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Towards Designing an Interactive System for Accelerated Learning and 

Assessment in Engineering Mechanics: A First Look at the Deforms Problem 

Solving System  
  

Abstract  

Repeated deliberate practice has been shown to be vital to developing mastery in engineering 

problem solving. Online tutoring systems have enhanced learning experiences, and delivered 

content tailored for specialized fields. Motivated by the aim of improving students’ 

problemsolving skills, we created an interactive system for use in an undergraduate introductory 

engineering mechanics course required for many engineering disciplines. Our system provides an 

intuitive, visual framework that allows students to rapidly solve problems that require building 

systems of equations in multiple steps. Built within the OpenDSA eTextbook system, these 

exercises can be served directly through a learning management system such as Canvas, allowing 

the exercises to be integrated seamlessly with other content. In this paper, we describe the key 

design choices for our system, present important features and the student workflow, and describe 

support for targeted feedback and analysis for the instructors. We present our plans to evaluate 

the system, and discuss the results of a preliminary usability study.  

  

1. Introduction  

  

Recent studies show problem-solving ability is being increasingly prioritized as a core aspect of 

engineering curriculum and a fundamental competency demanded by employers. However, not 

only are problem-solving activities time consuming for students, they are also often difficult to 

assess beyond simply checking for correctness of the final answer. In addition, it is difficult in a 

classroom setting to deliver useful feedback [1]. While popular online tutoring frameworks exist 

[2], [3]  that support structures for mathematical problem solving and some elementary level of 

feedback, most suffer from significant drawbacks in terms of design and usability that introduce 

a significant overhead from learning to use the system. Additionally, they lack flexibility for 

supporting a variety of problem-solving approaches, and underlying support for analyzing 

solution approaches. We aim to create a learning framework that can be used to deliver 

interactive, automatically assessed problems for engineering mechanics. The aim is to capture 

students’ problemsolving processes, quickly assess correctness, and provide accurate feedback 

through targeted hints or explicit feedback. This approach accelerates and enhances learning by 

reducing algebraic tedium and emphasizing deliberate practice [4], which has been shown to 

enhance problem-solving accuracy and motivation to learn more [5], [6].  

  

The Deforms problem-solving system provides an intuitive, visual framework that allows 

students to rapidly solve problems that require building systems of equations in multiple steps. 

Students can create systems of equations from palettes of existing equations and create variable 

and value associations from the problem texts and figures as necessary to solve single-step 

problems, or multistep problems with intermediate solutions. The students see exercises 

containing prose, figures, and submission boxes, as well as workspaces and equation palettes that 

students can interact with through simple click-and-drop actions. Built within the OpenDSA [7] 

eTextbook system, these exercises can be served directly through learning management systems 

such as Canvas, allowing the exercises to be integrated seamlessly with other courses. We 

present the details of the current iteration of our system.   

  

As proposed in [8], one of the primary goals of our project is to systematically study how 

technology-rich environments can enhance the learning, teaching and assessment of complex 



knowledge. Inadequate development of conceptual knowledge, cognitive overload while 

learning, and the limitations of individualized feedback in large classes are widespread. A key 

aspect of learning sciences is to understand how students interrelate and organize knowledge in 

the domain, and the critical factors that help or affect such active construction, as this 

distinguishes experts and novices. According to cognitive load theory (CLT), for learning to 

occur, working memory needs to accommodate the additive needs of intrinsic, extraneous, and 

germane cognitive loads [9]. From this perspective, interactive exercises empower the user to 

optimize their own learning through the ability to decrease intrinsic cognitive load of the 

problem, allowing identification of what they know and what they don’t, as well as provide 

opportunity for metacognitive reflection – all of which has been shown to increase development 

of more complex knowledge [10]. When done properly, educational technologies and e-learning 

environments can greatly optimize the elements of CLT for effective learning [11]. 

Correspondingly, our system also logs student interactions such as click events that can be 

analyzed to provide data-driven reflections for both students and instructors to focus their efforts 

on understanding misconceptions.  

  

We also present the results of a usability study that we conducted in Fall 2020 with students from 

an undergraduate course in engineering mechanics of materials at a major R1 university. 

