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The Border Gateway Protocol (BGP) orchestrates Internet communications between and inside Autonomous
Systems. BGP’s flexibility allows operators to express complex policies and deploy advanced traffic engineering
systems. A key mechanism to provide this flexibility is tagging route announcements with BGP communities,
which have arbitrary, operator-defined semantics, to pass information or requests from router to router. Typical
uses of BGP communities include attaching metadata to route announcements, such as where a route was
learned or whether it was received from a customer, and controlling route propagation, for example to steer
traffic to preferred paths or blackhole DDoS traffic. However, there is no standard for specifying the semantics
nor a centralized repository that catalogs the meaning of BGP communities. The lack of standards and central
repositories complicates the use of communities by the operator and research communities. In this paper, we
present a set of techniques to infer the semantics of BGP communities from public BGP data. Our techniques
infer communities related to the entities or locations traversed by a route by correlating communities with AS
paths. We also propose a set of heuristics to filter incorrect inferences introduced by misbehaving networks,
sharing of BGP communities among sibling autonomous systems, and inconsistent BGP dumps. We apply
our techniques to billions of routing records from public BGP collectors and make available a public database
with more than 15 thousand location communities. Our comparison with manually-built databases shows
our techniques provide high precision (up to 93%), better coverage (up to 81% recall), and dynamic updates,
complementing operators’ and researchers’ abilities to reason about BGP community semantics.
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1 INTRODUCTION

The Internet is composed of Autonomous Systems (ASes) that exchange reachability information
using the Border Gateway Protocol (BGP) [46, 48], its de facto interdomain routing protocol. The
BGP best-path selection algorithm is flexible and allows network operators to rank routes based on
policies and economic agreements. However, the growing needs for reliability and performance
have led to more dynamic and complex routing policies [20, 50, 56, 63], stressing BGP and exposing
the limitations of a protocol last updated more than two decades ago [46].

To overcome the limitations in BGP expressiveness, network operators have increasingly relied on
the optional BGP communities attribute to convey information in their route announcements. BGP
communities can encode information such as the city or router where a route was learned [19, 40],
the business relationship with the neighboring network the route was learned from [20, 30, 41], or
requests for actions such as BGP prepending or targeted route filtering [7, 56, 64]. Informational
communities facilitate identification and troubleshooting of anomalies such as path changes [19] or
routing detours [40]. For example, operators can use communities to identify the points of presence
(PoPs) or links traversed by a route and infer if more preferred or better performing alternate routes
exist. Action communities allow the deployment of more complex traffic engineering, helping
customize routing decisions at a much finer granularity than is possible by inspecting the AS path
of a route announcement. For example, operators can use communities to adjust routing parameters
(e.g., the LocalPref or the AS path length) or prevent route propagation to specific networks or
geographic regions [2, 56].

Figure 1 illustrates an example where AS V uses a location community to control route selection.
The origin AS O announces prefixes to AS A at different locations L; and L,, and to AS B at location
L,. AS A tags routes received at L; and L, with communities A:L1 and A:L2, respectively. AS A
announces to AS V only the route it selects as the best according to its internal policies, i.e., AS V
receives one route from AS A with either tag A:L1 or A:L2. Suppose that AS V has a policy that
dictates that routes learned from AS B should have higher priority than routes learned from AS
A, e.g., because B’s transit costs are cheaper than A’s. However, AS V may decide to use routes
received from A that traverse L, e.g., because they have better performance that justify the higher
cost. To implement this policy, AS V sets LocalPref to 120 in all routes received from AS A with
location community A:L1, sets LocalPref to 100 for routes learned from AS B, and sets LocalPref
of other routes to 80 (including routes from A tagged with A:L2). As BGP uses LocalPref as the
first criterion to decide the best route, AS V selects the high-performance route from AS A when
it traverses L; and the cheaper route from AS B otherwise. Routes from AS A with tag A:L2 are
chosen only when no route is available from B (e.g., due to failures).

Unfortunately, the BGP communities attribute is an opaque identifier and its semantics are
neither standardized nor follow any universal rule. Therefore, network operators are free to decide
community values and semantics. A network A may use community A:X for triggering BGP AS-path
prepending, while another network B may use community B:X for a completely different purpose,
e.g., signal that a route was learned in New York. Some networks catalog their communities
in Internet Routing Registry (IRR) databases [58] or webpages (e.g., [16]), but we cannot find
documentation for most communities observed in the wild (§5). Using a manually built database of
documented communities from 10 Tier-1 and 5 Tier-2 ASes that publicize their communities, we
were able to classify only 56.4% of these ASes’ communities observed in BGP route announcements.

The lack of standardization and public databases mapping community values to their semantics
hinders the manipulation of routes for traffic engineering or the development of tools that take
advantage of metadata in BGP communities. Operators have to resort to ad-hoc information in
IRR databases or webpages, which may be incomplete, outdated, or available only by contacting
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Fig. 1. Example of traffic engineering using BGP communities. AS V prefers routes from AS B, but may
configure import filters to prefer routes from A when they traverse location L1, e.g., when performance
through AS A and location Ly justifies choosing the less preferred neighbor. This policy can be implemented
in AS V by inspecting the location communities in AS A’s route announcements.

the network operators of the particular AS. This manual process increases the effort required to
integrate community information in routing decisions, degrades user quality of experience when
BGP chooses suboptimal routes, and limits researchers’ understanding of routing.

In this paper, we bridge this gap by developing techniques to automatically infer BGP location
communities, defined as communities that carry metadata about the location (e.g., city, country,
continent, router, PoP, link, or interconnection) where a route was learned, and building a public
database of BGP location communities. Location communities allow richer manipulation inside
the tagging AS, but they would also be helpful to neighboring and remote ASes if their semantics
were publicly available. We focus on location communities because they represent the majority of
publicly-documented communities (§4) as well as a significant fraction of communities observed
in route announcements (§5). Also, the flattening of the Internet hierarchy has led networks to
interconnect through multiple physical links, and information about locations traversed by routes
improves operators’ ability to monitor policy compliance, detect unexpected behavior such as route
changes, and troubleshoot anomalous behavior such as congestion. For example, operators could
use a tool that correlates BGP location communities and performance to tune their route selection
preferences at a finer granularity than possible with just AS paths.

A recent effort proposes a mining tool to automatically build a database of BGP community
semantics by crawling information in IRR records or the support webpages of network providers [18].
The tool uses natural language processing to infer the meaning of each documented community
in those data sources. While the results in [18] show that the tool achieves good precision in the
extracted communities, the approach is limited (i) in the number of communities that it can infer, as
it relies on free text descriptions provided by network operators; and (ii) by the data sources, which
may be incomplete, outdated, or missing entirely, reducing precision of the inferred communities
and coverage of communities used in the Internet.

