve this goal, we first enforce constraints on the knot
mesh to introduce simplex splines that are discontinuous across
feature lines. We then compute an approximation of the input image
using the method of weighted least squares.

7.1 TCB-splines with Discontinuous Functions
A consequence of collinear knots at feature lines and the constraints
of feature edges in the triangulation is the desired discontinuity
of a pair of simplex splines across feature lines. Note that, a TCB-
spline basis is a linear combination of simplex splines defined over
t-configs sharing the common second knot subset; see Figure S3
of Supplementary Material. Hence, each pair of discontinuous sim-
plex splines contribute to the same TCB-spline and are equal when
restricting to the correspondingly crossed feature lines. In other
words, a quadratic TCB-spline is 𝐶0 continuous across feature lines
and can always split into the sum of a pair of 𝐶−1 functions; see
Figure 12 as an example. Please also see Figure S3 of Supplemen-
tary Material for a more detailed example. Instead of considering
a TCB-spline 𝐵𝐼 across feature lines as a single spline, we consider
the corresponding pair of 𝐶−1 functions (denoted by 𝐵𝐼 ,1 and 𝐵𝐼 ,2)
as separate splines and use them in later approximation. By this
function substitution, we are able to represent both continuous (ge-
ometry) and discontinuous (color variation) functions across feature
lines using the same set of spline functions. We let ℑ𝑑 denote the
collection of all the different second knot subsets of TCB-spline
basis functions that cross feature lines, and let ℑ𝑐 := ℑ \ ℑ𝑑 .
To find the optimal control points of TCB-splines, we consider

the following problem: given a preprocessed image (generated from
the feature fairing and color correction operations) with each pixel
considered as a 5D point p𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 , 𝑔𝑖 , 𝑏𝑖 ) and its parametric
coordinates u𝑖 obtained in Section 5.4, and a set of TCB-spline bases
𝐵𝐼 , 𝐼 ∈ ℑ = ℑ𝑐 ℑ𝑑 with ℑ𝑑 defined previously, the goal is to
compute a TCB-spline surface

S(u) =

𝐼 ∈ℑ𝑐

c𝐼𝐵𝐼 (u) +

𝐼 ∈ℑ𝑑

(c𝐼 ,1𝐵𝐼 ,1 (u) + c𝐼 ,2𝐵𝐼 ,2 (u)), (11)

where c𝐼 are control points in a 5D space to approximate the data p𝑖 .
In the following, we compute the optimal geometry control points
and color control points by approximating the geometry and the
color variation using weighted least-squares.

7.2 Geometry Approximation
Note that the features convey the most important shape information
of an image. Hence, it is desired to preserve the feature lines (e.g.
contours). Given the data points xgeo

𝑖
= (𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, 2, · · · , 𝑀 , we

compute the optimal geometry control points cgeo
𝑖

by solving the
following weighted linear least-squares problemwith linear equality
constraints:

min

𝑘

𝜔
geo
𝑘
∥xgeo

𝑖
− Sgeo (u𝑖 )∥2, cgeo

𝐼 ,1 = cgeo
𝐼 ,2 , 𝐼 ∈ ℑ𝑑 , (12)

where Sgeo (u) is the geometry part of the 5D surface defined in
Eq. (11) and 𝜔geo

𝑘
is the weight for magnifying the effects of data

points at boundaries or features. In our implementation, 𝜔geo
𝑘

is set
to be 1 by default and increased to 20 and 100 for data points at
features or boundaries, respectively.

7.3 Color Approximation
The extracted one-pixel width features could have pixels with col-
ors similar to pixels from both sides. The approximation results
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may come out blurry at features if we try to preserve the color
information at features. Hence, different from previous geometry
approximation, the color information at the feature lines is ignored
in the color approximation. As the color changes sharply across
features, we solve the following unrestricted weighted linear least-
squares problem to achieve locally discontinuous color variation:

min

𝑘

𝜔col
𝑘
∥xcol𝑖 − S

col (u𝑖 )∥2, (13)

where Scol (u) is the color part of the 5D surface defined in Eq. (11)
and 𝜔geo

𝑘
is used for eliminating the effects of colors at feature

lines in the least-squares problem. In particular, 𝜔col
𝑘

is set to 0
if x𝑖 is at feature lines; otherwise, it is set to 1. Figure 10(g&h)
show approximation results obtained by computing the optimal
geometry and color control points. We can observe that the features
are basically preserved. In order to improve reconstruction accuracy,
we resort to adaptively adding more knots at regions with a large
fitting error and locally optimizing the mesh topologies.

