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Abstract
We introduce the Read-Only Semi-External (ROSE) Model
for the design and analysis of algorithms on large graphs. As
in the well-studied semi-external model for graph algorithms,
we assume that the vertices but not the edges fit in a small
fast (shared) random-access memory, the edges reside in an
unbounded (shared) external memory, and transfers between
the two memories are done in blocks of size B. A key
difference in ROSE, however, is that the external memory
can be read from but not written to. This difference is
motivated by important practical considerations: because the
graph is not modified, a single instance of the graph can be
shared among parallel processors and even among unrelated
concurrent graph algorithms without synchronization, that
instance can be stored compressed without the need for
re-compression, the graph can be accessed without cache
coherence issues, and the wear-out problems of non-volatile
memory, such as Optane NVRAM, can be avoided.

Using ROSE, we analyze parallel algorithms (some
existing, some new) for 18 fundamental graph problems. We
show that these algorithms are work-efficient, highly parallel,
and read the external memory using only a block-friendly
(and compression-friendly) primitive: fetch all the edges for
a given vertex. Analyzing the maximum times this primitive
is called for any vertex yields an (often tight) bound on the
(low) I/O cost of our algorithms. We present new, specially-
designed ROSE algorithms for triangle counting, FRT trees,
and strongly connected components, devising new parallel
algorithm techniques for ROSE and beyond.

1 Introduction
Efficient use of the memory hierarchy is crucial to obtaining
good performance. For the design and analysis of algorithms,
it is often useful to consider simple models of computation
that capture the most salient aspects of the memory hierarchy.
The External Memory model (also known as the I/O or disk-
access model) [3], for example, models the memory hierarchy
as a bounded internal memory of size M and an unbounded

external memory, with transfers between the two done in
blocks of size B. The cost of an algorithm is the number of
such transfers, called its I/O complexity. The model captures
the fact that (i) real-world performance is often bottlenecked
by the number of transfers (I/Os) to/from the last (slowest,
largest) level of the hierarchy used, (ii) that level is used
because the second-to-last level is of limited size, and (iii)
transfers are done in large blocks (e.g., cache lines or pages).
Because of its simplicity and saliency, the External Memory
model has proven to be an effective model for algorithm
design and analysis [7, 15, 51, 67, 74].

The Semi-External model [1] is a well-studied special
case of the External Memory model suitable for graph
algorithms, in which the vertices of the graph, but not the
edges, fit in the internal memory. This model reflects the
reality that large real-world graphs tend to have at least an
order of magnitude more edges than vertices. Figure 1, for
example, shows that all the large graphs (at least 1 billion
edges) in the SNAP [56], LAW [30] and Azad et al. [9]
datasets have an average degree more than 10, and over half
have average degree at least 64. The assumptions in the Semi-
External model have proven to be effective in both theory and
practice [1, 42, 57, 60, 69, 75, 76].

However, the recent emergence of new nonvolatile
memory (NVRAM) technologies (e.g., Intel’s Optane DC
Persistent Memory) has added a new twist to memory
hierarchies: writes to NVRAM are much more costly than
reads in terms of energy, throughput, and wear-out [18, 33,
42, 50, 72, 73]. Neither the External Memory model nor the
Semi-External model account for this read-write asymmetry.
To partially rectify this, Blelloch et al. [18] introduced the
Asymmetric External Memory model, a variant of the External
Memory model that charges ω � 1 for writes to the external
memory (the NVRAM), while reads are still unit cost (see
also [52]). To our knowledge, the Semi-External setting with
asymmetric read-write costs has not been studied. Although
one could readily define such a model, graph algorithms
provide an opportunity to go beyond just penalizing writes,
by eliminating writes to the external memory altogether!
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Figure 1: (Adapted from [42]) Number of vertices (n, in log-scale)
vs. average degree (m/n, in log-scale) on 52 real-world graphs
with m > 109 edges from the SNAP [56], LAW [30] and Azad
et al. [9] datasets. All of the graphs have more than 10 times as
many edges as vertices (corresponding to the gray dashed line), and
52% of the graphs have at least 64 times as many edges as vertices
(corresponding to the green dashed line).

This paper presents the Read-Only Semi-External (ROSE)
model, for the design and analysis of algorithms on large
graphs. As in the Semi-External model, the ROSE model
assumes that the vertices but not the edges fit in a small
fast (shared) random-access memory, the edges reside in an
unbounded (shared) external memory, and transfers between
the two memories are done in blocks of size B (where B is
the number of edges that fit in a block). A key difference
in the ROSE model, however, is that the external memory
can be read from but not written to. The input graph is
stored in the read-only external memory, but the output
gets written to the read-write internal memory. Unlike
general algorithms such as sorting, whose output size is
Θ(input size), graph algorithms are amenable to a read-only
external memory setting because their output sizes are often
Θ(n) rather than Θ(m), where n (m) is the number of vertices
(edges, respectively) in the graph.

The ROSE model is motivated by practical benefits
arising from two main consequences of the model:
No external memory writes: Because of NVRAM’s order(s)
of magnitude advantage in latency/throughput/wear-out over
traditional (NAND Flash) SSDs and in capacity/cost-per-byte
over traditional (DRAM) main memory, the emerging setting
for large graph algorithms is a hierarchy of DRAM internal
memory and NVRAM external memory [42, 46]. In such
settings, ROSE algorithms avoid the high performance cost
of NVRAM writes. Moreover, ROSE algorithm design is
independent of the actual costs of NVRAM writes, which vary
depending on access patterns, technologies, and whether the
metric of interest is latency, bandwidth, energy, etc. Finally,
avoiding writes means avoiding NVRAM wear-out and wear-
leveling overheads.

Table 1: Analysis of graph algorithms in ROSE, for a graph G
of n vertices and m edges, assuming m = Ω(n). ∗ denotes that
a bound holds in expectation and ‡ denotes that a bound holds
with high probability or whp (O(k f (n)) cost with probability at
least 1 − 1/nk ). † denotes the bound assumes the average degree
davg =m/n = O(logn); for larger davg , one of the logs in the depth
should be replaced by davg . B, the block size, is the number of edges
that fit in a block. D = diam(G) is the diameter of G. rsrc is the
eccentricity from the source vertex. ∆ is the maximum degree. α
is the arboricity of G. L = min (

√
m,∆) + log2 ∆ logn/log logn. ρ

is the peeling complexity of G [41]. WSP , DSP , and QSP are the
work, depth, and I/O complexity of a single-source shortest path
computation, which depends on the metric used for the FRT trees.

Problem Work Depth I/O Complexity
Triangle Counting O (αm)∗ O (α logn)‡ O (α (n +m/B))
FRT Trees O (WSP logn)∗ O (DSP logn)‡ O (QSP logn)∗
Strongly Connected Comp O (m logn)∗ O (D log3 n)‡ O ((n +m/B)

logn)∗

Breadth-First Search O (m) O (D logn)† O (n +m/B)
Integral-weight BFS O (rsrc +m)∗ O (rsrc logn)‡† O (n +m/B)
Bellman-Ford O (Dm) O (D logn)† O (D(n

+m/B))
Single-Source Widest Path O (Dm) O (rsrc logn)† O (D(n

+m/B))
Single-Source Betweenness O (m) O (D logn)† O (n +m/B)
O (k )-Spanner O (m) O (k logn)‡† O (n +m/B)
LDD O (m) O (log2 n)‡† O (n +m/B)
Connectivity O (m)∗ O (log3 n)‡† O (n +m/B)∗

Spanning Forest O (m)∗ O (log3 n)‡† O (n +m/B)∗

Biconnectivity O (m)∗ O (D logn O (n +m/B)∗

+ log3 n)‡†

Maximal Independent Set O (m) O (log2 n)‡† O (n +m/B)
Graph Coloring O (m) O (logn O (n +m/B)

+ L log∆)∗†
k -core O (m)∗ O (ρ logn)‡ O (n +m/B)
Apx. Densest Subgraph O (m) O (log2 n) O (n +m/B)
PageRank Iteration O (m) O (logn) O (m/B)

A read-only input graph: Because the graph is not modified,
a single instance of the graph can be shared among parallel
processors and even unrelated concurrent graph algorithms
without synchronization. Because data from NVRAM, like
DRAM, is brought into CPU caches that are kept coherent
by hardware, read-only access means that these cache lines
will avoid the costly invalidation that arises with concurrent
readers and writers (or concurrent writers). Finally, graphs
are often stored in compressed format [41, 65], to reduce
their footprint and the memory bandwidth needed to access
them. Accessing the graph in a read-only manner still
requires runtime decoding, but avoids runtime re-encoding
overheads and allows for better (offline, encode-time heavy)
compression [14, 30].