Feedback from this preliminary study shows positive results, indicating that the students found 

many of the features helpful, and that the system mapped well to their traditional pen-and-paper 

experiences of solving problems. We also obtained valuable feedback to guide design choices for 

future iterations of our software.  

  

2. Prior Work on Relevant Tutorial/Interactive Exercise Systems  

  

The system that is closest to ours in terms of functionalities provided and approach is Andes [3] 

by Van Lehn et. al. Like our system, Andes captures equations entered by students, supports 

variable associations, and reduces algebraic tedium. We drew from the idea of providing short 

hints at the student’s request to design a preliminary version of our guidance system. Despite the 

positives of the Andes system and the lessons learned from it over the years on student 

interactions, it has drawbacks. The interface is cumbersome and involves entering definitions of 

terms directly, as well as constructing equations by typing them in - which while helpful, 

requires adherence to syntax rules. In contrast, we used a palette-entry approach that is popular in 

commercially available software. This approach helps reduce the complexity of verifying 

solutions [12].  

  

Another approach to creating similar tutorial systems uses ideas from mathematical model 

construction and exploration - the oldest such system being Stella [13], [14], which was a 

graphical stock-and-flow notation-based editor used in mathematical model exploration tasks. 

Similar systems are Model-It [15], also an editor, and NetLogo [16], which focused on agent-

based modeling. Co-Lab [17] worked as a tutor by introducing feedback and hints as students 

asked for help when constructing models, but it’s learning gains were never evaluated. Dragoon 

[2], also developed by VanLehn et. al., focuses on teaching students mathematical modeling 

through construction of computational models of dynamical systems for general science topics. 

The interface draws from Stella, by creating and connecting nodes in a directed graph to create 

flows and dependencies among named variables, and observe how they affect each other. 

Dragoon offers four different modes: Editor, Test, Coached, Immediate feedback. This is an idea 

we intend to incorporate into our system as our feedback support matures, such that the instructor 

can adjust how much feedback, and what kind of feedback they want to provide to the students.  

  



For our context, the approach used by Dragoon would not be ideal. Dragoon requires learning the 

formal language of notations, which is somewhat detached from the typical mathematical 

notation used for teaching concepts. Van Lehn [18] mentions achieving notational mastery in 

translating model descriptions into notation, which we feel places an additional cognitive load on 

the student. This approach makes it difficult to construct complex systems of equations required 

in our problems. In our case, the learning curve with respect to notation is small since the users 

already know how to construct systems using mathematical notations, so our system provides a 

fast alternative for construction that allows for rapid deliberate practice and feedback.   

  

We provide a fast, efficient method to construct systems of equations to represent physical 

quantities. This allows students to rapidly build and test their understanding while receiving 

targeted feedback, potentially on significantly more and varied problems than in comparable time 

with pen and paper.  

  

3. System Overview  

  

Exercises are delivered through a learning management system like Canvas, or individually as 

standalone exercises. Each exercise consists of an HTML file containing the formatted problem 

prose and a reference to the solution file corresponding to the current problem. The core of the 

system (comprising the interface interactions and the solvers) is implemented in JavaScript and 

built on top of existing frameworks used by the OpenDSA eTextbook system such as JSAV [19] 

for visualizations and the KhanAcademy exercise framework [20] for delivering individual 

exercises. Open-source libraries for unit conversions and performing complex mathematics with 

physical quantities and mathematical solvers are used, but apart from these, the codebase entirely 

consists of libraries already part of OpenDSA.  

   

Figure 1 shows an example exercise. We can divide the interface into three main parts – the 

problem prose (together with the submission boxes, and check answer buttons), the 

workspace/solver area, and the notifications section.  

  

We use click-and-drop as the main interaction idiom [21]. Point-and-click interactions are 

generally known to be better than drag and drop [22], and drag and drop has been shown to be 

more prone to errors, especially at the beginning and ending of an interaction [23]. We opted to 

keep all direct functionalities in the open (that is, not hidden behind cascades of menus). To aid 

newcomers and beginners, interactive items are designed to highlight on hovering, and display 

text snippets summarizing their functionality and how to interact. We also provide in-system 

help/tutorial material for every interface element (submission boxes, workspaces, equations, 

palettes, etc.), accessible by clicking on the appropriate question-mark icon for that element (7). 