8 ADAPTIVE REFINEMENT
In our adaptive refinement stage, the reconstruction quality of the
vector image is progressively improved by adaptively refining the
knot mesh according to approximation errors obtained in the previ-
ous reconstruction procedure. Note that the number, distribution,
and connectivity of newly added knots are three major factors in-
fluencing the efficiency of our adaptive refinement algorithm. Un-
reasonable new knot insertion scheme may cause more iterations
or introduce an excessive number of knots to achieve a satisfying
result. In this section, we provide a new knot placement method. In
each refinement iteration, we first add a moderate number of knots
at parametric regions with a large fitting error. Then, we locally
optimize the position of knots and their connectivity to other ex-
isting knots. Finally, we optimize the control points of TCB-splines
defined over the updated knot mesh as we did in Section 7. The
adaptive refinement iteration is repeated until a required number
of iterations is reached or both the MEC and the fitting error of the
geometry part (MEG) are smaller than the prescribed threshold 𝜀𝑐
and 𝜀𝑔 , respectively. Details of the new knot placement scheme in
the 𝑠th adaptive fitting iteration step are described in the following
subsections.

8.1 New Knot Insertion
We decide the number of newly added knots according to the lo-
cal fitting errors. We first introduce more knots at feature lines to
preserve the salient features if the MEG fails to reach threshold 𝜀𝑔 .
As the feature reconstruction can be considered as fitting a curve
to the detected salient feature line, we straightforwardly refine the
knot interval with a large fitting error at feature lines. In particular,
two new knots are evenly inserted to the knot interval if there is
a pixel with a fitting error larger than a unit (one-pixel width). To
add new knots off feature lines, we first find out all the pixels with
a fitting error larger than 𝑀𝑎𝑥𝐸𝑠

2 , where 𝑠 is the fitting iteration
index and𝑀𝑎𝑥𝐸𝑠 is the maximum fitting error of the color part of
the 𝑠-th iteration; see Figure 10(i) for an example of 𝑠 = 1. Second,
the selected pixels are grouped into several clusters according to

Table 1. Statistics for the examples of image vectorization using our TCB-
spline-based representation.

Examples #Pixels #Iter. #Knots #C.P. MEC Stor. PSNR Time

Fig. 4 793 × 569 3 1,259 3,700 2.07 98 38.9 130.5
Fig. 13 521 × 482 2 305 719 1.52 22 41.2 18.0
Fig. 14 505 × 561 2 1,058 2,218 1.24 71 44.4 93.0
Fig. 15 571 × 546 2 3,912 6,482 2.19 221 37.5 330.6
Fig. 16(b) 225 × 214 1 176 382 1.14 11 42.4 6.7
Fig. 16(c) 225 × 214 1 176 677 0.92 17 44.5 10.8
Fig. 17(b) 544 × 475 1 912 1,305 2.64 42 33.4 31.6
Fig. 17(c) 544 × 475 3 1,770 2,379 1.70 78 39.2 178.8
Fig. 18 400 × 278 3 1,735 3,652 1.98 107 39.5 216.1
Fig. 19 946 × 633 2 2,591 5,834 2.09 168 34.1 551
Fig. 20 512 × 512 2 4,163 9,987 1.61 285 40.4 473.4
Fig. 21 300 × 450 1 568 986 2.56 38 35.8 22.7
Fig. 22 430 × 618 2 1214 2,605 1.29 76 41.8 109.2
Note: # denotes the number of elements; Iter. is short for iterations; C.P.
is short for control points; MEC is short for the mean of the fitting error
in color part; Stor. (KB) is short for storage, or the memory used to store
the vector image without any compression; PSNR means the peak signal-
to-noise ratio; Time (s) is the running time for entire adaptive refinement
procedure.

the distance between them. In particular, two selected pixels are
in the same cluster if they are within two-ring neighborhood of
each other; and clusters with less than 15 pixels are discarded; see
Figure 10(j). Third, for each cluster, we compute the accumulated
fitting error on the two-ring neighborhood of each pixel. The center
of a pixel with the largest accumulated fitting error is selected as a
new knot. Meanwhile, this pixel together with its two-ring neigh-
bors are removed from the cluster. For each cluster, this procedure
is repeated until at most 10 new knots have been selected or all the
pixels have been processed. As an example shown in Figure 10(j),
there are a total of 52 new knots inserted into the knot set, whose
position and connectivity will be further optimized in Section 8.2.

