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Abstract

Probabilistic circuits (PCs) are a family of generative models which allows for the
computation of exact likelihoods and marginals of its probability distributions. PCs
are both expressive and tractable, and serve as popular choices for discrete density
estimation tasks. However, large PCs are susceptible to overfitting, and only a
few regularization strategies (e.g., dropout, weight-decay) have been explored.
We propose HyperSPNs: a new paradigm of generating the mixture weights of
large PCs using a small-scale neural network. Our framework can be viewed as a
soft weight-sharing strategy, which combines the greater expressiveness of large
models with the better generalization and memory-footprint properties of small
models. We show the merits of our regularization strategy on two state-of-the-
art PC families introduced in recent literature – RAT-SPNs and EiNETs – and
demonstrate generalization improvements in both models on a suite of density
estimation benchmarks in both discrete and continuous domains.

1 Introduction

One of the core motivations for building models of probability distributions from data is to reason
about the data distribution. For example, given a model of the distribution over driving routes,
we may like to reason about the probability that a driver will take a certain route given that there
is congestion on a certain street. Or, given a distribution over weather conditions, we may like
to reason about the probability of it raining k times in the next year. Traditional probabilistic
models such as Categorical/Gaussian Mixture Models or Hidden Markov Models (HMMs) are well-
equipped to answer these types of queries with exact probabilities that are consistent with the model
distribution [1]. However, their learned model distribution might not accurately approximate the data
distribution due to their simplicity.

On the other end of the spectrum, the modern wave of deep generative models has largely focused
on learning accurate approximations of the true data distribution, at the cost of tractability. High
capacity models such as autoregressive or flow models can mimic the true data distribution with great
fidelity [33, 13, 22]. However, they are not designed for reasoning about the probability distribution
beyond computation of likelihoods. More illustrative of this trend are GANs and EBMs, which are
expressive enough to sample high-quality images, but give up even the ability to compute exact
likelihoods [9, 14].

To maintain the ability to reason about the distribution induced by our model, we need to explore
within tractable probabilistic models. Of these model families, probabilistic circuits (e.g. Sum
Product Networks) are one of the most expressive and general, subsuming shallow mixture models,
and HMMs while maintaining their tractable properties [6, 26, 34]. Their expressive power comes
from their hierarchical / deep architecture, allowing them to express a large number of modes in
their distribution. Their tractability comes from global constraints imposed in their network structure,
enabling efficient and exact computation of likelihoods, marginals, and more. Probabilistic circuits

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



(PC) are a popular choice for density estimation [35, 18] and approximate inference in discrete
settings [30].

Given the status of probabilistic circuits as one of the most expressive models among tractable
probabilistic model families, recent works have looked into pushing the limits of expressivity of
probabilistic circuits [15, 25, 24]. Naturally, the bigger and deeper the probabilistic circuit, the greater
the expressiveness of the model. This has led to a trend of building large probabilistic circuits via
design choices such as tensorizing model parameters, forgoing structure learning, and more. For
example, [24] report the training of probabilistic circuits with 9.4M parameters.

However, larger probabilistic circuits are more susceptible to overfitting. In addition, the so-called
double-descent phenomenon [19] (wherein highly overparameterized models exhibit low generaliza-
tion gap) has yet to be observed in probabilistic circuits. This puts even more importance on effective
regularization strategies for training large probabilistic circuits. Recent works have used dropout [25]
and weight decay [37], but there has not been much exploration of other regularization strategies.

In this work, we propose HyperSPNs, which regularize by aggressively limiting the degrees of
freedom of the model. Drawing inspiration from HyperNetworks [11], we generate the weights
of the probabilistic circuit via a small-scale external neural network. More precisely, we partition
the parameters (mixture weights) of the PC into several sectors. For each sector, we learn a low-
dimensional embedding, then map that to the parameters of the sector using the neural network. The
generated parameters still structurally form a PC, so we retain the same ability to reason about the
probability distribution induced by the HyperSPN.

HyperSPNs combine the greater expressiveness of large probabilistic circuits with the better gener-
alization of models with fewer degrees of freedom. The external neural network has much fewer
parameters than the original PC, effectively regularizing the PC through a soft weight-sharing strat-
egy. As a bonus, the memory requirement for storing the model is much smaller, and the memory
requirement for evaluating the model can also be drastically reduced by materializing sectors of the
PC “on the fly”. We verify the empirical performance of HyperSPNs on density estimation tasks for
the Twenty Datasets benchmark [12], the Amazon Baby Registries benchmark [8], and the Street
View House Numbers (SVHN) [20] dataset, showing generalization improvements over competing
regularization strategies in all three settings. Our results suggest that HyperSPNs are a promising
framework for training probabilistic circuits.