We take a fundamentally different approach. We propose an algorithm to automatically infer
location communities from public route announcements observed by BGP route collectors (e.g.,
RouteViews [42], RIPE RIS [47], and Isolario [25]). Our key insight is to use the sequence of ASes
connecting a tagging AS (i.e., an AS that tags routes with its location communities) to origin ASes
as a reliable marker for routes crossing specific interconnection points. We use BGP route collector
peers as vantage points from which we observe tagging ASes and correlate BGP communities with
AS paths in route announcements. We also propose a set of heuristics to filter noise introduced
by misbehaving networks, sharing of BGP communities among sibling autonomous systems, and
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inconsistent BGP dumps. We process over two billion route announcements from three route
collector projects [25, 42, 47] and infer 15,505 location communities across 1,120 ASes.

We evaluate our inference methodology using a manually built ground-truth dataset with
39,308 communities from Tier-1 and Tier-2 autonomous systems that publicize the semantics of
their communities on IRR databases or webpages. Our experimental evaluation shows that our
methodology yields high precision (up to 93%) and recall (up to 81%). We compare our results with
CAIDA’s manually-built public database of BGP communities [4] and show that our database has
higher recall and similar precision, with the advantage that it can be automatically updated as new
BGP communities are defined or as definitions change over time. Our code and databases of inferred
and ground-truth BGP communities is available online to allow for reproducibility of our results
and enhance the understanding of Internet routing by network operators and researchers [32].

1.1 Key Contributions

In this paper, we make the following key contributions:

o The design and evaluation of algorithms for automatically inferring BGP location communities
from public BGP dumps, which we make available online [32]. Our evaluation shows that
the algorithms achieve high precision (up to 93%) and recall (up to 81%).

e A public database with 15,505 location communities from 1,120 ASes built using our inference
algorithms, as well as a manually-built ground-truth dataset identifying the semantics of
BGP communities of 10 Tier-1 and 5 Tier-2 ASes.

o A characterization of the increasing use of BGP communities in the Internet. We analyze
route announcements between 2017 and 2020 and show that the number of visible BGP
communities increased by 51.9%, that the number of visible location communities increased
by 50.0%, and that the number of ASes defining communities increased by 26.5%.

2 BACKGROUND

BGP is the interdomain routing protocol of the Internet and is used for exchanging routing infor-
mation between Autonomous Systems (ASes)—i.e., networks operated independently and generally
by different entities—and between routers inside an autonomous system. BGP routers exchange
messages that carry one or more BGP attributes. Some attributes are mandatory, such as the AS path,
IP prefix, and next hop, and others are optional, such as communities and multi-exit discriminators.
The AS path contains a sequence of Autonomous System Numbers (ASNs) that describes the route
on the way to the origin network controlling and announcing the IP prefix, and the next hop
contains the IP address of the next router for the announced IP prefix. The optional attributes
can be transitive or non-transitive. Transitive attributes accumulate and are carried along with
the route, while non-transitive attributes are processed by BGP routers at the next AS but not
forwarded to upstream neighbors.

The BGP route selection algorithm uses mandatory attributes to select the preferred route to
a destination IP prefix. When a router receives two BGP announcements for the same prefix, it
uses a sequence of criteria to decide which route it selects. The first criterion is the local preference
(LocalPref), which is locally defined, usually from the business relationship with the neighbor the
route was received from. The Gao-Rexford model [14] defines two types of business relationships for
neighboring ASes: customer-provider and peer-to-peer. A customer AS pays a provider AS for transit,
i.e., accessing the Internet, while peer-to-peer relationships occur when ASes have a settlement-free
peering agreement where they exchange traffic free-of-charge. Autonomous systems can also have
a sibling relationship [13]. Two autonomous systems are siblings if they are owned or operated by
the same organization, share operational practices, and exchange traffic without cost or routing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 3. Publication date: March 2022.



Automatic Inference of BGP Location Communities 3:5

restrictions. The number of sibling ASes in the Internet has grown significantly in the last few
years due to acquisition or merging operations between network providers [10, 23, 41].

To implement economically favorable policies, an AS usually sets local preferences so that the
BGP best-path selection algorithm prefers routes learned from customers over routes learned from
peers, and prefers routes learned from peers over routes learned from providers. The selection
algorithm uses other tiebreakers for routes learned from neighbors with the same relationship,
such as routes with shorter AS path lengths, lower origin code, and lowest multi-exit discriminator
(MED) [46]. In the Gao-Rexford model [13], the type of neighbor also determines how routes are
exported. An AS exports routes learned from its customers to all neighbors, but it exports routes
learned from providers and peers only to customers. Exporting routes learned from a provider or
peer to other providers or peers is normally undesirable, as it would make the AS offer transit to
peers and providers without monetary compensation.

The BGP optional attributes are generally used for signaling information between routers and
are not used in the route selection process by default. However, they can influence the selection
algorithm to implement specific policies. For example, BGP communities have been used to restrict
route propagation to within a region or to influence peer selection by prepending the AS path to
make the route artificially less attractive.

A route announcement can carry any number of BGP communities. Each BGP community is
32 bits long and can carry any value representing an action or information [39]. The practical
convention dictates that the first 16 bits represent the ASN of the AS that defines the community’s
semantics, also known as Global Administrator, and that the last 16 bits is an arbitrary operator-
defined value [39].! The format used in documentation or in router configurations separates the
two 16-bit numbers with a colon. For example, AS3491’s operators defined that the community
3491:3000 signals (and is tagged on) routes received from peers in Europe [54].

Action communities influence the BGP selection process or how routing announcements propagate.
They generally signal an action that a transit provider should execute on behalf of a customer
to realize some traffic engineering policy. Examples include LocalPref adjustment, BGP AS path
prepending, selective advertisement, route suppression, and traffic blackholing [56].

Informational communities include metadata to a route announcement to assist operators with
troubleshooting issues, refining policies, or capacity planning. Examples include tagging a route
to inform that it was originated either internally or learned externally, marking the location
where the route was learned, or whether the route was learned from a customer, provider, or peer.
Informational communities may be used by the tagging AS itself as well as downstream ASes.

In this paper, we infer location communities, which are related to where a route was learned or
where it goes through. Location communities can tag specific links, routers, Points of Presence
(PoPs), Internet Exchange Points (IXPs), or geographical locations (e.g., city, state, country, or
continent). We define a geolocation community as one that tags a geographical location.