Clicking this opens up a dialog box with a quick text overview of the element, its common 

features, and is accompanied by animations to show how they work.  

  



 

Figure 1: An outline of the problem-solving interface with the different features offered  

  

The problem prose (1) contains the text describing the problem setting (including sub-parts and 

diagrams). The interactive parts of the problem prose include the physical quantities embedded 

in the prose, which can be used to solve the problems by adding them to equations (4) in the 

workspace (2). In addition, each subpart has a yellow box next to it which accepts candidate 

answers calculated inside the workspaces. The boxes can be filled by clicking on a value 

calculated in a workspace and then clicking on the box. The boxes can be cleared by clicking on 

the scissor icons. Once candidate answers have been added, the user clicks on the “Check 

Answer” button, which validates whether the answers were right or wrong.  

  

The workspaces (2) are the main areas where equations are entered, known values associated 

with parameters from equations, and relationships defined to enable solving for unknown 

variables. Their purpose is to logically separate different sets of problem-solving steps (such as 

subparts of the same problem), or alternative approaches for the same problem. The workspaces 

are variable in size, and expand and contract to accommodate the equations being solved and the 

solutions computed (value boxes, see bottom of workspace in Figure 1). Additionally, deleting a 

workspace removes all the equations and solutions contained in it, effectively creating a clean 

slate. Each workspace has an Add, Remove, and Solve button. The Add button is used to add 

selected equations from the equation bank (3) into respective workspaces, doing which expands a 

newly added equation into a collection of elements as shown in Figure 1. The Remove and Solve 

buttons, respectively, work with equations in a workspace as we describe later.  

  

The equation palette (3) is a persistent, drop-down list of equations segregated by topics covered 

by the subject that the exercises belong to. In addition to equations that define relationships 

between physical quantities, a group of equations for defining algebraic relations (such as sums, 

differences, divisions, etc.) is also provided. Additionally, we provide a “Favorites” list to 



bookmark equations that the student has already used in the current session. Palette-based entry 

has gained popularity in modern software interfaces since they not only improve user experience 

by reducing algebraic tedium, but also make it easier to identify student intent when analyzing 

problem-solving behavior later, compared to more open-entry methods.  

  

 

Equations (4) form the main workhorse for our system. Each equation added from the equation 

palette expands into a collection of icons and representations as shown in Figure 2. The 

checkboxes are used to select equations to be solved as a set (click on “Solve”), or deleted 

(“Remove”). This allows the user to solve multiple steps in the same workspace, or evaluate 

smaller sets of equations as part of a bigger problem. Each equation has an enlarged interactive 

section with greyed-out variable boxes, which can accept quantities from the problem prose. 

Adding a quantity to this box also enables converting quantities to different units on prompt (5).  

  

We finally talk about creating unknowns and variable associations (6). Variable associations 

involve selecting multiple boxes in different equations to create systems of equations in more 

than one unknown. By default, we create equations in one unknown by populating all but one 

box in a single equation. However, to create a system, click on an empty box to start an 

association from its context menu, and then click on a second box. Once created, more variables 

can be added to this association from the context menu of any variable box. Moreover, students 

have the option to customize the names of these variables in an association, single unknowns, or 

all variables in an equation to allow for readability and context (as shown in Figure 2).  

  

We now discuss briefly the underlying solver engine for the system, which relates to our 

guidance system (8 in Figure 1), as outlined by the Notifications panel in Figure 3. We use an 

opensource solver library called Nerdamer [24] to solve systems of equations constructed in the 

interface, and math.js [25] for working with physical quantities. Our underlying solver code 

involves tying these two together through preprocessing, with our guidance code using this 

preprocessing phase and the post-solve results to give feedback to the students about their 

attempts. We designed our notifications system – the current iteration of our guidance system – 

to provide targeted, brief feedback, which is shown to be more useful than long feedback [26], 

directing the students to address specific issues that lead to incorrect/erroneous computations. 

However, hints have been criticized in the past for offering more "just-in-time learning". To that 

end, our system currently provides only feedback on parts of the system that are blatantly wrong. 