Another twist introduced by NVRAM is that, unlike
SSDs, read latency and throughput are only modestly worse
than DRAM [50, 72]. Thus, while the I/O complexity (num-
ber of external memory reads) remains a good measure, it
may no longer be the dominant cost in practice. Accord-
ingly, ROSE includes separate measures for computation
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work and depth, standard measures for analyzing parallel
algorithms [39, 53].

Algorithm design in the ROSE model. While the
benefits of restricting the external memory to be read-only are
clear, the question remains as to whether one can design fast
and efficient algorithms in the ROSE model. We show that
indeed such algorithms exist. Specifically, we analyze parallel
algorithms (some existing, some new) for 18 fundamental
graph problems. As shown in Table 1, most of the algorithms
are work-efficient and highly parallel (often O(polylog(n))
depth). Interestingly, all the algorithms read from the external
memory using only a single primitive, FETCHEDGES(v):
Fetch all of the incident edges for a given vertex v. Because
the ROSE model makes the reasonable assumption that the
edges for a given vertex are stored consecutively in external
memory (optionally compressed), this leads to good I/O
complexity. Analyzing the maximum times FETCHEDGES
is called for any vertex yields an (often tight) bound on the
(low) I/O complexity of our algorithms. Although the bounds
(typically, O(n +m/B)) may not be optimal for low-degree
graphs, many real-world graphs have average degree at least
B, in which case the I/O complexity is optimal. In particular,
the block size in bytes of Optane DC Persistent Memory is
256. Assuming say 4 bytes per edge, this means 64 edges fit
in a block, i.e., B = 64 (recall that B is measured in edges not
bytes). Figure 1 shows that 52% of the graphs have average
degree at least 64.

Our new algorithms are specially-designed ROSE algo-
rithms for triangle counting, FRT trees, and strongly con-
nected components (SCC). Many interesting algorithmic
techniques are developed in these algorithms. For triangle
counting, our new algorithm requires integrating ideas from
the classic Chiba-Nishizeki triangle counting algorithm to
achieve work-efficiency, low depth, and low I/O complex-
ity. For FRT trees, we propose a search-centric view of the
algorithm, which is different from all previous algorithms
and requires careful algorithm design and analysis. Finally,
the ROSE SCC algorithm avoids the edge removal process
that is part of the state-of-the-art parallel SCC algorithm [23],
while achieving the same work bounds as this existing SCC
algorithm. Hence, we believe that the algorithmic insights in
this paper may be of interest even in a shared-memory setting
without considering NVRAMs and the ROSE setting.

In summary, the two main contributions of this paper are:

• We introduce the Read-Only Semi-External (ROSE)
model for the design and analysis of large graph algo-
rithms, motivated by real-world systems considerations.

• We design efficient ROSE algorithms for triangle count-
ing, FRT trees, and SCC, using novel techniques. We
also show that 15 existing graph algorithms are efficient
in the ROSE model.

2 The ROSE Model
2.1 Model Definition. Consider a graph G(V ,E) with n =
|V | vertices and m = |E | edges. Depending on the graph
problem being studied, G is (i) undirected or directed, and
(ii) weighted or unweighted. We assume that G has neither
(undirected) self-edges nor duplicate edges. When reporting
bounds, we assume thatm = Ω(n) and indeed semi-external
models are relevant only when m � n. Let diam(G) be the
unweighted (hop) diameter of G, deg(v) be the degree of
vertex v, and rv be the eccentricity of v, i.e., the longest
shortest-path distance between v and any vertex u reachable
from v.

The Read-Only Semi-External (ROSE) model consists
of a read-write random-access internal memory of Θ(n)words
and a read-only block-access external memory of unbounded
size. Words are Θ(logn) bits. Transfers from the external
memory to the internal memory (i.e., external memory reads)
are done in blocks of size B, where B is measured as the
number of edges that fit in a block. The I/O complexity Q of
an algorithm is the number of such transfers. The input graph
resides in the external memory and the program output gets
stored in the internal memory (thus, the model is restricted
to graph problems with O(n) output size). We assume the
following canonical form for the input graph layout: vertices
are numbered 1 to n and the graph is stored in standard
compressed sparse row (CSR) format as consecutive blocks in
the external memory. An adversary controls the numbering of
the vertices (and hence their ordering in the CSR format). We
assume any compression of the graph is done in a manner that
enables fast decompression of individual compressed blocks.

The work W of an algorithm is the total number of
instructions using only the internal memory (i.e., not counting
external memory reads, which are accounted for in the
I/O complexity). For parallel algorithms, we assume the
binary-forking model [8, 20, 29], which is widely used in
analyzing parallel algorithms [2, 4, 17, 21, 25, 41, 70]. In
this model, a running thread can spawn two child threads
using a fork instruction, and then it resumes only after
the children finish. This supports nested-parallelism. All
threads share both the internal and external memory. A
compare-and-swap (CAS) instruction is allowed on individual
words of the internal memory. Some of our algorithms also
make use of the fetch-and-add (FA) and priority-write (PW)
instructions, which are widely used in the design of parallel
algorithms [40, 41, 42, 63]. The depth D (also called the
span) of a computation is the length of the longest chain of
dependences for instructions. We seek parallel algorithms
that are work-efficient, i.e., their work asymptotically matches
the best sequential algorithm, and highly parallel, i.e., their
depth is polylog(n) or at most O(diam(G) · polylog(n)) (note
that most large real-world graphs have small diameter). In
addition to the O(n) shared-memory accessible to all threads,
we assume each thread can allocateO(polylog(n))memory in
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a stack fashion (i.e., the memory is only visible to the thread,
and its forked descendants and any memory allocated by a
child after a fork needs to be freed before the child finishes).
Further discussion of memory allocation and usage can be
found in [47].

2.2 Related Work. External Memory and Semi-External
models are block-based models, in that they transfer data
between the internal and external memory in blocks that
hold multiple data words. As noted in Section 1, prior
work on such models did not study the case of a read-only
external memory. Likewise, other sequential and parallel
block-based hierarchical memory models, e.g., the Ideal
Cache model used in cache-oblivious algorithm design [45],
the Multicore-Cache model [16], and the Parallel Memory
Hierarchy model [5], do not have read-only memory as part
of the model. Carson et al. [33] studied write-avoiding
algorithms, which seek to minimize the number of external
memory writes, but does not disallow them.

For non-block-based models, most prior work accounting
for asymmetric read-write costs in the external memory has
simply charged more for external memory writes [12, 13,
18, 19, 22, 24, 49]. An exception is our recent work on
Sage [42], which defines a cost model that charges ω � 1
for external memory writes, but looks to design algorithms
that perform no external memory writes. Unlike the present
paper, that paper did not formalize a read-only model, did
not consider block transfers, allowed more than O(n) internal
memory in a key variant, and allowed the input graph to be
stored replicated on each socket of a multi-socket machine
(to avoid costly NUMA effects). We will show that a number
of the Sage algorithms are efficient in the ROSE model (see
Section 7).