The use of communities has increased significantly in the past few years (§5, [56]). However,
determining the semantics of each community value is a daunting task. Previous efforts have pro-
posed standardization and better use of BGP communities to improve security [45], but operators
have not fully embraced these proposals. Only a handful of community values have been stan-
dardized [29, 35, 39]. For example, 65535:666 (blackhole) signals a request to an upstream network
that traffic to a destination prefix should be dropped [35], and 65535:65284 (no-advertise) signals a
request to a provider that a route should not be advertised further [39]. Standardized communities

!n this paper, we consider only 32-bit communities [39], which use ASes with 2-byte AS numbers. BGP large communities
[26] are 96-bit long and include support for 4-byte AS numbers, but their use remains incipient. Although we do not analyze
large communities in this work, our techniques can be applied without modification to infer location large communities.
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cover only a tiny fraction of the communities visible in route announcements. Unfortunately, no
central database exists with the documentation of the existing communities. Network providers
catalog their communities in ad-hoc documents or in IRR databases; and some third-party websites
such as One Step aggregate this information [55]. The lack of documentation on communities and
the ad-hoc nature of available documentation constrains our understanding of Internet routing,.

A few existing projects—e.g., University of Oregon Route Views (RV) [42], RIPE NCC Routing
Information Service (RIS) [47], Isolario [25], and Packet Clearing House (PCH) [28]—collect BGP
routing tables and BGP updates at several locations to help researchers and network operators
better understand how BGP announcements reach different parts of the Internet. These projects
deploy tens of routers that collect BGP updates from hundreds of collaborating ASes and generate
datasets with millions of records every day. The datasets are openly available and valuable assets
for the research and operator communities. Since the projects’ routers reside in physical facilities
in different parts of the world, we can use them to define vantage points to observe routes tagged
with BGP communities. We use the term vantage point (VP) to refer to a router that peers with
a BGP collector, and an AS might have multiple routers peering with BGP collectors at different
locations.

3 INFERRING BGP LOCATION COMMUNITIES

We infer location communities based on the fact that ASes peer at a finite set of locations and
enforce dynamic but deterministic routing policies [1, 14, 20, 30, 41]. We first provide an overview
of the key ideas in our inference algorithm using the example in Figure 2 (§3.1) and then present
our algorithm formally (§3.2).

3.1 Overview

Consider a target AS T that tags received routes with location communities (see Figure 2). If
AS T and AS N; interconnect at a single location, then T will tag all routes received from N;
with the location community corresponding to their single interconnection. The idea that all
routes received at a specific location will have the corresponding location communities is the
core of our algorithm. Unfortunately, we cannot simply infer communities that appear on all
routes received from a neighbor Nj as location communities. First, neighbor N; may tag all of its
announcements with AS T traffic engineering communities, which would be incorrectly inferred as
location communities. Second, when AS T and AS N interconnect at multiple different locations
(indicated by the multiple links between T and N, in Figure 2), then T may choose routes received
from N; at any of these locations. Each chosen route will have a different location community
corresponding on the interconnection over which it was received. No community will appear in
all routes, and no location community would be inferred. It is challenging to infer the number
of interconnections between two ASes [22], and so we do not want our approach to rely on that
information.

We relax the requirement of a single interconnection and avoid the need for quantifying the
number of interconnections between the target AS T and neighboring ASes by looking at paths
that traverse multiple interconnections. Suppose that AS T and AS Nj; interconnect at multiple
locations and that AS T receives routes with AS paths traversing (N3, Ny, N5) (blue dashed line in
Figure 2). Let It 3, I3 4, and Iy 5 be the interconnections traversed by the routes. Interconnection I 5
is constrained by the set of interconnections between ASes T and N3 and their routing policies.
Here is a non-exhaustive list of such constraints:

(1) AS T might use multi-exit discriminators (MEDs) as a tie-breaker [46] and choose routes
from Nj received at a particular interconnection. For example, if N5 prefers to receive traffic
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Fig. 2. Example of how long sequences of ASes between origins and a target AS T constrain the set of
locations of routes received and chosen by AS T. We denote the (possibly empty) sequence of ASes between
the BGP collector peer V and target AS T as A and the nonempty sequence of ASes constraining the
locations where T may receive a BGP announcement as B (highlighted in gray). Solid black lines denote
interconnections between ASes. In this example we assume that interconnections are at different locations,
but this is not required by our algorithm.

from AS T towards I3 4 at It 3, it may set lower MED values on routes exported at I7 3, leading
AS T to choose routes received at It 5 over routes received at other interconnections.

(2) Routers systematically choose routes from the closest (lowest IGP cost [46]) interconnection.
For example, if I3 is the closest interconnection to AS T’s egress router towards the vantage
point at V, then the egress router will choose and export routes from Nj received at It 3.

(3) Routes may not be accepted by AS T or exported by AS N3 at some interconnections, par-
ticularly when ASes T and N; have a complex peering relationship [20]. For example, if T
and Nj peer in Europe, but T buys transit from Nj in the US, T will receive routes from Nj’s
peers and providers only in the US (e.g., It 3).

The constraints imposed by the set of interconnections and routing policies between each
pair of ASes in a route compound over consecutive AS hops. In particular, interconnection I 4 is
constrained by the interconnections between ASes N3 and Ny as well as their routing policies; and
similar constraints apply to Iy 5. AS T’s routes exported towards vantage point V that traverse a
constraining sequence of ASes (like (N3, N4, N5)) will only be received by AS T at a small set of
locations, possibly a single one. Looking at the problem another way, for VP V to observe routes
from AS T traversing (N3, Ny, N5) and received at different interconnections, then N3 needs to
receive and choose routes through (Ny, Ns) at different interconnections, which implies Ny receives
and chooses routes from N5 at different interconnections.

We sidestep incorrect inferences for origins that tag all their announcements with traffic engi-
neering communities by combining observations on multiple routes from different origins. In the
example, routes originated by ASes N, N7, and Ng reach AS T through the same sequence of transit
ASes. The chance that all these origins tag their announcements with AS T traffic engineering
communities is low, which allows us to correctly remove traffic engineering communities from
the set of inferred location communities. In our algorithm, we require routes from a configurable
number of different origin ASes to infer location communities.

3.2 Inference Algorithm

Our algorithm looks for routes from multiple origins (e.g., N, N7, and Ns in Figure 2) traversing
an overlapping sequence of ASes before reaching a target AS T (e.g., (N3, N4, N5) in Figure 2), and
infers communities from T that appear on a significant fraction of routes as location communities.

We split a route’s AS path into five segments (V, A, T, B, S), where V is the AS containing the
vantage point, T is the target AS whose location communities we will infer, A is a possibly-empty
sequence of ASes between V and T, B is a nonempty sequence of ASes following T, and S is a
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Table 1. Summary of Notation.