8.2 Knot Mesh Local Optimization
For a knot mesh with new knots inserted, we apply the knot mesh
optimization described in Section 6.2 to further locally adjust the
position and connectivity of new knots. The original knots on the
feature lines and outside the two-ring neighborhood of the new
knots are fixed in the optimization; see Figure 10(k) for an example of
the optimized knot mesh. The vectorization result after one iteration
of adaptive knot insertion and optimization is shown in Figure 10(l),
from which we can observe that the quality of color approximation
in the petals is improved.

9 EXPERIMENTAL RESULTS
In this section, we present experimental results of our image vector-
ization framework. To demonstrate the quality of our vector image
representation, we also compare our method with four classical
methods from [Lai et al. 2009; Liao et al. 2012; Orzan et al. 2008;
Xie et al. 2014] and two state-of-the-art methods from [Chen et al.
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(a) (b) (c) (d) (e)

Fig. 13. Candle. (a) Input image; (b) magnified local view of the input; (c) vectorized image; (d) magnified local view of the vectorized image; and (e) control
mesh with features (black lines) of (c).

(a) (b) (c) (d) (e)

Fig. 14. Rose. (a) Input image; (b) magnified local view of the input; (c) vectorized image; (d) magnified local view of the vectorized image; and (e) control mesh
with features (black lines) of (c).

(a) (b) (c) (d) (e)

Fig. 15. Butterfly. (a) Input image; (b) magnified local view of the input; (c) vectorized image; (d) magnified local view of the vectorized image; and (e) control
mesh with features (black lines) of (c).

2020] and [Zhao et al. 2018]. We perform all our experiments on a
laptop PC with a 3.1GHz Intel Core i5 processor and 12GB memory.
Examples of vectorization and local magnification can be found

in Figures 13-15. The resulting images are almost 𝐶1 continuous
everywhere except across features lines. We can also adopt higher-
order TCB-splines in our image vectorization framework to achieve
smoother color changes. Examples of quadratic and cubic TCB-
splines-based representation obtained from the same set of knots
are shown in Figure 16. We show examples of quadratic and cubic
TCB-spline-based vector images with comparable MEC in Figure S6
of Supplementary Material. We can observe that the cubic result has

visually smoother color variation and lower MEC than the quadratic
result while introducing more control points.

9.1 Comparison to Patch-Based Methods
There are several techniques using higher order parametric func-
tions for vector image representation. One of the classical approaches
is the gradient mesh, which represents vector images by rectangular
arranged Ferguson patches. The discontinuities at the feature curves
are modelled using degenerated patches. Whereas, the unstructured
nature of the TCB-splines makes it more flexible to adaptively dis-
tribute the knots or control points to the curvilinear features and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 16. Cubic and quadratic results on the same knot mesh. (a) Input image;
(b&c) quadratic and cubic results on a same knot mesh in (d), respectively;
(e&f) the control meshes of (b) and (c); (g-i) close-up views of the rectangular
regions in (a-c), respectively.

(a) (b) (c)

Fig. 17. Representation compactness and quality compared to gradient-
mesh-based representation [Lai et al. 2009]. (a) vectorization result using the
gradient mesh representation (MEC: 2.76, storage: 206KB) and the gradient
mesh; (b) vectorization result using our TCB-splines with comparable quality
to (a) (MEC: 2.64, storage: 42KB) and the control mesh (#C.P.: 1,305); and
(c) high quality vectorization result using TCB-splines (MEC: 1.70, storage:
78K) and the control mesh (#C.P.: 2,379). (a) is taken from [Lai et al. 2009].
©2009 ACM. Included here by permission.

complex color variations. As shown in Figure 17, our TCB-spline-
based representation takes much less storage than the gradient
mesh representation [Lai et al. 2009] to achieve results with com-
parable or higher quality. In [Chen et al. 2020], a hybrid vector
representation using Hermit patches and detailed features is pro-
posed for localized thin-plate spline rasterization. However, this
patch-based method cannot entirely remove the artifacts around
patch boundaries. Whereas, we achieve visually smoother and more
satisfying results, benefiting from the automatic smoothness of the
TCB-splines; see the comparison in Figure 18.