In the Semi-Streaming model [44, 59], graph algorithms
can read or write to an internal memory of O(n · polylog(n))
bits and can only read the graph in a sequential streaming
order (with possibly multiple passes). This restrictive access
to the graph is block-transfer-efficient (m/B transfers per
pass), and so any semi-streaming algorithm with W work,
t passes, and only O(n logn) memory bits is also a ROSE
algorithm with W work and tm/B I/O complexity. The
ROSE model, on the other hand, is not limited to sequential
streaming order.

Classic definitions of space complexity assume that
the input is in a read-only memory and that the algorithm
uses S space if its read-write working space is S bits. Any
lower bounds for time in S = O(n logn) space (O(n) words)
immediately carry over to a lower bound for work in the
ROSE model. Some classic models allow for an append-
only output stream, to enable algorithms whose output size is
greater than S . In theory, the ROSE model could be likewise
extended. Such Limited Workspace models have attracted
considerable recent attention in the computational geometry

community [10], and new computational geometry algorithms
have been devised whose running time is a function of s, the
working space in words (S = s logn bits), 1 ≤ s ≤ n.

To get around stringent lower bounds for read-only
models, recent work has studied relaxations that still seek
to minimize the additional working space beyond the input
graph. If K = O(m logn) bits are used to store the input
graph, in-place algorithms [34] are allowed to use those K
bits and polylog(n) more space as the only read-write memory.
Gu et al. [47] study in-place graph algorithms in the parallel
setting, where sublinear additional space is allowed. Restore
algorithms [35] are in-place algorithms that must restore the
input graph to its original state at the end of the algorithm.
As discussed in Section 1, the ROSE model’s read-only input
graph provides additional benefits beyond just saving space.

Our work is the first hierarchical model to combine the
semi-external assumption (vertices fit in internal memory, but
edges do not) with a random-access read-only external mem-
ory with block transfers. Moreover, unlike most prior work
limiting read-write working space, we focus on (efficient)
parallel algorithms.

3 The FETCHEDGES Primitive
A key property of the algorithms analyzed in this paper is that
they all read the external memory using only a block-friendly
(and compression-friendly) primitive, FETCHEDGES(v), that
fetches all of the incident edges in the input graph for a given
vertex v.

Because the edge list of a vertex is contiguous in the
external memory, for each block that contains part of that
list, at least one of the following must be true: (i) the block
contains the beginning of the edge list; (ii) the block contains
the end of the edge list; and/or (iii) the block consists entirely
of elements of the edge list. For a vertex v, there can be at
most one block of each of the first and second types, and
deg(v)/B blocks of the third type. The call to FETCHEDGES
causes one transfer of each of these blocks and no other
transfers, resulting in the following lemma.

LEMMA 3.1. A call to FETCHEDGES(v) causes at most
ddeg(v)/Be + 1 transfers from external memory.

Note that a parallel foreach (u,v) ∈ E loop, which
fetches all the edges, requires onlym/B transfers, because it
can be implemented using FETCHEDGES on the vertices in
CSR order.

We define a k-read ROSE algorithm to have the follow-
ing properties: (1) it only accessses (reads) the input graph
using the FETCHEDGES primitive, and (2) k is an upper bound
on the number of times that FETCHEDGES(v) is called for
any vertex v in the graph. Using Lemma 3.1, we can show
that the I/O complexity of a k-read ROSE algorithm is at most
k(

∑
v ∈V (ddeg(v)/Be + 1)) = O(k(n +m/B)), which gives the

following theorem.
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Algorithm 1: The ROSE triangle counting algorithm
Input: An undirected graph G = (V ,E), and a total

ordering over the vertices >T .
Output: The triangle count, TG , of G

1 Define N +(v) = {(u,v) ∈ E s.t. u >T v}
2 Set TG ← 0
3 Set R ← V
4 while R , ∅ do
5 Let A← {a1, . . . ,ac } ⊆ R s.t.

∑c
1 |N

+(ai )| ≤ 2n
6 Let R ← R \A
7 Build parallel hash tables, Ha representing

N +(a),∀a ∈ A
8 parallel foreach (u,v) ∈ E do
9 if u >T v and u ∈ A then

10 Let Tuv ← |N +(v) ∩ N +(u)|, computed by
hashing N +(v) into Hu

11 Atomically increment TG by Tuv
12 return TG

THEOREM 3.1. The I/O complexity of a k-read ROSE algo-
rithm is at most O(k(n +m/B)).

For simplicity, we will only analyze the I/O complexity of
uncompressed graphs, but the analysis can be readily adapted
to compressed graphs (with an updated Theorem 3.1).

In the remainder of this paper, we will frequently make
use of this theorem as a simple means to derive I/O complexity
bounds. As an example, consider the breadth-first search
(BFS) algorithm defined in Dhulipala et al. [42]. This
algorithm starts at the source vertex and repeatedly expands
the frontier of the BFS tree one level at a time in parallel.
Each vertex in the frontier uses FETCHEDGES to obtain a list
of its neighbors, and a conditional check ensures that vertices
are not revisited. To ensure that the number of simultaneously
fetched edges is limited to O(n) (and not O(m)) in the worst
case, the algorithm uses a special EDGEMAPCHUNKED
function that achieves this limit while not incurring additional
external memory reads. Thus, the algorithm is a 1-read ROSE
algorithm, with I/O complexity O(n +m/B).

4 Triangle Counting
In this section, we present a work-efficient ROSE triangle-
counting algorithm whose depth is parametrized in terms of
the arboricity of the input graph.
Overview. Our approach in this paper is to parallelize the
classic sequential triangle counting algorithm due to Chiba
and Nishizeki [36] (the CN algorithm) that runs in O(αm)
work where α is the arboricity of the input graph, i.e., the
minimum number of disjoint forests that the edges of the
graph can be decomposed into. The CN algorithm works by
intersecting the neighbor lists N (u) and N (v) for each edge

(u,v) ∈ E by hashing the lower-degree endpoint’s neighbors
into the higher-degree endpoint’s neighbors. They then show
the following elegant fact:

(4.1)
∑
(u,v)∈E

min(deg(u), deg(v)) = O(αm)

Because α = O(
√
m) [36], the worst-case running time of

this algorithm is O(m3/2). However, for sparser graphs with
α = o(

√
m) the work can be significantly better. For example,

planar graphs and constant genus graphs have α = O(1), and
so the algorithm runs in linear time on such graphs.

The challenge to overcome in the ROSE model is the
fact that the input graph is given in the CSR format, and not
as a collection of per-vertex hash tables storing the vertices’
neighborhoods. The main idea of our new algorithm is to
materialize as many hash tables as will fit in the internal
memory and perform partial triangle counting using the
materialized neighborhoods. By combining the properties
of the CN algorithm with careful use of prefix sums, we
obtain the following result.

THEOREM 4.1. There is a ROSE algorithm for triangle
counting on a graph with n vertices,m edges, and α arboricity
that has O(αm) expected work, O(α logn) depth whp, and
O(α(n +m/B)) I/O complexity.

Algorithm. We provide the pseudocode for our triangle
counting algorithm in Algorithm 1. The algorithm takes as
input an undirected graph, and an ordering over the vertices
>T . The provided ordering does not impact correctness, but
a judicious choice for the ordering enables us to obtain the
bounds in Theorem 4.1. We define N +(v) to be the neighbors
of v ranked higher than v (according to the ordering >T )
(Line 1). Our algorithm first initializes the set of vertices to
be removed (R) to V (Line 3). Then, while R is non-empty, it
repeatedly removes a subset of active vertices, A ⊆ R, from
R. (Lines 5–6). The active vertex subset is chosen such that
the sum of |N +(v)| for all vertices v ∈ A is at most 2n, and
hence fits in the internal memory. Because |N +(v)| < n for
all v ∈ V , we can always find such a subset that sums to more
than n, and at most 2n, with the possible exception of the last
iteration. A simple way to find these subsets is to compute the
prefix sum of |N +(v)| over for all v ∈ V at the beginning of
the algorithm. The algorithm can then keep the total value of
|N +(v)| that has already been removed, and perform a binary
search each round for the vertex with the largest value with
difference at most 2n.