VAR DESCRIPTION
AS hosting a BGP vantage point
Target AS whose location communities we are inferring

SN

Sequence of ASes between V and a target AS T

Sequence of ASes after AS T constraining route propagation

Suffix containing all ASes after 8 up to the origin AS

Set of routes traversing a sequence of ASes

Set of routes tagged with community ¢

Set of routes traversing AS T or any of T’s siblings

Koriging | Minimum number of distinct origins in R for inference

Kprev Minimum fraction of routes in R with community for inference (prevalence)
Kglter | Maximum hitting set size over routes with location communities that do not
traverse the community’s AS or any of its siblings

o

DALY

~

nonempty suffix containing all ASes after 8 up to and including the origin AS. We consider that 8
constrains route propagation and the interconnections where AS T’s chosen routes are received.
AS V may be considered the target T, in which case V = T. An announcement needs to have an AS
path with at least three ASNs to support inferences. In the cases with exactly three ASNs, we have
(V,AT,B,S) =3, whereV=T,A=0,|8B|=1,and |S| = 1. In Figure 2, V # T and are shown
explicitly, A is implicit, and B = (N3, N4, N5). The blue line in Figure 2 captures three routes from
origins Ng, N7, and Ng; the suffix S of each route contains only the origin AS.

We denote by R(V, A, T, B) the set of routes from one specific vantage point that traverse the
sequence of ASes given by (V, A, T, B). Each route r € R has a different nonempty suffix S,.
Table 1 summarizes the notation, and Algorithm 1 shows the pseudocode.

3.2.1  Minimum number of origins. For any combination of V, A, T, and B from each vantage point,
we consider the set of routes R(V, A, T, B) for inferring location communities if R(V, A, T, B) con-
tains at least Korigins distinct routes. In other words, we require announcements from at least Korigins
distinct origin ASes to avoid incorrect inferences when origin ASes tag all their announcements
with AS T traffic engineering communities (Lines 3-6 in Algorithm 1.)

3.22 Community prevalence. One could require a BGP community from the target AS T to appear
on all routes in R(V, A, T, B) in order to infer it as a location community. However, Internet
routing information is often incomplete or inconsistent, e.g., due to delayed route propagation [34]
or ASes that remove BGP communities from announcements.? Rather than requiring a community
to appear on all routes, we relax this requirement to allow for incompleteness and inconsistency in
BGP dumps or route propagation, and infer any community from AS T or its siblings that appears
on at least a fraction Kprey of routes in R as a location community (Lines 7-13 in Algorithm 1).
We have observed that ASes often tag routes with location communities of a sibling AS. Sibling
ASes are operated by the same organization and often share routes and operational practices
[13, 14]. Sibling ASes may share BGP communities to avoid defining and maintaining multiple sets
of communities for different ASes belonging to the same organization. Sharing of BGP communities
may also happen during mergers, when updating AS numbers requires reconfiguration of BGP
sessions and coordination with peering networks. As an example, in 2018, after Level3’s and Global
Crossing’s merger [8, 31], we observed routes with AS paths traversing Global Crossing’s AS3549

2BGP communities are a transitive attribute and ASes are not supposed to arbitrarily remove them from routes [5]. However,

filtering of BGP communities is available as a router configuration option from most vendors. Recent work reports that 25%
of ASes filter communities from routes [37, 38].
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Algorithm 1 Inference of Location Communities

1: for each vantage point v do

2 L, — 0 {Set of location communities inferred from v’s routes}
3 for each R(V, A, T, B) in routes from v do

4 if |[R(V,A,T,B)| < Korigins then

5: continue

6 end if

7 C « all communities from AS T or of a sibling of T appearing in R(V, A, T, B)
8 for each community ¢ € C do

9: N, « number of routes in R(V, A, T, B) with ¢
10: if No + |R(V, A, T, B)| 2 Kprev then

11: Ly, — L,U{c}

12: end if

13: end for

14 end for

15:  for each community ¢ € £, do

16: R, « set of routes with ¢

17: Rr « set of routes whose AS paths traverse ¢’s AS or any of its siblings
18: Fe — R \ Ry

19: if size of the minimum hitting set of ¥ > Kgiter then

20: Ly — Ly\ {c}

21: end if

222 end for

23: end for

24: return |J L, for all vantage points v

tagged with Level3’s location communities. Thus, when processing R(V, A, T, B), we try to infer
communities from T or any of T’s siblings as location communities (Line 7, Algorithm 1).

3.2.3 Removing communities unrelated to location. We develop a heuristic to filter out BGP commu-
nities that are unlikely to be location communities. We expect a location community to be tagged
when an AS receives a route. Thus, a location community from AS T should only appear on routes
whose AS path includes AS T or one of its siblings.

Unfortunately, databases identifying sibling ASes are challenging to build and may be incomplete,
leading direct application of the heuristic to incorrectly discard inferred location communities.
For example, we observed several routes traversing AS286 and AS5580 tagged with location
communities from GTT’s AS3257. Manual querying of ARIN’s IRR indicates that these three ASes
are siblings, but they are not identified as such in CAIDA’s sibling database (Section 4).

Another issue is that there are ASes that seem to tag routes with location communities of other
ASes, with no apparent sibling relationship. For example, we observed announcements traversing
AS20473 (Constant) tagged with location communities from AS1299 (Telia).®

We relax the heuristic to allow for missing sibling ASes and ASes that reuse or incorrectly tag
announcements with another AS’s location communities. We try to identify cases where a small set
of ASes can be blamed for the tagging of a target AS T’s communities on routes that do not traverse
T or any of T’s known siblings. In these cases, we do not filter out inferred location communities.

3 Although we could not establish a sibling relationship between AS20473 and AS1299, we plan to investigate this further as
BGP community cross-tagging might be a possible vector for identifying sibling ASes.
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More precisely, let R, be the set of routes tagged with community ¢ from AS T (R, is a superset
of, and usually much larger than, the set R(V, A, T, B) used to infer c as a location community), and
let Rr be the set of routes whose AS paths traverse AS T or any of T’s known siblings. We ignore
routes that traverse T or any of T’s siblings, and consider the route announcements 7. = R. \ Rr
when deciding whether to discard an inferred location community. We compute the minimum
hitting set of . and discard c as a location community if the set contains more than Kgjer ASes
(Lines 15-22 in Algorithm 1). In other words, we keep location community inferences only when
few ASes are to blame for AS T’s communities showing up on routes that do not contain T or any
of T’s siblings. The minimum hitting set is the smallest set of ASes W such that the intersection
of ‘W and each route r € ¥ is nonempty. The minimum hitting set problem is equivalent to the
NP-complete minimum set cover problem [15, 33], and we solve it using a greedy heuristic, which
provides a tight approximation of the optimal solution [52].

3.2.4 Joining inferences across collectors. We infer location communities from route announcements
observed by each vantage point in isolation (loop in Line 1, Algorithm 1), in line with the ideas of
using each BGP collector as a vantage point and 8 to constrain where chosen routes are received.
After we infer communities from each vantage point, we take the union across vantage points from
all collectors as the database of inferred location communities (Line 24 in Algorithm 1). Although
we show that few vantage points are sufficient to infer most communities (§5), some communities
are only visible from specific vantage points, so taking the union across collectors and vantage
points maximizes coverage.