We aim to account for these precautions when designing our guidance system in the future to 

offer in-depth feedback about steps taken.  

  



  
Figure 3: Example of the guidance system in action  

The guidance system works by preprocessing the equations, quantities entered and the 

associations made to feed into the numerical solver. It currently checks for inconsistencies in the 

equivalence of units of the numerical quantities on both sides of equations, whether quantities are 

in right places in an equation from the palette involving physical quantities, and whether the 

number of unknowns and equations match. If this phase passes properly, then the equations are 

sent to the solver, following which the results are output. Any errors which occur at any phase of 

these two phases are immediately reported in the notifications panel, where clicking on 

individual errors points the user to where the error occurred (which could be associations, a 

variable box with quantities, an equation itself, or a general error message).  

  

In addition to error checking, our solver preprocessor also handles implicit unit conversions for 

quantities in equations having inconsistent orders of magnitude (for example, m vs. mm in SI 

units), and handles inferring units of unknown quantities computed from the system. Any errors 

in attempting to infer the domain of an unknown quantity (due to inconsistencies in creating 

associations) are flagged as errors and immediately reported, although implicit conversions are 

reported as warnings at the moment. However, in future iterations, these would be placed under 

the control of the instructor, who can choose how much guidance to provide, and whether 

implicit conversions should be allowed to support the student or not.  

  

We provide an example of how a student would work with this system in a video at  

https://youtu.be/YTVuf2ahdm0. A typical workflow, considering a student is familiar with the 

interface, would start with reading the problem prose, followed by browsing the equation palette 

to find the appropriate equations and adding them to a workspace. These equations would be 

populated with quantities either from the prose, or custom entered from the context menu for an 

empty box. Associations can be created as outlined earlier. Finally, once all the equations are 

created, they can be selected and solved. This is repeated as required to create candidate solution 

boxes in the workspace, which are then selected and added to submission boxes in the question.  

  

  

4. Usability Study  

  

4.1. Study description  

  

We conducted a preliminary study of the problem-solving system with students in an 

undergraduate engineering mechanics course at a major R1 university. The topic of the course 

was ‘Mechanics of Deformable Bodies’ (hence the name Deforms problem-solving system). 

Two studies were conducted with the same system in the Fall and the Spring semester. The 

studies presented four problems and six problems respectively. Problems were served through 

Canvas. These problems covered topics of increasing difficulty from throughout the semester 

(mechanical properties of materials, axially loaded members, statically indeterminate problems). 

https://youtu.be/YTVuf2ahdm0
https://youtu.be/YTVuf2ahdm0


The problems used in Spring included the four from Fall and two additional problems of easy 

and medium difficulty, covering similar topics.  

  

A short one-page tutorial on how the system works and a video demonstration of the system on a 

sample problem (that is not part of our problem set) was provided to the students to help them 

get familiar with the system. After solving the problems, students were asked to complete a 

survey to provide feedback on the usability of the system. The survey tells us about students’ 

experiences with the system, and suggests directions for future development. We also collected 

student interaction data from tracking their interactions with the system (button clicks, submitted 

attempts, etc.) to help obtain a preliminary understanding of the problem-solving processes.  

  

The survey asked a total of 26 questions, 18 of which were 5-point Likert scale questions, two of 

which required them to choose between two alternatives, and six qualitative questions to allow 

students to provide detailed feedback. The Likert scale questions are presented together with the 

responses in Figure 4. The qualitative questions were:  

• Q1. Please include any additional guidance material that you would like to see to make it 

easier to learn or find one’s way around the system.  

• Q2. Please include any specific bugs encountered that hindered your progress while using 

the system.  

• Q3. Please include any other comments about the design of the interface and if there are 

any new features or changes that would be of value.  

• Q4. Please include any other feedback that you would like to see to guide you on how 

you solved the problem.  

• Q5. Please include other interactions that you would like to see. (If student answered 

“No” to the question “Were the click and drop interactions enough to perform the 

necessary tasks efficiently?”)  

• Q6. Please include any special features that would help make the system faster and more 

efficient to use.  