For each active subset, the algorithm builds parallel hash
tables, Ha , storing the neighbors of the active vertices a ∈ A
(Line 7). It then maps over all edges in the graph in parallel,
and for each edge checks whether the higher-ranked endpoint
of the edge (with respect to T ) is in A, and thus has its hash
table materialized (Line 9). If so, the algorithm computes the
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intersection size using parallel hashing to hash the vertices
in N +(v) (where v is the lower-ranked endpoint of the edge)
into the larger degree vertex’s parallel hash table (Line 10).
Computing the count can be done using a reduction over the
lower-ranked vertex’s neighborhood. Finally, the algorithm
atomically updates the overall triangle count (Line 11).

Although we describe this algorithm using atomics for
simplicity, this requirement can easily be removed. The idea
is to perform a parallel reduction over all edges in the graph,
and then for each edge where the higher-ranked endpoint is
in A, perform a parallel reduction over the smaller degree’s
neighborhood to compute the count. Similarly, the set N +(v)
does not actually have to be materialized and can be filtered
as the algorithm is iterating through v’s neighborhood.
Correctness. We argue that each triangle is counted once.
Consider a triangle (u,v,w). Without loss of generality, let
w >T v >T u. Observe that this triangle will be found by
the (u,v) edge in the iteration of the while-loop where v is
an active vertex (v ∈ A), because w ∈ N +(u) and w ∈ N +(v).
The triangle cannot be found by the (u,w) or (v,w) edge
because neither u nor v are present in N +(w).
Choice of ordering. Our analysis of the work, depth, and
I/O complexity of our algorithm relies on a total ordering, >T ,
of the vertices. To obtain our results, we utilize the Degree
ordering, which is defined for any two vertices u,v ∈ V as
u >deg v iff deg(u) > deg(v), or deg(u) = deg(v) and u > v.
Work and depth. To prove the work and depth bounds in
Theorem 4.1, we first bound the number of times the while
loop on Line 4 can be invoked. A well-known fact about
graphs with arboricity α is that they cannot have many edges:
in particular, an arboricity α graph can have at most O(nα)
edges. Because each round of the loop (except possibly
the last) removes more than n edges, after O(nα/n) = O(α)
rounds, R will become empty. On each of these rounds, we
process all remaining vertices, and all edges in the graph.
The overall work of these steps is thus O(nα) and O(mα),
respectively, in the worst case.

To bound the cost of materializing hash tables for vertices
when they are active, observe that each vertex constructs a
hash table of its incident edges exactly once. The hash table
construction can be done in O(deg(v)) expected work for
each vertex v, and O(logn) depth whp. This is done by using
the CAS primitive provided by the model to insert elements
into an open-addressed table via linear probing. The overall
expected work of these operations is O(m) across all vertices.

Finally, consider the work of the intersections. Observe
that each edge (u,v) is processed in exactly one round, when
its higher-ranked endpoint (according to >T ) is in A. We call
this round the active round for (u,v), and assume without
loss of generality that u >T v. The work of processing this
edge is O(1) in the other rounds because we simply scan
over it and do nothing. Finally, in the active round, we hash
|N +(v)| ≤ deg(v) times into Hu . Using Equation 4.1, we

show that the total work for processing each edge in its active
round is at most

∑
(u,v)∈E min(deg(u), deg(v)) = O(αm).

Therefore the total intersection work is O(αm).
Combining the overall work of each step results in a total

work of O(α(m + n)) = O(αm) since we assume m ∈ Ω(n)).
Finally, the depth is just O(α logn).

I/O complexity. We now argue that Algorithm 1 has low I/O
complexity. First, note that each vertex performs one call
to FETCHEDGES in the active round where it materializes
its hash table. The algorithm also processes all edges of
the graph O(α) times, contributing another O(α) calls to
FETCHEDGES per vertex. The remaining calls for each
vertex v come from edges (u,v) where u >T v. Specifically,
we must bound the maximum out-degree of each vertex
in the ordering. Unfortunately, the maximum out-degree
can be up to O(

√
m) in the worst case [66], naively leading

to an O(
√
m)-read algorithm. However, we can obtain

a better bound by directly bounding the number of I/Os
for these edges. Specifically, the algorithm will perform∑
(u,v)∈E dmin(deg(u)/B, deg(v)/B)e + 1 I/Os for these edges,

because each edge will read its lower-degree endpoint’s
edges. Using Equation 4.1, this quantity can be simplified to
O(m + αm/B), which given that there are at most αn edges,
is O(α(n +m/B)) I/Os in all.

5 Constructing FRT Trees
The FRT tree [43], proposed by Fakcharoenphol, Rao, and
Talwar in 2003, is an asymptotically optimal algorithm to
generate probabilistic tree embeddings [11], which embed a
finite metric (X ,dX ) into a distribution of tree metrics with a
minimum expected distance distortion. In particular, for every
pair of elements x ,y ∈ X , the tree distance is always no less
than dX (x ,y), and at most O(dX (x ,y) logn) in expectation.
FRT trees have been used in many applications, such as
(1) several practical algorithms with good approximation
bounds, such as the k-median problem, buy-at-bulk network
design [28], and network congestion minimization [61];
(2) network algorithms including the generalized Steiner
forest problem, the minimum routing cost spanning tree
problem, and the k-source shortest paths problem [54];
(3) solving symmetric diagonally dominant (SDD) linear
systems [38]; and (4) construction of approximate distance
oracles (ADOs) [26].

In this paper, we consider the input as a graph metric
(G,dG ), where G = (V ,E) contains n vertices and m edges,
and dG is the shortest-path distance. Recent work by Andoni,
Stein, and Zhong [6] presents an Õ(m) work, polylogarithmic
depth algorithm to construct FRT trees, but it requires Õ(m)
intermediate space (read-write memory) and hence does not
fit into the ROSE model. Another recent work by Blelloch
et al. [23, 26] discussed algorithms for FRT tree construction
on a graph both sequentially and in parallel. Their algorithms
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construct the least-element (LE) lists [37] (see Definition 1)
as an intermediate representation, and then construct the FRT
tree from the LE-lists using an algorithm by Blelloch, Gupta,
and Tangwongsan [28]. But LE-lists comprise an expected
2n lnn vertex indices and distances, which are generated
from n single-source shortest-paths (SSSP) searches, and
hence does not fit into the ROSE model. (In practice, storing
2 lnn numbers per vertex likely precludes storing the LE-
lists in DRAM when the graph contains tens of billions of
vertices.) On the other hand, the output of a compressed
FRT tree (defined in Section 5.1) is only O(n) words, which
fits in the ROSE model. Therefore, our goal is to design a
new algorithm for constructing FRT trees without explicitly
generating the LE-lists. Instead, in our approach we generate
the FRT trees round-by-round, directly based on the distances
from the SSSP searches. In the rest of this section, we will
first review the existing algorithms, and then present our new
approach.

5.1 Definitions, Existing Algorithms, and Intuition. We
first review the definitions for LE-lists, FRT trees, and the
Blelloch et al. algorithms for constructing FRT trees from a
graph [23, 26, 28].
LE-lists. Given an ordering of the vertices, the Least-Element
lists (LE-lists) for a graph (either unweighted or with non-
negative weights) are defined as follows.