3.3 Implementation

Our implementation consists of over 2,100 lines of Python, with extensive use of the Pandas library
for data processing. We use Snakemake [43] to automate our database construction. Our system
can be configured to automatically process multiple RIBs from different BGP collectors, generate
various intermediate files that are reused in subsequent steps, and distribute the processing into
multiple servers to speed up the computation. Our code, the database of inferred communities, and
our manually built ground-truth dataset are available online [32].

4 DATASETS

We use BGP feeds from RouteViews [42], RIPE RIS [47] and Isolario [25].* Unless specified otherwise,
we use the first available route table dump (RIB) from each BGP route collector on December 2017,
2018, 2019, and 2020. We use BGP RIBs to process stable routes, but BGP updates could also be used,
which would possibly increase the number of observed communities. Table 2 shows a summary
for the route table dumps from December 2017 and 2020. We use CAIDA’s AS-to-Org database for
identifying sibling ASes [3]. We built and evaluated an alternate sibling database by grouping ASes
whose abuse contact e-mails have the same domain. We omit these results as they are quantitatively
similar to those obtained with CAIDA’s AS-to-Org database. When processing routes, we remove
repeated occurrences of an ASN in the AS path as our goal is to look at the sequence of ASes
traversed by the route regardless of AS path prepending. We also discard all routes containing
AS-sets, as they usually result from aggregation of routes traversing different ASes.

Table 3 shows a summary of our manually-built ground-truth dataset of BGP community seman-
tics for ASes that have public information available. We obtain ground-truth information from IRR
databases and documentation from network websites, and manually classify each community on
June 2021. The ground-truth dataset contains a large number of communities because some ASes
specify certain types of communities using ranges, and we consider all possible values defined

4We do not use PCH feeds [28] as they do not include BGP communities.
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Table 2. Summary of RIB dumps of December 2017 and 2020 for RouteViews, RIPE RIS, and Isolario.

Project Collectors VPs Total ASes Prefixes Communities Routes
(thousands)  (millions) (thousands) (millions)
Year 2017 2020 | 2017 2020 | 2017 2020 | 2017 2020 | 2017 2020 | 2017 2020
RV 17 20 192 232 61 72 | 0.86 1.07 44 64 96 184
RIPE 20 20 330 510 61 72 | 0.80 1.03 46 71 115 311
Isolario 4 5 83 145 60 72 | 0.79 1.12 34 67 66 209
Total (unique) 41 45 529 738 61 73 | 090 1.22 56 79 277 704

Table 3. Number of communities for ASes in our ground-truth dataset by type and geolocation communities
in CAIDA’s database [4].

ComMUNITY TYPE CAIDA
NETWORK (AS) GEo DEV/LINK RELATION ACTION [4]
TIER 1 [60]
Verizon (701) 0 0 0 11 0
NTT (2914) 93 0 2 44 39
GTT (3257) | 10,000* 11,000* 1,783 13,023* 68
Deutsche Telekom (3320) 24 0 3 0 17
Level 3 (3356) 178 0 2 5 82
PCCW Global (3491) 44 0 0 21 24
Lumen (3549) 239 239 239 87 28
Orange (5511) 46 0 0 55 11
Zayo (6461) 804" 0 6 152 0
Telecom Italia (6762) 51 0 1 133 42
TrER 2 [61]
Cogent (174) 1 0 0 47 31
TDC (3292) 0 0 3 119 12
Easynet (4589) 300" 0 0 3 103
British Telecom (5400) 0 0 0 40 0
Comcast (7922) 0 0 0 7 0
TortaL
[ 12,283 11,239 2,039 13,747 [ 457

* Ranges covering automatically-generated community values, e.g., from geographical coordinates.

in the range (although our evaluation indicates actual utilization is sparse). For example, GTT
(AS3257) defines a rule saying that communities in the 3257:30000-3257:39999 interval identify
private interconnections [53]. In this case, we consider all 10,000 communities in the interval as
location communities in our ground-truth database.

We break informational communities into those that identify a geographical location, a device,
a link on a router, or a peering relationship; and we also identify action communities. We also
show the number of communities from the ASes in our database in CAIDA’s geographic location
BGP communities database from April 2019 [4]. Our ground truth dataset includes 1.7 times
more geolocation communities than CAIDA’s database for the ASes in our dataset (not including
autogenerated communities), but 13% of the geolocation communities in CAIDA’s database are not
in our ground-truth dataset.

Manual analysis indicates that these differences are due to new geolocation communities being
created since CAIDA’s database was built, and a few changes to previously-assigned ones.

5 EVALUATION

In this section we evaluate our algorithm. We report precision and recall, and show how they can
be prioritized by tuning the configuration of our algorithm (§5.1). We discuss community visibility
in BGP dumps and how additional vantage points could improve recall (§5.2). We quantify the
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Table 4. Precision, recall, inferable recall, F1-score, and the number of inferred, correctly inferred, and
inferred but undocumented location communities on December 2020. We show results for our algorithm’s
default configuration as well as configurations that prioritize high precision and high recall.

Inferable INFERRED COMMUNITIES
CONFIGURATION ‘ PrecisioN | Recall Recall | F1 Score | Total Correct Undocumented
Prioritize precision 0.93 0.72 0.89 0.81 946 878 513
Default configuration 0.91 0.80 0.87 0.85 | 1081 983 598
Prioritize recall 0.87 0.81 0.89 0.84 | 1150 995 634

impact of each parameter on our algorithm’s accuracy and show that inferences are not sensitive to
parameter values (§5.3). We compare our database of location communities with CAIDA’s manually-
built dataset and show we achieve competitive precision and significantly higher recall (§5.4).
Finally, we present a characterization of the adoption and stability of location communities (§5.5).

5.1 Inference Accuracy

We quantify inference accuracy with precision and different views of recall [27]. Precision is the ratio
between the number of correctly inferred location communities (true positives) and the number
of inferred communities (positives). As our ground-truth database contains many communities
that are not yet used (i.e., communities described as ranges on the providers’ websites but not
yet allocated), it would be unreasonable to use them to compute the recall. Furthermore, many
communities that are defined in the ground-truth dataset never show up in BGP dumps, possibly
because they are not in use or because vantage points lack visibility. We compute recall considering
only the communities that appear in the BGP dumps. More precisely, we define recall as the ratio
between true positives and the number of location communities in our ground-truth database
that also appear in the BGP table dumps. We also report the inferable recall, defined as the ratio
between true positives and the number of communities that our algorithm considers for inference,
i.e,, communities that appear on routes from at least Kyigins origin ASes.