9.2 Comparison to Diffusion Curve-Based Methods
The diffusion curve-based vector images represent color disconti-
nuities explicitly across the specified diffusion curves. Analogously,
our vectorization results represented by quadratic TCB-splines are
theoretically 𝐶−1 continuous across the detected curvilinear fea-
tures and naturally 𝐶1 at the remaining regions. There are usually
some subtle or complicated color changes in-between the detected
features within a photographic image. It is also hard to tell whether
there is a color discontinuity in these regions. To represent these
complex color variation, diffusion curve-based method may require
dense curve networks, which may also introduce unintended discon-
tinuities. Owing to the error-driven knot optimization method, our
TCB-spline vectorization method can better capture and model the
subtle or complicated color variations away from the detected fea-
tures, hence achieve visually smoother results; see the comparison of
our method with two classical diffusion curve-based method [Orzan
et al. 2008; Xie et al. 2014] in Figure 19. In the state-of-the-art [Zhao
et al. 2018], diffusion curves are optimized to be more compact,
smoother and closed to achieve better approximation accuracy. How-
ever, there are still more or totally longer diffusion curves than the
feature curves in our method, which introduce unintended disconti-
nuity; see Figure 20.

9.3 Comparison to Subdivision Surface-Based Methods
Similar to subdivision surface-based methods, our method can also
achieve continuous color variation with higher orders. However, the
subdivision surface desires regular control meshes free of high/low
valence vertices (refer to as extra-ordinary vertices) and thin and
long triangles. Otherwise, the limit surface may contain artifacts
around extra-ordinary vertices or slim triangles; see high-resolution
rasterization of subdivision-based vector image in Figure 21. Per-
haps, for this reason, the control mesh is required to be Delaunay
and the minimal angle of triangles no less than 20 degrees in [Zhou
et al. 2014]. In contrast, there is generally no specific requirement
on either the topology of knot meshes or the control nets of TCB-
splines. Hence, TCB-splines are relatively more flexible in represent-
ing complex geometry and color variations. With carefully designed
knot optimization schemes, our TCB-spline-based vector represen-
tation is more adaptive to the complex color variations. As shown in
Figure S8(c&d) of Supplementary Material, our methods use fewer
control points to achieve comparable quality vectorization to the
method in [Liao et al. 2012].
On the other hand, TCB-spline-based vector image representa-

tion provides explicit formulations, enabling efficient rasterization
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(a) (b) (c) (d) (e) (f)

Fig. 18. Representation compactness and quality compared to the thin-plate based method [Chen et al. 2020]. (a) Results from [Chen et al. 2020]; (b) a
close-up view of result in (a); (c) the patch boundaries of (b); (d) vectorization result using our TCB-splines (MEC:1.98, number of control points: 3,652); (e) a
close-up view of (d); and (f) the control mesh of (e). (a-c) are taken from [Chen et al. 2020]. @2020 IEEE. Included here by permission.

(a) (b) (c) (d) (e)

Fig. 19. Comparison of vectorization results with [Orzan et al. 2008; Xie et al. 2014]. Here we only show close-up views but report the original data in Table 1.
(a) Input image from [Orzan et al. 2008]; (b) diffusion curve based representation (results from [Orzan et al. 2008] without storage reported); (c) hierarchical
diffusion curve based representation (results from [Xie et al. 2014], storage: 298KB); (d) TCB-spline-based representation (Storage: 168KB); and (e) control
mesh of (d).

(a) (b) (c) (d) (e) (f) (g)

Fig. 20. Representation compactness and quality compared to the inverse diffusion curve based method [Zhao et al. 2018]. (a) Input image; (b) vectorization
result from [Zhao et al. 2018] (RMSE: 0.0262; total diffusion curve length (normalized such that the length of the longest side of image is 1): 19.11); (c) a
close-up view of (b); (d) diffusion curves of (b); (e) our result (RMSE: 0.0095; total feature curve length (normalized such that the length of the longest side of
image is 1): 8.99); (f) a close-up view of (e); and (g) control mesh and control polygon of feature curves (marked in black lines) of (f). (a-d) are taken from [Zhao
et al. 2018]. ©2018 IEEE. Included here by permission.