DEFINITION 1. (LE-LIST [37]) Given a graph G = (V ,E)
with V = {v1, . . . ,vn}, the LE-lists are:

L(vi ) =

{
〈vj ,dG (vi ,vj )〉 | vj ∈ V ,dG (vi ,vj ) <

j−1
min
k=1

dG (vi ,vk )

}
sorted by dG (vi ,vj ), in decreasing order.

In plain language, a vertex vj is in vertex vi ’s LE-list if
and only if there are no earlier vertices (vk ,k < j) that are
closer to vi . Often one stores with each vertex vj in L(vi )
the distance dG (vi ,vj ). Typically a random ordering of the
vertices is used, which ensures that all LE-lists have length
O(logn) whp [37].
Radix-trees. Given an alphabet Σ, and a set of strings S
each from Σ∗, a radix-tree (also called PATRICIA tree or
radix trie) of S is generated by taking the trie on S and then
removing vertices with one child by combining the incident
edges, typically by appending their characters. All interior
nodes in a radix-tree therefore have at least two children, and
hence the total number of nodes is O(|S |).
FRT trees and Compressed FRT Trees. The FRT algorithm
for a metric (X ,dX ) is based on a random permutation of the
input points, and a parameter β ∈ [1, 2) randomly selected
from the probability density function fβ (x) = 1/(x ln 2).
We assume that the weights are normalized so that 1 ≤
dX (x ,y) ≤ d∗ = 2δ̄ for all x , y, where δ̄ is a positive integer.

The original algorithm [43] was described as a top-down
clustering algorithm, generating a laminar family of clusters.
This corresponds to a tree in which the edge weights start at
d∗ at the root and at each level decrease by a factor of two
going down the tree. Such a tree, however, can have a number
of nodes that is at least quadratic in the input size. Therefore,
in this paper we build a compressed FRT tree [28], for which
nodes in the FRT tree with a single child are spliced out and
the incident edge weights combined. This transformation
preserves distances in the tree. The leaves correspond to the
input points, and because all internal nodes have at least two
children, the tree is of size O(n). The tree also has depth
O(logn) whp [28].

Compressed FRT Trees from LE-lists. The compressed
FRT tree can be generated from LE-lists directly [26, 28],
avoiding the large number of nodes in the full FRT tree. This
can be done in three steps:

1. Generate the LE-list for each point based on the random
permutation of the input. Each such list has sizeO(logn)
whp.

2. Take all of the distances dG (vi ,vj ) in the LE-lists and
replace them with rounded log-distances blog2

β ·d∗

dG (vi ,vj )
c,

and then only keep the first entry among equal distances.

3. Treating each modified LE-list as a string, where each
character is a (vertex, log-distance) pair, build a radix
tree on all the lists. Weight the edges based on the top
“character” on the combined edge.1

Unfortunately, this algorithm will not suffice for our purposes
because our goal is to use only O(n) space, while the LE-lists
themselves require O(n logn) space. As mentioned, we plan
to integrate the generation of LE-lists and generation of the
tree. This requires understanding and adapting the parallel
LE-lists algorithm. Also the previous parallel algorithm using
this idea [28] requires O(n log2 n) work for the third step
because it requires a lexicographic sort. Our new algorithm
also improves this bound to O(n logn) work, which might be
of independent interest beyond the ROSE model.

Generating LE-lists in Parallel. We start with the
BGSS parallel algorithm for constructing LE-lists (Algo-
rithm 2) [23]. The algorithm runs for logn rounds, where
each round doubles the number of vertices from which it
does SSSP searches “in parallel”—i.e., on the r ’th round it
runs SSSP searches from the next 2r−1 vertices. The set Si
captures all vertices that are closer to the i’th vertex than
earlier vertices (the previous closest distance is stored in
δ (·)). Line 4 computes Si using a single-source shortest

1This could cause distances to differ from the original FRT tree by a
constant factor, but with more care the distances can be made identical.
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Algorithm 2: The BGSS algorithm for constructing
LE-lists in parallel [23].
Input: A graph G = (V ,E) with V = {v1, . . . ,vn}
Output: The LE-lists L(·) of G

1 Set δ (v) ← +∞ and L(v) ← � for all v ∈ V
2 for r ← 1 to log2 n do
3 parallel foreach i ∈ {2r−1, . . . , 2r − 1} do
4 Let Si = {u ∈ V | dG (vi ,u) < δ (u)}
5 parallel foreach u ∈

⋃
i Si do

6 Let l(u) ← {vi | u ∈ Si }
7 Sort l(u) based on dG (vi ,u) in descending

order and filter out vi that are not in
ascending order

8 Append l(u) to the end of L(u)
9 δ (u) ← dG (vj ,u) | vj is the last element in l(u)

10 return L(·)

paths (SSSP) algorithm (e.g., Dijkstra’s algorithm or a dif-
ferent shortest path algorithm [27, 55, 68, 71]). Then the
δ (·) values are updated based on the searches in this round.
This algorithm requires O(WSP (n,m) logn) expected work
and O(DSP (n,m) logn) depth [23] whp, whereWSP(n,m) and
DSP(n,m) are the work and depth, respectively, to compute
SSSP for a graph with n vertices andm edges on the ROSE
model. We also care about the I/O-complexity QSP(n,m) to
compute the SSSP. We note that for unweighted graphs, we
can use BFS giving O(m) work, O(diam(G) logn) depth, and
O(n+m/B) I/O-complexity. Otherwise we could use a variety
of solutions [27, 55, 68, 71], although they would have to be
analyzed on the ROSE model.

A key observation, for our purposes, is that after each
round the algorithm has generated a prefix of each LE-list.
In particular, after round r , for each vertex i ∈ {1, . . . ,n},
the LE-list for i will consist of its LE-list with all entries
for vertices with indices up to 2r . Each round extends each
prefix by an expected constant number of additional elements.
We will use this observation to extend the FRT tree on each
round without keeping the full LE-lists. This will be done by
keeping a kind of “prefix” of the compressed FRT tree that is
updated on each round by adding appropriate descendants to
the tree from the previous round.

5.2 Our Algorithm. We now describe a parallel work-
efficient algorithm that only requires O(n) temporary space,
and thus can be implemented in the ROSE model.

THEOREM 5.1. A compressed FRT tree can be built from a
metric based on a graph with n vertices and m edges using
O(WSP (n,m) logn) expected work, O(DSP (n,m) log2 n) depth
whp, and O(QSP (n,m) logn) expected I/O-complexity on the
ROSE model, whereWSP(n,m), DSP(n,m), and QSP(n,m) are

…
……
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Figure 2: An illustration for the new algorithm to construct FRT
trees. We grow the tree a constant number of levels in expectation,
and repeat for log2 n rounds.

the work, depth, and I/O-complexity to compute SSSP on the
ROSE mdoel.

There are two main algorithmic improvement in the
new ROSE algorithm, and we first overview the high-level
ideas and then go into details. The first insight is to avoid
constructing the entire LE-lists L(·). We note that the LE-lists
have O(n logn) elements whp, and the outer loop for r in
line 2 in Algorithm 2 also runs for O(logn) iterations. In
expectation, each iteration will search out for O(n) vertices
to add to the LE-lists. Hence, if we can directly integrate
the search values of Si to the FRT tree, rather than wait
until all elements in LE-lists L(·) are computed, then we can
bound the memory usage to be linear (some care needs to be
taken because the O(n) is only in expectation). The second
insight is that, as mentioned above, the existing parallel
algorithm [28] is not work optimal due to sorting the LE-
lists lexicographically. We observe that the FRT tree does not
need an order, either for the leaf nodes or the interior nodes,
because when querying two vertices that correspond to two
leaf nodes in the FRT tree, the output is the tree-path distance,
and the ordering of the tree nodes does not matter.
An algorithmic overview. The pseudocode of the new ROSE
FRT algorithm is given in Algorithm 3. It runs for O(logn)
rounds (line 5), and in each round, we not only apply the
SSSP searches (line 7), but also directly integrate the search
results in Si to the FRT tree and discard Si after the round. In
expectation, the SSSP search result in each round (i.e.,

∑
|Si |)

has size O(n), and later we will discuss how to deal with the
rare cases when it is ω(n). When generating the FRT tree, we
create only the tree nodes that will eventually show up in the
final tree, and the final tree has no more than 2n−1 tree nodes.
All other intermediate steps use space proportional to the size
of SSSP search (

∑
|Si |), so in total we use only O(n) words.