Table 4 shows the overall accuracy of our inferences for its default configuration, with Korigins = 2,
Kprev = 0.2, and Kijer = 1 on December 2020. We evaluate the impact of each parameter and discuss
the default choices in Section 5.3. Table 4 also reports the total number of inferred communities
across ASes in our ground-truth dataset, the number of correctly inferred location communities,
and the number of inferred location communities that are undocumented in the ground truth.
Communities may be undocumented in the ground-truth because they are meant for private use
of the owning AS, or may be incorrectly tagged on routes. Because we cannot know whether
the inferences for undocumented communities are correct or incorrect, we ignore them when
computing precision and recall.

Our results show that inference precision is high. We find that 34.3% of location communities
in the ground-truth that are not auto-generated never appear in the BGP dumps, which makes
inference impossible. However, we do find reasonably high recall for observed communities. Results
for configurations prioritizing high precision (Korigins = 6, Kprev = 0.5, and Kgjeer = 1) and high
recall (Korigins = 2, Kprev = 0.1, and Kiyier = 2) indicate that our algorithm can be configured to trade
off precision against recall depending on the operator’s, researcher’s, or application’s needs.

Table 5 shows the breakdown of the number of communities per category. The seen columns
show the number of communities in the BGP dump and in our ground-truth dataset, and the
inferred columns show the number of communities we infer as location communities. Despite an
imbalanced dataset and the high number of false positives for action communities, our algorithm
would still yield a positive predictive value [57] of 79% even if location and action communities
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Table 5. Number of communities from ASes in our ground-truth dataset seen in BGP and inferred as
location communities by our algorithm. We split communities by type, as given in the ground truth (location,

relationship, and action), and also show results for undocumented communities that do not show up in the
ground truth.

CoMMUNITY CATEGORY

LocaTioNn RELATIONSHIP ACTION UNDOCUMENTED
CONFIGURATION SEEN INFERRED SEEN INFERRED SEEN INFERRED | SEEN INFERRED
Prioritize precision 987 878 14 13 181 55| 675 513
Default configuration | 1123 983 15 13 235 85 911 598
Prioritize recall 1123 995 15 15 235 140 911 634
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Fig. 3. Number of inferred communities and recall as a function of the number of collectors.

were balanced.” We can increase the precision for action communities by tuning the algorithm’s
parameters (e.g., prioritize precision). We discuss these limitations and future work in Section 6.

5.2 Community Visibility and Recall

Figure 3 shows the cumulative distribution of the number of inferred location communities (left
y-axis) and the number of inferred communities (right y-axis) across collectors (x-axis). We rank
collectors on the x-axis by picking the collector that supports the most inferences, and then
iteratively selecting collectors by the number of new community inferences they support. Note
that we can infer a large number of communities in one collector, but those communities might
have already been inferred in a previous collector. That explains why we see some shorter bars on
the left of higher ones. For example, we inferred 17 communities from routes exported by vantage
points connected to the collector at rank 31, and 13 of those communities were new, while we
inferred 4,525 communities from routes exported by vantage points connected to the collector at
rank 35, and only 10 communities were new.

The number of inferred communities varies significantly across collectors, which can be ex-
plained by the different number of vantage points. We observe correlation (Pearson correlation
coefficient of 0.7) between the number of vantage points of a collector and the number of inferred
communities (not shown).

We also find that there is significant overlap among communities inferred from different collectors.
This explains why the fraction of inferred communities spikes to 61% with a single collector, and

SThis ignores relationship communities, which we expect to be few and not balanced, as an AS generally defines one
community for each type of relationship (provider, peer, or customer).
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then grows slowly. However, even though the growth is slow as a function of the number of
collectors, the tail of the distribution is long, indicating that some communities can only be inferred
by specific vantage points.

These results indicate that additional collectors and vantage points would allow inferences to
achieve higher coverage and recall, but that the existing set of collectors is sufficient to enter the
region where additional collectors will provide diminishing returns on community visibility.

5.3 Algorithm Parametrization

In this section we quantify the impact of configuration parameters in our algorithm. Our results
show that our algorithm is not sensitive to parametrization and that most parameter values yield
accurate predictions.

5.3.1 Number of origins. Figure 4 quantifies the impact of Kyyigins on precision and recall. We
observe that precision increases slightly with Kigins as we require routes from more diverse
origins. One factor contributing to improving precision is that larger Koyigins makes the algorithm
less susceptible to incorrect inferences when origins tag all their announcements with another
ASes’s traffic engineering communities. However, we observe that recall decreases as Korigins
increases. This happens because the number of routes in R(V, A, T, B) traversed by Koyigins distinct
origins decreases, and thus the number of routes useful for inferring communities also decreases. The
limited improvement in precision implies that origins rarely tag all their announcements with traffic
engineering communities of other ASes. We argue that any choice of Kqrigins is reasonable as it trades
off precision and recall. Values of Koigins larger than one have the advantage of avoiding incorrect
inferences in situations where an AS tags all its routes with traffic engineering communities. We
choose Korigins = 2 as the default value in our algorithm as an intermediate value that prevents a
single origin causing incorrect inferences without significantly degrading recall.

Figure 4 also shows the recall of inferable communities, i.e., communities from ASes in AS path
segments shared by at least Korigins origins. This is relevant because we cannot make inferences
for communities that do not appear in paths from enough different origins. We find that recall for
inferable communities increases with Korigins, indicating that our algorithm performs better on
communities that appear on paths shared by many origins, which may be a result of a lack of path
diversity from these origins towards the target AS T, funneling traffic through fewer locations.
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Fig. 6. Most inferred location communities appear on routes traversing the community’s controlling AS or
one of the controller AS’s siblings (not shown). For 85% of the inferred location communities that appear on
routes that do not traverse the controlling AS or one of its siblings, we find that a single AS can be blamed
for tagging the community (Figure 6a, x = 1). Filtering inferences when a community appears on a diverse
set of routes that do not traverse the controlling AS or one of its siblings improves the precision of our
inferences without significantly reducing recall (Figure 6b).

5.3.2  Community prevalence. Figure 5 shows the impact of Ky, the fraction of routes in RV, AT,
B) that a community needs to appear in to be inferred as a location community. Similar to Figure 4,
we find that precision and recall are high and do not vary significantly as a function of Kpey. This
happens because (i) location communities have high prevalence, so increasing Kpey has small
impact on the number of true positives, and (ii) other communities have low prevalence and get
promptly filtered as we increase Ky from zero. We set Ky = 0.2 as the default value in our
inferences, i.e., we require that a community appears in at least 20% of the route announcements in
R(V, A, T, B) tuple to infer it as a location community.

5.3.3 Filtering inferences. We filter the inference of an AS T’s community from our database of
location communities if it appears on paths that do not traverse T or any of T’s siblings and the
appearances cannot be blamed on Kgjer or fewer ASes.