for vector image display. By directly evaluating the formulations,
the memory footprint nearly changes in rasterization, regardless of
the output resolution. Differently, the limit of a subdivision surface
may be unable to be explicitly expressed. To achieve vector image
display, one needs to apply explicit subdivision several times until
the refined control mesh is dense enough [Liao et al. 2012]. Hence,
the subdivision-surface-based method may incur higher memory
and computation costs for generating high-resolution rasterizations.
We compare the performance of the single-threaded version of our

algorithm and the algorithm in [Liao et al. 2012]. Our method re-
quires 0.4 GB for rasterizing Figure 21 of 1.1 × 107 pixels (about
the resolution for 4K displays), while [Liao et al. 2012] requires
3.4 GB, starting from an initial control mesh with 2,716 faces and
applying six subdivisions. Note that both TCB-spline-based and sub-
division surface-based representations have local support properties.
Hence the rasterization of TCB-spline-based vector image can also
be accelerated by similar technologies, as in [Liao et al. 2012].
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(a) (b) (c) (d)

Fig. 21. Adaptive representations and artifacts at extra-ordinary vertices: comparison with subdivision-based methods. (a) Input; (b) control mesh and vector
result by [Liao et al. 2012]; (c) result by our method; (d) close-up views of (b)(top) and (c) (bottom), where an extra-ordinary vertex of subdivision surface is
marked by red ovals and the contrast is enhanced by the 3D reconstructed surfaces (gray-scale as height) in the last column.

(a) (b) (c) (d)

Fig. 22. Color editing and shape editing. (a) and (d) Input vector image and
the corresponding control mesh; and (c) and (d) color and shape editing
result and the corresponding control mesh.

9.4 Statistics
The statistics of the knot mesh and control mesh complexity, ap-
proximation errors of our vectorization results and the running time
are summarized in Table 1. To compute the approximation error per
pixel, we rasterize our vectorization output and compare it with the
original image. For each tested example, the thresholds 𝜀𝑐 and 𝜀𝑔 for
MEC andMEG are 2 and 1-pixel width, respectively. The entire adap-
tive refinement for image vectorization takes between 6.7 and 551
seconds, depending on the resolution and complexity of the input
raster images. Each iteration of the adaptive refinement (Section 8)
includes processes of knot mesh generation (Section 6) or updating
(Sections 8.1-8.2) and image approximation (Section 7). The later
process, which includes basis function computation/updating and
control points optimization, is the most time-consuming step. It can
usually finish in 294 seconds for all the test models. For example,
the Rose model in Figure 14 with a moderate size takes a total of
93 seconds and two iterations to reach the threshold of MEC. In
the first iteration, the knot mesh generation takes 1.91 seconds, and
the image approximation takes 23.9 seconds, where the basis func-
tion computation and control points optimization take 19.9 seconds
and 4 seconds, respectively. A quantitative comparison (including
RMSE, length of curves, number of control points, and storage) with
the above three types of methods can be found in Section 3.1 of
Supplementary Material.

9.5 Editing
We also demonstrate that our vector representation supports a va-
riety of editing operations; see Figure 22 for the shape and color
editing results. By changing the color and position of the control
points, we obtain new vertorization results. We construct a proto-
type interactive system for directly editing the TCB-spline-based
vector image representation in real-time without resorting to in-
termediate raster representation. Although the number of control
points in TCB-spline-based image representation generally increases
with the complexity of input images, it is still much smaller than
the number of pixels of the input raster images. To avoid tediously
individual control points editing, we provide different editing tools
to achieve coarse-to-detailed levels of editing. Our real-time editing
tools include a region of interest (ROI) selection operation, ROI-
based, circle-based and control-point based shape/color editing op-
erations; see the supplementary video. The user can use the brush
tool and feature polygon selection tool to select control points of
ROI and feature curves for editing, respectively. The ROI-based
shape deformation is achieved by using the Mean Value Coordinates
method [Hormann and Floater 2006]. We first specify a bounding
cage that encloses ROI, and then continuously move the enclosed
control points by adjusting the cage vertices. The circle-based tool
lets us manipulate (e.g., twirl, push inward/outward and transform)
the circled control points, similar to the Liquify tool for raster im-
ages in Adobe Photoshop. We resort to the finest level of editing,
i.e., individual control point editing only when the provided tools
cannot achieve satisfactory editing results. Control points may also
be edited by incorporating our interactive system with other more
sophisticated manipulation methods [Jacobson et al. 2011; Xie et al.
2014].