The conversion from the SSSP search results to an FRT
tree takes O(n logn) expected work and O(log2 n) depth,
which is interesting even without considering the ROSE
model. The depth can be further improved to O(logn) if
we first do all searches in O(logn) rounds (line 5), and
then run the rest of the algorithm (line 8–21) in one pass,
although it then requires O(n logn) space. The algorithmic
insight is that previous algorithms either use a point-centric
view [23, 26, 28] (for a specific vertex v, we consider which

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Algorithm 3: The ROSE FRT algorithm
Input: A graph G = (V ,E) with V = {v1, . . . ,vn }
Output: An FRT tree Tπ ,β

1 Create a uniformly random permutation π : V → V of the
vertices in G.

2 Pick β ∈ [1, 2] using the probability density function
fβ (x) = 1/(x ln 2).

3 We will maintain the following across rounds:

4

1. A partial FRT tree (i.e., the top part), which we will build
from the root node into the full tree.

2. For each v ∈ V , a pointer τv to the leaf of the partial FRT
tree that will eventually contain v. All τv initially point
to the root.

3. For each v ∈ V , the smallest distance to v from any
vertex processed so far, δ (v). All δ (v) are initially set to
+∞.

5 for r ← 1 to log2 n do
6 parallel foreach i ∈ {2r−1, . . . , 2r − 1} do
7 Let Si = {u ∈ V | dG (vi ,u) < δ (u)}
8 parallel foreach u ∈ V do
9 Let l(u) ← {〈vi , ρi = blog2

βd∗

dG (vi ,u)
c〉 : 1 ≤ i ≤

n | u ∈ Si }
10 Sort l(u) based on ρi in descending order and filter

out vi that are not in ascending order
11 Now group vertices together based on the pair 〈τu , l(u)〉,

and just keep one vertex from each group (duplicates
removed), and call the resulting set S̄ (can be done with
a semisort)

12 parallel foreach u ∈ S̄ do
13 Let l ′

(j)(u) ← {〈vu1 , ρu1 〉, . . . , 〈vuj−1 , ρuj−1 〉,vuj }

| 1 ≤ j ≤ |l(u)| and l ′′
(j)(u) ←

{〈vu1 , ρu1 〉, . . . , 〈vuj , ρuj 〉} | 0 ≤ j ≤ |l(u)|

14 For all u ∈ S̄, j ≤ |l(u)|, using a semisort collect together
based on key 〈τu , l ′(j)(u)〉 along with value ρuj , and
count the appearance of the keys 〈τu , l ′(j)(u)〉 and
〈τu , l

′′
(j)(u)〉 (also using semisort)

15 parallel foreach key 〈τu , l ′(j)(u)〉 after semisort do
16 Sort the value ρuj in increasing order
17 if τu has children or |〈τu , l ′(j)(u)〉| < |〈τu , l

′′
(j−1)(u)〉|

then
18 Create a tree node for the first entry
19 Create a tree node for every entry but the first, point

the root of each node to the predecessor
20 parallel foreach u ∈

⋃
i Si do

21 Update τu to the current corresponding node

SSSP searches can reach v), or a level-based view [43]
(consider the partition with different search radii and refine
the partition). The new algorithm uses the search-centric view:
for a specific SSSP search from vi , we check the reach set
and see what tree node this search creates. More specifically,

the SSSP search from vi will reach the vertex set Si , and we
consider and process the FRT tree nodes incident to Si .

The key idea of the algorithm is to maintain on each
round a partial compressed FRT tree (the top part), and for
each vertex u that has not been added yet, we keep a pointer
τu to a tree node that u will eventually be descendant of. In
particular, if we have processed points up to i, the compressed
FRT tree will include all edges labeled with vertices up to i
(recall the edges are created from the LE-lists, and contain a
vertex and a distance to that vertex). For instance, in Figure 2,
after round 1, we generate the tree nodes incident to the search
from v1. Every other vertex vi is reached by the search from
v1, and diverges at level blog2

β ·d∗

dG (v1,vi )
c. We create all nodes

at these levels (line 13), and distribute τvi for each vi to the
corresponding level. As shown in Figure 2, we repeat this
process for log2 n rounds, and generate the FRT tree.

Another interpretation of this algorithm is that, on each
round the BGSS algorithm generates extensions to the LE-
lists using SSSP searches from a new set of points. We
apply the same strategy here, but now immediately insert the
elements into the partial FRT tree. Roughly speaking, this
is done by grouping the extensions for each vertex u by τu
(the current node pointed to by u in the partial FRT tree), and
building the part of the tree that extends that leaf, and then
updating all vertices to point to their new τu , which will be
a descendant of the old one. Note that to do this we need
to group by the pair consisting of τu and the contents of the
extensions of the LE-lists. This can be done with a semisort
since the ordering does not matter.

In the rest of this section, we first describe the algorithm
in more detail, prove the correctness, and analyze the cost
bounds. Then we discuss how to guarantee the space usage
to be O(n) so that it works in the ROSE model. Putting all
pieces together, we achieve the bounds in Theorem 5.1.

The search-centric conversion algorithm. We now present
our algorithm to convert from the SSSP search results to an
FRT tree inO(n logn) expected work andO(logn) depth. The
algorithm uses the search-centric view and uses semisort as
the crucial building block. Recall that semisort takes then key-
value pairs as input, and groups all pairs with the same key
using linear expected work and O(logn) depth whp [20, 48].

To do so, we borrow the concepts of a partition se-
quence [28] to better illustrate our algorithm. Given a permu-
tation π and a parameter β , the partition sequence of a vertex
u, denoted by σ (u)π ,β , is the sequence σ (u)π ,β (i) = min{π (v) |

v ∈ V ,dG (u,v) ≤ β · 2δ̄−i } for i = 0, . . . , δ̄ , i.e. point v has
the highest priority among vertices up to level i. Then the
FRT tree is just a radix tree for the trie constructed based on
the partition sequence for each vertex. We now explain how
the searches in each round modify the partition sequence and
therefore the FRT tree nodes.
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OBSERVATION 1. Vertex vi creates the node when there
exists two nodes vj and vk and the partition sequences of
vj and vk diverge at vi .

More accurately, σ (vj ) and σ (vk ) have the same prefix, and
they diverge at level x + 1, i.e., σ (vj )(x) = σ (vk )(x) = vi ,
and σ (vj )(x + 1) , σ (vk )(x + 1) (More details are shown
in [28]). We now show Algorithm 3 creates all FRT tree
nodes correctly, and does not create more nodes (otherwise
the tree size can be larger than O(n) and does not fit in the
ROSE model). We first see what FRT tree nodesvi can create.

OBSERVATION 2. Vertex vi can only create nodes below the
nodes created by vj when j < i, because of the definition of
partition sequence.