Figure 6a shows the distribution of the number of ASes in minimum hitting sets for inferred
communities. We observe that the majority of hitting sets (85%) have only one AS, which implies
that a single AS can be blamed for occurrences of those communities on paths that do not traverse
the community’s AS (or any sibling). A possible explanation for this finding is that these single
ASes may be undocumented siblings of the community’s AS or may incorrectly tag routes with
the community. Figure 6b shows the impact of Kgjier 0n precision and recall. We plot the x axis
for decreasing values of Kgjer as the filter becomes more restrictive (i.e., we infer fewer location
communities) as Kqrer decreases. The results show that values of Kgiter below 3 have a slight impact
on precision, without impacting recall. This indicates that the proposed filter accurately identifies
and prunes incorrect inferences. We set the default value of Kgjer = 1 in our algorithm.

We also quantify how often ASes use communities from one of their siblings. We say an AS A
uses a community from its sibling AS T when a community owned by T appears in an AS-path that
includes A and does not include T. We find 95 ASes using communities defined by their siblings
in BGP dumps (across all ASes and all communities regardless of semantics), and our algorithm
infers location communities for 44 of these ASes. This result indicates that siblings do share BGP
communities, and accounting for this sharing is useful when filtering location communities.
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limit where chosen paths are received by a target AS T, improving precision, but fewer AS paths are long
enough to support many constraining ASes, reducing recall.

5.3.4  Number of constraining ASes. Figure 7 shows the impact of the number of constraining ASes
after T in the AS path when making inferences, i.e., the size of 8 in (V, A, T, B) tuples. As discussed
in Section 3.1, more constraining ASes limit the set of locations where chosen routes arrive at the
target AS T, leading to higher precision. However, AS paths in the Internet are usually short [6],
and there are fewer long AS paths to support inferences with long sequences of constraining ASes,
which ultimately limits recall. Although we consider all sequences with at least one constraining
AS, our algorithm can be configured to require more constraining ASes, which will lead to higher
precision at the cost of recall.

5.4 Comparison with CAIDA’s Database

We now turn to properties of our inference algorithm and compare the constructed database with
CAIDA’s public database. Table 6 shows statistics for geolocation communities in both databases
(first rows) and for location communities in our database (last row). We compute recall of geolocation
communities considering only the subset of geolocation communities in the ground-truth database.
We do not compute precision and the number of geolocation community for our inference algorithm
as it does not differentiate between geolocation and location communities.

We find that CAIDA’s database has high precision, but not 100%. Investigation of incorrect
inferences indicate they are concentrated on Tier-2 ASes and explained by out-of-date information,
e.g., resulting from the reassignment of community values. Also, CAIDA’s community database has
limited recall, which is somewhat expected for a manually-built database. Our inference algorithm
achieves significantly higher recall than CAIDA’s database even for geolocation communities.

The last row shows results for all location communities inferred by our algorithm. We find that
recall increases slightly compared to when we consider only geolocation communities. We also find
that the precision is competitive with that of manually-constructed but not up-to-date databases.

5.5 Adoption and Stability of Location Communities

Figure 8 shows the number of distinct BGP communities observed in the BGP route dumps, the
number of communities inferred as location communities, the number of ASes covered in the BGP
route dumps, and the number of ASes controlling the observed communities. We find that BGP
communities are becoming more popular, with a 51% increase in the number of distinct communities
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Table 6. Comparison between CAIDA’s manually-constructed database and our automatic inferences.

COMMUNITY COMMUNITIES
TyYPE DATABASE | REcaLL  PrecisioNn Total Correct
Geolocation CAIDA 0.21 0.86 303 261
Inferences 0.77 - - -
Location Inferences 0.80 091 1081 983
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Fig. 8. BGP community use in the Internet, quantified as the number of distinct BGP communities observed,
number of inferred location communities, and the number of ASes controlling BGP communities.

observed in the wild between 2017 and 2020 (50% increase for location communities). Not only are
there more communities, but they also belong to a larger number of ASes.

Figure 9 evaluates how stable are location community inferences over time. Figure 9(a) shows
the total number of communities inferred each day over the course of the first week of December
2020. We report the number of new communities never seen before (green line), the number of
inferences on each day (orange line), and the cumulative number of communities inferred (blue
line). We find that the set of inferred communities does not change significantly over the course of
one week. Figure 9(b) is similar, but shows communities inferred on the first day of each month
in 2020. We find that there is some stability, but distinct communities keep accumulating over
time. This result can be explained by changes in topology accompanied by the creation of new
location communities, e.g., when networks establish PoPs in new locations, or routing dynamics,
e.g., new peering relationships may lead to route changes that allow the inference of new location
communities. The change over time motivates an automated algorithm like the one we propose
for keeping the community database up-to-date. The drop in the number of inferred communities
around June 2020 can be mostly attributed to the disappearance of AS286’s communities from BGP
dumps, likely a result of AS286’s acquisition by GTT (AS3257) in December 2019.

6 LIMITATIONS AND FUTURE WORK

We require announcements from Korigins distinct origin ASes to sidestep the case that an origin AS
tags all its announcements with traffic engineering communities of T. Unfortunately, if any AS in
8 tags all announcements from all origins with one of T’s traffic engineering communities, then
our algorithm would incorrectly infer a traffic engineering community as a location community.
Our algorithm will also falsely infer a location community when AS T tags all received routes from
a neighbor with a relationship community (e.g., peer, customer, or provider). However, the decrease
in precision is not significant because an AS generally defines a small number of relationship
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Fig. 9. Stability of location community inferences over time. Our results show that location communities
are stable over short timescales, but that new location communities appear over time. This motivates an
automated inference algorithm to keep community databases up-to-date.

communities, as we show in Section 5. We can avoid this case by requiring that a community
appears in routes from neighbors with different relationships at the expense of a lower recall. We
will investigate this trade-off in future work.

Our algorithm is unable to make inferences when ASes between the BGP collector and the target
AS T remove communities from BGP announcements [38]. As the number of collectors on the
Internet is large, which provides visibility from multiple vantage points, we believe (based on the
results in Section 5) that we can still achieve high recall even if some ASes remove the communities.

We built our ground-truth database from Tier-1 and Tier-2 ASes because we could not find
documented communities for ASes lower in the Internet hierarchy. However, we expect our
techniques to work well for any target AS T as long as routes received by T have at least Koyigins
and a set B with at least one AS, as we discuss in Section 5.3.4.

We believe other heuristics may further improve our ability to infer the semantics of BGP
communities. We plan to investigate whether we can identify traffic engineering communities (e.g.,
“do not announce in Europe”) correlating changes in AS-paths to specific BGP communities. We
expect a better understanding of the semantics of BGP communities will support new solutions; for
example, we plan to investigate whether announcements where AS x uses another AS y’s location
communities can be used to infer whether ASes x and y are siblings.