  

The survey was offered to the students as an extra credit assignment, whereby the students had 

the option to receive extra credit by solving problems using the system and optionally 

completing the survey, or by turning in a solution of the problems on pen and paper as part of a 

practice problem set. The students were also informed of their choice to not participate in the 

study or request that their data not be used, and efforts were taken to maintain the students’ 

anonymity at all points. A total of 162 people responded to the study by engaging with the 

system, as recorded by interaction events. We further assumed that a student who completed at 

least one problem successfully, or registered at least 200 events in the first study or 300 events 

the second study, respectively, exhibited earnest engagement by spending enough time with the 

system, which gave us 96 out of 162. Among these, n=80 students completed the survey, whose 

responses are tallied and discussed next.  



 
Figure 4: Summary of usability survey responses to Likert-scale questions  

4.2. Results and Observations  

  

The Likert-scale responses showed generally positive results, with most people responding with 

either “Somewhat Agree” or “Strongly Agree” (shown by the light and dark blue bars on the 

right side of the plot) on most items under questions about the system, indicating that they found 

the interface usable and the exercises helpful. We summarize the responses in Figure 4.  

  

When asked about tutorial elements provided to guide newcomers and beginners (L1, L2 in 

figure), users knew they were accessed through help icons in different parts of the interface when 

needed. In response to Q1 however, there were many requests to provide help material that was 

more comprehensive in guiding students on how to perform tasks such as entering values in 

boxes and performing algebra, preferably as a document or a video, which leads to questions 

about the intuitiveness of the system. Other comments (9/80) included requests to improve the 

explanations for how the feedback system worked, and to redesign the tutorial to be easier to 

search for answers. The video in Section 3 was also provided as part of the tutorial in the second 

iteration of the study, and received generally positive reviews. 59 out 80 students either did not 

report anything for this question, or reported positively with regards to the help material 

provided. Overall, the in-system tutorial features and the additional tutorial material provided 

were found to be helpful.  

  

Several questions pertained to interface design (L3-L10). The persistent equation bank was 

received favorably by students (L3), which is confirmed by L4 that it made it easier to find and 

add equations. However, 11/80 responses to Q3 requested reorganizing the workspace to 

optimize work area, which shows that it competes for space with other elements on-screen. 

Similarly, while the concept of using workspaces to separate out work done received moderately 

positive reviews (L6), the results were varied when we asked about the interface being spacious 

enough (L7) - and the responses to Q3 and Q6 supplement this further. Thus, we must consider 

trade-offs in future designs to maximize on-screen work area while keeping features that 

received favorable responses. Several students reported their work being much better organized 



when using our system, which indicates success for our core design choices for the workspace 

environment.  

  

We received mixed reviews about the equations supported in the palette (L5, Q3, Q6). Q3 

received 12/80 responses and Q6 received 18/80 responses that explicitly asked for more 

flexibility in constructing algebraic equations. Many exercises not only require specific equations 

with physical quantities that can be entered through palettes, but also simple algebraic 

manipulations to combine intermediate solutions that require more traditional text-entry 

approaches. This becomes another trade-off to consider in future design choices. When asked 

about features used to create systems of equations (L8-10), there was almost unanimous 

agreement that creating associations as well as solving for individual variables was intuitive and 

helpful, indicating that this design choice worked. Our qualitative responses (Q3) show reports 

on how certain functionalities such as adding values, adding multiple equations, or the default 

behavior of the solve button could be improved, as well as requests for supporting drag-and-drop 

functionality (10/80). We also noted requests for optimizing workspace area to fit everything on 

one screen (11/80). Support for computations with units were considered useful (L13), which 

speaks a lot of positives for our underlying solver.  

  

The notifications panel and the guidance system received generally favorable reviews (L14-16). 

Most students had nothing specific to say or indicated it was useful in Q4 (46/80). 15/80 

responses to Q4 indicated that the notifications provided were ambiguous and not specific 

towards the mistakes made. This was to be expected, considering that we are on our first iteration 

of the notifications feature, which itself is a precursor to the future guidance system. We aim to 

improve this feature to support variable instructor-controlled support, while remaining 

independent of problems. Along those lines, we also received several suggestions in Q4 (19/80) 

on how to improve the visuals and the functions of the notifications system.  