Namely, the FRT tree can be generated incrementally, by
adding the leaf nodes created by v1,v2, . . . ,vn . Recall
the case σ (vj ) and σ (vk ) diverge at level x + 1. There
are two reasons that a FRT tree node is generated: (1)
σ (vj )(x + 1) = σ (vj )(x) , σ (vk )(x + 1) (or symmetric), and
(2) σ (vj )(x + 1) , σ (vj )(x) , σ (vk )(x + 1). For the first case,
let vi = σ (vj )(x + 1) = σ (vj )(x) , σ (vk )(x + 1). Since σ (vj )

and σ (vk ) diverge at level x + 1, we must have τvj = τvk
and they share a common prefix before the first appearance
of vi , and for vi ’s search, they have different σi . Hence,
in the semisort in line 14, they share the same key (τvj )
but have different values, so the tree node will be created
either in line 18 or line 19. For the second case, suppose
σ (vj )(x) = va , σ (vj )(x +1) = vb , and σ (vk )(x +1) = vc . Based
on Observation 2, we must have a < b and a < c. By the time
when the algorithm searches from vb and vc , the parent node
is already created by va or va’s ancestor. Suppose that vb and
vc search in different rounds, and WLOG vb ’s search occurs
earlier. Then in vb ’s search, vc will stay in the parent node,
so the condition |〈τu , l ′(j)(u)〉| < |〈τu , l

′′
(j−1)(u)〉| in line 17 is

always true and the algorithm will generate a new node for
vj . Then in vc ’s search, we know the parent node for va has
at least one child already, so again the condition in line 17 is
satisfied, and a new node for vk will be generated. If vb and
vc search in the same round, then both will be the first case,
and a new tree node for each vertex will be constructed in
line 18.

We have shown that all the tree nodes will be created.
We now show that no additional tree node is created. First,
each node other than the leaf nodes have at least two children
so there are no uncompressed nodes. This is because nodes
created in line 19 have one child already (other than the
last one, which is a leaf), and at least another node will
be filled in line 18. For nodes created in line 18, they are
either not the first child of the parent node, or the condition
|〈τu , l

′
(j)(u)〉| < |〈τu , l

′′
(j−1)(u)〉| guarantees that at least a later

child node will be filled in later. Second, the nodes created
in line 18 and line 19 are due to either of the two cases

discussed in the previous paragraph, so every node created by
Algorithm 3 is necessary.

Fitting in the ROSE model. We have shown how to convert
the search results Si to FRT tree nodes. We know that∑n

i=1 |Si | = O(n logn) whp and there are log2 n rounds in
the algorithm, and in expectation the overall search size is
O(n) [23]. It is easy to check that all steps in line 8 to line 21
use space proportional to

∑
|Si | in one round. If we have cn

internal memory words for a reasonable large constant c, it
is likely that the algorithm will run just fine. However, it is
possible that

∑
|Si | is large (i.e., ω(n)) in one round, and of

course our algorithm should deal with it rather than crashing.
The solution is to dynamically adjust the batch size in

line 6. We assume we have a budget for the internal memory
size that can hold cn elements for some constant c ≥ 1. Once
the SSSP searches in one round (line 7) exceed this size, we
stop and shrink the range by a half, and repeat if necessary.
This will lead to additional work when the resize is triggered,
but it will not affect the work asymptotically. This is because
for vi ’s search in round r , E[|Si |] = n/2r−1. When each
resizing is triggered, we divide the range into two equal-size
halves and each side hasO(n) SSSP search size in expectation.
Therefore, the failed SSSP searches do not increase the work
asymptotically.

6 Strongly Connected Components
In this section, we discuss the ROSE SCC algorithm that
can achieve the same asymptotic work and slightly larger
depth as compared to the best existing parallel SCC algo-
rithm without the semi-external constraint. The best exist-
ing parallel SCC algorithm is referred to as the BGSS algo-
rithm [23], which takes O(WR (n,m) logn) expected work and
has O(DR (n,m) log2 n) depth whp on an input graph with n
vertices and m edges. WR (n,m) and DR (n,m) are the work
and depth, respectively, for a directed reachability algorithm
from a single vertex that visits n vertices, with m out-edges
from those vertices. However, this algorithm requires O(m)
read-write memory because it explicitly removes edges dur-
ing the execution of the algorithm. The high-level idea in the
ROSE algorithm is to avoid this edge removal process.

Before going into the details of the new ROSE SCC
algorithm, we will first review the BGSS algorithm on which
the new algorithm is based. At the beginning, all vertices
are uniformly randomly permuted. BGSS runs in rounds,
and in round r , it applies 2r−1 forward reachability queries
and 2r−1 backward reachability queries for vertices with
indices 2r−1, . . . , 2r − 1. These reachability searches find
the SCCs that these vertices belong to, and cuts edges to
partition vertices into disjoint subsets. In particular any edge
is removed if any of the reachability queries visited one of its
endpoints but not the other. All SCCs that the vertices belong
to are removed, and the remaining partitioned graph is left for
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Algorithm 4: The ROSE SCC algorithm
Input: A directed graph G = (V ,E) with

V = {v1, . . . ,vn}.
Output: The set of strongly connected components of

G.
1 // REACHABILITY in line 7 and 8 for vi only searches

vertices vj such that Mi = Mj

2 M ← {(0,�), (0,�), . . . , (0,�)}
3 Sscc,Vscc ← {}

4 for r ← 1 to log2 n do
5 parallel foreach i ∈ {2r−1, . . . , 2r − 1} do
6 if vi ∈ Vscc then Break;
7 S+i ← FORWARD-REACHABILITY(vi )
8 S−i ← BACKWARD-REACHABILITY(vi )
9 Generate key-value pairs

(v+, (vi ,+)) | v
+ ∈ S+i and

(v−, (vi ,−)) | v
− ∈ S−i

10 Semisort all the pairs, and let Li be the set of
values for pairs with keys vi

11 parallel foreach i ∈ {2r−1, . . . , 2r − 1} do
12 if not ({(vj ,+), (vj ,−)} ⊆ Li ), j < i then
13 Sscc ← Sscc ∪ {S

+
i ∩ S

−
i }

14 Vscc ← Vscc ∪ (S
+
i ∩ S

−
i )

15 parallel foreach Li | vi ∈ V \Vscc,Li , {} do
16 Sort Li based on the label of the vertices in

increasing order
17 (vl , sl ) ← Li (1)
18 for j ← 2 to |Li | do
19 (vc , sc ) ← Li (j)
20 if vc is reachable from vl in sl direction

then (vl , sl ) ← (vc , sc ) ;
21 Mi ← (vl , sl )

22 return Sscc

the next round. The algorithm iterates for log2 n rounds and
finds all SCCs of a graph.

Because BGSS removes edges explicitly for deciding
the vertex subsets, it is not in the ROSE model. The idea
in the ROSE algorithm is to give each vertex a label, such
that vertices with the same label are in the same partition.
The algorithm is correct as long as the partitions defined
by the labels are equivalent to the partitions in the original
BGSS. For analyzing the partitions, we actually consider a
slight variant of the BGSS algorithm in which the vertices are
searched (forward and backwards with cutting) in sequential
order within a round. The partitions for such a variant at
the end of a round are actually those analyzed for the BGSS
algorithm [23], and the paper shows that the parallel variants
can only be more aggressive at partitioning. We will label
every vertex with the last forward and last backward search in
the round that visited it if run sequentially. With this labeling,

edges are cut exactly when the labels for either direction differ
on the two end points. This is because different labels imply a
search visited one endpoint but not the other, and equal labels
implies the last search, and hence all previous searches on
either, visited both.

Consider the following case in one parallel round:
vertices x and y can reach z is the forward direction, and
the search order is first x then y within this round, and z in a
future round. Furthermore, assume x , y, and z are in separate
SCCs. In sequential BGSS, the search from y will reach z iff
y is reachable from x , otherwise x’s search will disconnect
(separate) y and z before y’s search. We will take advantage
of this property to generate our sequential labels even though
we run the searches in parallel. In particular we can look
at all searches that reach a vertex z in the parallel (batch)
version, scan through those in sequential order (there are only
a constant number in expectation and logarithmic whp), and
determine which would have been the last to visit x in the
sequential version.