7 RELATED WORK

Characterization of community usage. Streibelt et al. [56] present an extensive study of BGP
community usage on the Internet. The study shows the growing use of communities in the last few
years and how communities propagate much further than they should, sometimes reaching ASes
several hops away from the intended target. Unintended forwarding of communities to upstream
neighbors allows adversaries to trigger remote blackholing to disconnect destinations or to influence
route propagation to steer traffic through malicious actors without resorting to a prefix hijack. The
authors argue that standardization and better documentation of BGP communities could prevent
such abuses, which our paper is one step towards. Krenc et al. [38] propose a passive algorithm to
infer how ASes handle communities. BGP communities are a transitive attribute of BGP updates,
which means they should propagate from one AS to the next; however, routers may be configured
to filter them. Krenc et al.’s algorithm infers whether an AS forwards or discards communities in
BGP announcements. Their algorithm, like ours, also uses only passive measurements from BGP
collectors to infer the different types of ASes. We note that, although filtering of BGP communities
reduces recall of our algorithm, it does not impact precision of inferences.
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Standardization efforts. Quoitin and Bonaventure [44] discuss the two most common utiliza-
tion of BGP communities in the Internet: communities that tag routes received from a specific peer
(e.g., to indicate the type of relationship) or at a specific location, and communities that indicate how
external peers should redistribute a route to perform, for example, interdomain traffic engineering.
Donnet and Bonaventure [11] extend the classification in [44] and propose a taxonomy of BGP
communities that allows network operators to document their communities better. The first level of
the taxonomy divides the communities into inbound, outbound, and blackhole. Subsequent levels
specialize their applications into several categories: tagging, route redistribution, type of peer,
IXP, geographic, and prepend. Birge-Lee et al. [2] augment the taxonomy in [11] and present an
extensive discussion about where communities should not be accepted (e.g., ASes should not accept
communities from peers or providers) or propagated (e.g., community propagation should be limited
to two hops). These measures, however, can significantly limit legitimate uses of communities.
Unfortunately, network operators have not embraced the proposed taxonomies, challenging the
development of automated tools for cataloging existing communities.

Inference of community semantics. Recent efforts use natural language processing (NLP) to
automatically identify the semantics of BGP communities from Internet Routing Registries and
support webpages of network providers [18, 21]. These data sources are generally incomplete and
outdated, significantly limiting the number of communities that approaches based on NLP can
achieve. On the other hand, our approach automatically generates an up-to-date database contains
BGP communities currently in use by the network operators, increasing coverage and precision.

Legitimate uses of BGP communities. Determining the relationship between two ASes is a
hard problem, but it has many applications [41]. In particular, network operators can detect if route
announcements do not violate practical norms, such as advertising routes from a peer to a provider,
that may lead to route leaks and disrupt the traffic of large portions of the Internet. Giotsas et
al. [18] shows that a reliable dictionary of BGP communities can significantly improve the detection
of infrastructure outages, Feldman et al. [12] use communities to locate routing instabilities, and
Giotsas et al. [19] look for changes in communities to identify intradomain path changes.

Malicious uses of BGP communities. Some works have shown that BGP communities can
be a vector for malicious attacks [2, 56]. Interception attacks based on prefix hijacks generally
disrupt significant portions of the Internet [49], which induces quick detection and remediation
by network operators. SICO [2] builds community-based interception attacks that target small
portions of the Internet and are harder to detect. Streibelt et al. [56] present several scenarios where
a malicious actor can abuse BGP communities to launch several types of attack, as we mentioned
above. These attacks generally rely on action communities, such as the blackhole and no-export
communities, and improperly configured routers that forward non-transitive communities. While
location communities, the focus of our work, can improve route visibility, their use as an attack
vector is limited as they do not directly trigger any action on a remote network.

Inference of AS relationships. Autonomous Systems connect to each other and exchange
routes based on business relationships. AS relationships can be broadly classified into four categories:
customer-to-provider (c2p), provider-to-customer (p2c), settlement-free peering (p2p), and sibling-
to-sibling (s2s). Unfortunately, these business relationships are rarely disclosed, which reduces the
amount of metadata available to annotate the Internet’s AS graph, and consequently complicates
the deployment of many applications such as congestion detection between ASes with specific
peering agreements [9] (e.g., congestion on an ISP link to a client), malicious AS identification,
and deployment of BGP security mechanisms [17, 36, 51]. For the past 20 years, researchers have
proposed different techniques to infer AS relationships [13, 20, 24, 30]. Most techniques assume
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that BGP paths follow the valley-free property, which states that a path is a sequence of zero or
more c2p links, followed by zero or one p2p link, and zero or more p2c links [13]. Jin et al. and
Giotsas et al. [20, 30] argue that AS relationships are more complex and propose algorithms to infer
non-conventional peering practices, such as hybrid relationships, in which ASes have different
relationships depending on the peering location, and non-valley-free routing resulting from sibling
relationships. A few efforts [44, 59, 62] propose or discuss the use of BGP communities to infer AS
relationships and show that they enable great accuracy. Our algorithm uses CAIDA’s AS-to-Org
database [3] to detect sibling ASes, but does not rely on AS relationship inferences. A more complete
database of sibling ASes could improve the precision of inferences.

8 ETHICAL CONCERNS

To build our community database, we use publicly available datasets voluntarily exported to BGP
collectors by autonomous systems on the Internet. Our techniques do not send active probes.

Location communities are informational communities that do not trigger any action on peering
or remote ASes. The known reported attacks using BGP communities rely exclusively on action
communities [2, 56]. Furthermore, our database lists only the semantics of the communities and not
the specific geographic locations they represent, so an attacker would have to glean complementary
information from diverse data sources to plan a targeted attack.

Our community database will be valuable for network operators and researchers to reason about
traffic dynamics on the Internet, improve network performance, and check policy compliance. We
believe that the positives of a public database of location communities far outweigh the possibility
of misuse for malicious activities.

9 CONCLUSION

In recent years, the use of BGP communities has increased significantly. As routing policies
have become more complex and performance requirements have become more stringent on the
Internet, network operators have to deploy ever more elaborate traffic engineering solutions.
Traffic engineering solutions can utilize information and action BGP communities to achieve
operational goals, and our results indeed indicate an uptick in the adoption of BGP communities.
Unfortunately, there is no standard for specifying semantics nor a centralized repository that
catalogs BGP communities, which complicates their use by network operators and researchers.

Our work is the first we are aware of to use routing announcements publicly available from
BGP collectors to infer the semantics of BGP communities. We leverage the existing routing BGP
collectors as a positioning system to correlate route announcements with the locations that a route
traverses. Our algorithm automatically infers location communities and achieves high precision
(93%) and recall (81%) for communities from a set of Tier-1 and Tier-2 ASes. Compared with the
manually built database from CAIDA [4], our inference algorithm generates a database with similar
precision and much higher recall. We make our database with 15,505 inferred location communities
as well as our code publicly available [32].
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