9.6 Authoring
The example in Figure 23 shows an authoring result using quadratic
TCB-splines-based vector image representation. We also include
the interactive sequences in the accompanying video. We take as
input the specified quadratic feature curves (see Figure 23(a)). Curve
modeling methods (e.g., [Chen et al. 2019; Yan et al. 2017]) can
be used to design the input curves interactively. First, we sample
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 23. Example of authoring using quadratic TCB-splines. (a) The input feature curves (26 curves); (b) initial knot meshes (482 knots) with colors; (c) control
mesh of 1,133 control points for (b), with the color specified; (d) vector image for (c); (e) new primitives are added into (d), where the rough positions of
primitives with different color variations are marked by circles (𝐶1 continuous), circles connected by dash lines (𝐶1 continuous along line segments), circles
connected by solid black lines (𝐶0 continuous) and solid blue lines (𝐶−1 continuous), respectively; (f) updated knot mesh (with 664 knots); (g) updated control
mesh (1,636 control points) for (f), and (h) the final vector output for (g).

the feature curves and generate feature polygons on the paramet-
ric domain using D-P algorithms described in Section 5.4. Second,
collinear knots and multiple knots are introduced along the feature
lines and at the parametric domain as in Section 6.1. Moreover, we
uniformly distribute a given number of knots on the parametric
domain; see Figure 23(b), where ten extra knots are uniformly placed
at the domain boundary. Third, we compute the t-configs and the
TCB-spline basis as in Section 3.2. For each TCB-spline basis 𝐵𝐼 (u)
associated with knot subset 𝐼 , we assign the average of knots in 𝐼 to
the geometry part of the control points; see Figure 23(c). The color
part is specified as a default value. Last, we can further modify the
vector images by adjusting the control points, as described above.
Figure 23(d) shows the output vector images by only changing the
colors using the brush tools in our editing system.
We can further insert more primitives by specifying a sequence

of points with assigned colors in the image domain to indicate the
rough position of control points. We also provide four options to
achieve different color variations around the newly introduced con-
trol points, including 𝐶1 continuous, 𝐶1 continuous along polyline
connecting specified points, 𝐶0 and 𝐶−1 continuous across feature
curves, as shown in Figure 23(e&h). Please refer Figure S10 and
Section 4 in Supplementary Material for the details about primitive

insertion and the supplementary video shows the interactive ma-
nipulations for authoring and editing. The diffusion curve-based
vector images represent color discontinuities explicitly across all
inserted diffusion curves. In contrast, our representation is more
flexible to create both smooth and discontinuous color changes. As
the examples demonstrate, our method provides controllable results
from a compact user specification. We also report the numbers of
feature curves and control points for this example to intuitively
measure the input complexity and authoring feasibility. Note that
the knot mesh in Figure 23(b&f) only provides the intermediate
result for generating the final control meshes. Users do not need to
worry about the knot mesh generation or editing in the application
of authoring, as they can intuitively edit the vector image via control
meshes.

Limitation. Existing research in vectorization is done with vari-
ous objectives, such as reducing user intervention, minimizing the
number of colors used, providing multiresolution abstraction and
stylization, preserving editability, or matching appearance with the
input. Since our goal is to provide a faithful reconstruction of the in-
put raster image, our method may require a slightly more storage or
introduce more control points for editing purposes. However, with
the ability to reproduce more faithful results, such imperfection is
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usually ignorable. On the other hand, the resolution-independent na-
ture of our TCB-spline-based vector format makes a direct compres-
sion of input images. However, as requiring many vector primitives
to achieve a realistic and detailed look, our method may not outper-
form the state-of-the-art bitmap compression and super-resolution
methods in terms of image compression rate.

10 CONCLUSIONS
In this paper, we have proposed a novel TCB-spline-based vector
image representation and its associated automatic vectorization
framework for raster images. By inserting collinear knots at feature
lines, both smooth and discontinuous color variations are faithfully
modeled by the same set of quadratic TCB-splines. A variational
knot mesh generation method is tailored and incorporated into our
framework, which adaptively introduces more knots at regions with
low reconstruction quality. Experiments and comparisons show
that our framework performs better than other existing methods
in modeling undetected features and complicated color variations
in-between feature lines. Our vectorization representation also fa-
cilitates a variety of editing operations performed directly over
vector images. Our vector representation for images can directly be
generalized to the vector representation for videos using trivariate
TCB-splines with control points in 6D (space-color-time) space. One
interesting future work is to generalize the vector reconstruction
algorithm from images to videos. The entire video, treated as 6D vol-
ume data, can be reconstructed directly instead of being vectorized
on a frame-by-frame basis to achieve temporal consistency.
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