The ROSE algorithm is described in Algorithm 4. The
labels are stored in an array M , and the algorithm runs the
rounds in parallel as in BGSS. For all rounds and for all
vertices reached in reachability searches in a round, we create
a visited-source pair (line 9) and semisort by visited (line 10).
More precisely, for each vertex vi , we collect Li , the indices
of all searches that have vi in their reached set. Now for
vertices in Li , we sort by source index (line 16), and set
the temporary label (vl , sl ) to the earliest (line 17). We now
iterate over the rest in increasing order for each search index
vc . If vc is reachable from vl ’s search in sl direction, then
set the current label to (vc , sc ) (line 20); otherwise leave it.
Whenever we do not change the label, this corresponds to a
visit that happened in the parallel algorithm that would not
happen in the sequential one (vl ’s search on sl direction would
have separated them). We note that vi can be reached by vl
in at most one direction. Otherwise, vi and vl are strongly
connected and vi is removed from Vscc already in line 14.
Hence, there will be no duplicates with the same vertex in Li .
After generating the final label, we update Mi (line 21).

THEOREM 6.1. The ROSE SCC algorithm is
O(WR (n,m) logn) expected work, O(DR (n,m) log2 n)
depth whp, and O(QR (n,m) logn) I/O complexity, where
WR (n,m), DR (n,m), and QR (n,m) are the work, depth, and
I/O-complexity to compute directed reachability in the ROSE
model.

Proof. Similar to the ROSE FRT algorithm, if the searches
for all rounds reach O(n) vertices, ROSE SCC does not
apply additional reachability searches as the sequential BGSS,
which yields the work and I/O bounds. The additional steps
are on computing the vertex labels, with size O(n), so they
are in the internal memory. Semisorting in line 10 takes
linear expected work and logarithmic depth whp. Sorting
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the Li lists has the same cost as sorting l(u) in ROSE
FRT, which also takes linear expected work and logarithmic
depth whp. Because whp all the reachability searches will
touch O(n logn) vertices in total [23], all the additional
work in ROSE SCC is hidden by the cost of reachability
searches. Regarding the small possibility that a search for a
round in ROSE SCC reaches ω(n) vertices, we can trigger
resizing similarly to ROSE FRT, which will not affect work
asymptotically, but the depth of ROSE SCC is increased by a
logarithmic factor over BGGS SCC.

Using BFS for reachability the costs are O(m logn)
expected work, O(diam(G) log3 n) span whp, and O((n +
m/B) logn) expected I/O-complexity. This matches the
bounds shown in Table 1.

7 Existing Algorithms in ROSE
In this paper, we also consider a set of 15 parallel graph algo-
rithms recently designed in our previous work on Sage [42].
We will show that each of these algorithms (other than
Bellman-Ford and single-source widest path) is an O(1)-read
ROSE algorithm (Section 3), and thus by Theorem 3.1 has
low I/O complexity (at worst O(n +m/B)) on ROSE. The
algorithms inherit the work and depth bounds from [42]. Ta-
ble 1 (below the mid-line) summarizes the results. As shown
in the table, nearly all the algorithms achieve our goals of
being work-efficient, highly parallel, and low I/O complexity.

In what follows, we briefly summarize how to show that
these algorithms are O(1)-read ROSE algorithms. We refer
the interested reader to [41, 42] for more details on these
algorithms.
Shortest Path Problems. We consider six shortest-path
problems: breadth-first search (BFS), integral-weight SSSP
(wBFS), general-weight SSSP (Bellman-Ford), single-source
betweenness centrality, single-source widest path, and O(k)-
spanner. First, we observe that BFS, wBFS, single-source
betweenness centrality, and O(k)-spanner all process each
vertex at most a constant number of times in their operations.
For example, for BFS and wBFS, a vertex v is processed at
most once, when the (weighted) breadth-first search frontier
contains it. Similarly, in single-source betweenness centrality,
a vertex is processed at most twice: once in the forward pass
that computes the number of shortest-paths to each vertex,
and once in the backwards pass that computes dependency
scores [31, 62]. Finally,O(k)-spanner works by computing an
LDD, which we discuss below, and mapping over the edges
incident to all vertices in parallel, and is thus also an O(1)-
read ROSE algorithm. For Bellman-Ford, note that in the
worst case the algorithm can process a vertex diam(G) many
times, and thus it is an O(diam(G))-read ROSE algorithm.
Single-source widest path can be implemented either using
an approach similar to wBFS, or Bellman-Ford; the bounds
shown in Table 1 show the bounds for the Bellman-Ford based

implementation. We note that the wBFS, Bellman-Ford, and
single-source widest path algorithms all use the priority-write
(PW) primitive.

Connectivity Problems. We consider four connectivity
problems: low-diameter decomposition (LDD), connectivity,
spanning forest, and biconnectivity. The LDD algorithm
works similarly to BFS, loading the edges incident to a
vertex only in the round where it is processed either as an
LDD cluster center, or as a vertex on the boundary of an
LDD cluster [42, 58]. Because each vertex is processed
exactly once, it is an O(1)-read ROSE algorithm. We also
consider several connectivity algorithms that build on LDD,
including the O(k)-spanner algorithm described above. Our
connectivity and spanning forest algorithms are based on
the algorithm by Shun et al. [64], and our biconnectivity
algorithm is from Dhulipala et al. [41]. All three algorithms
use the modifications described in Dhulipala et al. [42] to
run in O(n) space whp. We observe that all three of these
algorithms process the edges incident to each vertex in the
original graph only a constant number of times whp, and
are thus expected O(1)-read ROSE algorithms. We note
that the biconnectivity algorithm uses the fetch-and-add (FA)
primitive when performing leaffix and rootfix scans.

Covering Problems. We consider two covering problems:
maximal independent set (MIS) and graph coloring. As shown
in Dhulipala et al. [42] both algorithms use only O(n) words
of internal memory. Here, we observe that both algorithms
process the edges incident to each vertex only once. For MIS,
a vertex is processed either when it is added to the MIS by the
algorithm, or in the round where it is removed by one of its
neighbors joining the MIS. Similarly, for coloring, a vertex is
processed only in the round where it is ready to be colored.
Thus, both algorithms are O(1)-read ROSE algorithms. We
note that the MIS and graph coloring algorithms use the FA
primitive.

Substructure Problems. We consider two substructure-
based problems from prior work: k-core and approximate
densest subgraph. Dhulipala et al. [42] previously argued how
both algorithms can be implemented using only O(n) words
of internal memory. Here, we observe that their algorithms
are actually O(1)-read ROSE algorithms. Specifically, for
both algorithms, the algorithm processes the edges incident to
a vertex exactly once, in the round when the vertex is peeled.
We note that both algorithms use the FA primitive.

Eigenvector Problems. Lastly, we consider the problem of
computing the PageRank vector of the graph. Our algorithm
is based on the classic PageRank algorithm [32], and is based
on the implementation by Dhulipala et al. [42]. Here, we
observe that this algorithm processes all of the edges in the
graph in every iteration, leading to O(m/B) I/O complexity
per iteration.
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8 Conclusion
We have introduced the Read-Only Semi-External (ROSE)
model for graph algorithms. We have analyzed 18 parallel
algorithms in this model, and have shown that they are
work-efficient, highly parallel, and have low I/O complexity.
Our algorithms make use of the FETCHEDGES primitive to
traverse neighbors of vertices, and by analyzing the number
of times this primitive is called, we are able to obtain
strong I/O bounds for the algorithms in the ROSE model.
Finally, our algorithms for triangle counting, FRT trees, and
strongly connected components are specially designed for the
ROSE model, with novel techniques. Future work includes
conducting experimental studies of ROSE algorithms on real
machines and proving lower bounds on the I/O complexity in
the ROSE model.
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