  

Together, i) increased flexibility to construct equations, and ii) improving interface design to 

better use screen space and accommodate elements were the top responses to open-ended 

questions (particularly Q6 – 18/80 and 11/80 responses respectively), requesting feature ideas the 

students wanted to see in the system. These concerns were raised in other questions as well, such 

as Q3 and Q1 (11/80 responses, with 7/11 responses asking for greater flexibility). We plan to 

address these issues prior to our next roll-out. We received 12/80 responses that suggested 

additional features, which we also plan to incorporate down the line.  

  

Finally, we asked about overall experiences using the system. Several questions asked about new 

features the students would like to see included. Few bugs were reported by the users (Q2, 13/80 

recorded bugs). The few issues reported were mostly related to glitches in the interface visuals 

and equation building, both of which we plan to fix, along with interface updates based on 

responses to Q3, Q4 and Q6. Users generally agreed that the components and operations were 

intuitive (L11-13). Context menus were helpful, and supportive features (highlighting, texts, etc.) 

made the system behavior intuitive, echoing L1 and L2. Click-and-drop interactions received 

favorable reviews (58/80 students reported favorably when asked if this was helpful, 22/80 

reported against), although there are some requests for drag and drop operations (Q5), which we 

also intend to add. Responders also requested the ability to manually enter quantities, much like 

the other qualitative questions (see responses to Q6). When asked about the layout, students 

indicated a need for extra navigation, but they would rather have functionality hidden behind 

menus (51/80 students supported this) to create a compact workspace, rather than have 

everything out in the open (29/80 students supported this).  

  



Overall, the system received positive reviews when asked how similar their experiences were to 

that of using a calculator and pen-and-paper format (L18), with the graph skewing towards the 

positive side (37/80 positive, 27/80 negative, 16/80 neutral; with 16/80 strongly agreeing and 

7/80 strongly disagreeing), indicating the success of our first iteration.  

  

4.3. Event log data  

  

We collected clickstream data based on the students’ interactions. A total of 111,328 events were 

collected that recorded values clicked in the prose, equations added, associations created, unit 

conversions, etc. Most importantly, we capture the following important milestones in the 

problem-solving process: i) systems of equations solved, ii) errors generated and suggestions 

provided, and iii) answers submitted their correctness. Figure 5 shows a sample student 

interaction.  

  

  
Figure 5: Student interaction data as captured from our Fall 2020 pilot study  

Each solve (deform-solve-started) event captures the system of equations, custom variable 

names, quantities used, and errors/warnings generated if any – making them the most important 

events to analyze, as they provide summative snapshots of progress. Looking at the sequence of 

events provides a more dynamic view of the student’s thinking process. This can be helpful 

towards understanding: i) how a student gets familiar with the interface, and ii) once they’re 

familiar, areas that can be improved to speed up workflow. We defer a more detailed analysis of 

the log events and student behavior based on this log data to a future paper.  

5. Conclusion  

  

In this paper, we introduced the current iteration of a problem-solving system aimed at 

accelerating learning and enhanced assessment for teaching engineering mechanics topics. The 

results from preliminary usability studies show generally positive reviews for the system, 

indicating that further work on improving the system would make this more appealing for 

students to use as an alternative to traditional pen-paper-calculator setups in practicing problems. 

Such a system would support increased deliberate practice, allow objective assessment of 

engineering problemsolving skills, and provide targeted feedback to improve understanding of 

core concepts.  

  

There are several limitations to our current study. The questionnaire needs to be updated to 

extensively cover user experiences in more detail, as opposed to just feedback on design 

decisions, following a formal formative analysis. For example, we do not have concrete answers 

on whether features for customizing equations and variables through renaming and subscripting 

were useful or not. More user surveys are required to better understand the pros and cons of the 

current design, and new features needed. We also need to evaluate how this system improves 

student proficiency in core concepts for each topic that they solve exercises for. This would need 

a detailed study in parallel with the usability studies that we conduct. We also need a better idea 



of student activity events to capture for better analysis of problem-solving activities and student 

progress. We aim to address all of these issues in future studies and successive iterations of the 

system.  
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