2 Background

Probabilistic circuits (PCs) are a family of generative models known for their tractability proper-
ties [6, 26, 34]. They support efficient and exact inference routines for computing likelihoods and
marginals/conditionals of their probability distribution. The internals of a PC consist of a network
(edge-weighted Directed Acyclic Graph) of sum and product nodes, stacked in a deep/hierarchical
manner and evaluated from leaves to root. PCs gain their tractability by enforcing various structural
constraints on their network, such as decomposability, which restricts children of the same product
node to have disjoint scopes [5, 6]. Different combination of constraints leading to different types of
PCs, including Arithmetic Circuits [6], and most notably Sum Product Networks (SPNs) [26].

The probability of an input x on the PC is defined to be the value groot(x) obtained at the root of the
PC after evaluating the network topologically bottom-up. Internally, edges leading into a sum node
are weighted with mixture probabilities α (that sum to 1), and edges leading into a product node are
unweighted. Leaf nodes at the base of the network contain leaf distributions l. The nodes of the PC
are evaluated as follows, with ch(i) denoting the children of node i:

gi(x) =











li(x) i is leaf node
∑

j∈ch(i) αijgj(x) i is sum node
∏

j∈ch(i) gj(x) i is product node

As long as the leaf distributions are tractable and the network structure satisfies the constraints of
decomposability and smoothness, the output at groot is guaranteed to be normalized, and corresponding
marginals/conditionals can be evaluated with linear-time exact inference algorithms [5, 6].

The network structure of a PC refers to the set of nodes and edge connections in the DAG, excluding
the edge weights. There are various ways of constructing the network structure of PCs, e.g., through
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Proposition 1. Evaluating a complete binary-tree computation graph requires Θ(log n) memory,
where n is the number of leaves in the complete binary-tree, and the memory cost of storing each
intermediate value and performing each computation is assumed to be a constant.

Proof. Perform the sequence of computations based on a post-order traversal of the binary tree,
erasing children values from memory when their parent value has been computed. This process
requires storing at most log n+1 intermediate values at any time. To show optimality, let C(i) denote
the optimal memory cost needed to compute the value for a node i. For non-leaf nodes i, Let j1 be
the first child of i that we begin to process, and j2 be the second. Since we processed j1 first (which
requires at least 1 unit of memory throughout), we have C(i) ≥ 1 + C(j2). As the base case, for
leaf nodes i, we have C(i) = 1. Thus, the optimal memory cost for the whole computation is at least
C(root) = log n+ 1.

Corollary 1. Evaluating a HyperSPN with an underlying RAT-SPN structure requires O(k log n+
h(k2 + rn)) memory.

The cost in Corollary 1 can be broken down into two parts, where O(k log n) memory is required
for storing intermediate values in the binary-tree computation graph, and O(h(rn+ k2)) memory is
required for storing the HyperSPN parameters and materializing the SPN one sector at a time.

The takeaway is that both storing and evaluating a HyperSPN require less memory than storing and
evaluating the underlying SPN, which require O(rnk2) memory. This memory efficiency arises from
our key insight of using sector abstractions to enable 1) encoding the SPN parameters as embeddings,
2) forgoing storage of the nodes and edges in the SPN network, and 3) mapping the SPN to a
binary-tree computation graph that allows for a low-memory evaluation order.

4 Experiments

We experiment with HyperSPN on three sets of density estimation tasks: the Twenty Datasets
benchmark, the Amazon Baby Registries benchmark, and the Street View House Numbers (SVHN)
dataset. All runs were done using a single GPU. We primarily compare with weight decay as the
competing regularization method. We also include comparisons with smaller SPNs that have the
same degrees of freedom as our HyperSPN, and with results reported from other works in literature.
We omit results on dropout because in our experimentation (and as suggested by [25]), dropout on
SPNs worked poorly for these generative density estimation tasks. In all three sets of tasks, we find
that HyperSPNs give better generalization performance than weight decay, when comparing using the
same underlying SPN structure and optimizer. Furthermore, HyperSPNs outperforms results reported
in literature on EiNETs trained using the same optimization method (Adam), and is competitive
against results reported on stochastic EM (sEM).

4.1 Twenty Datasets

The Twenty Datasets benchmark [12] is a standard benchmark used in comparing PC models. Our
experiment aims to compare the use of HyperSPN against the baseline of regularization via weight
decay, using the same underlying SPN structure for both. We use the RAT-SPN structure described
in Section 2.1, choosing layer size parameter k = 5 and replicas r = 50, randomizing the variable
orders for each replica. The number of learnable parameters in this SPN structure is shown in the #
Params column under Weight Decay in Table 1. For Weight Decay, we vary the weight decay value
between 1e-3, 1e-4, and 1e-5.

The HyperSPN uses the exact same underlying SPN structure, along with an external neural network
(a 2 layer MLP of width 20) and embeddings of dimension ranging between h = 5, 10, 20. The
number of learnable parameters in the HyperSPN is around 5 times smaller, as shown in the # Params
column under HyperSPN. We describe more details of our training setup in the Appendix.

In Table 1, we show in bold the better of the results between Weight Decay and HyperSPN. We see
that HyperSPN outperforms Weight Decay on all but two of the datasets. On top of that, storing and
evaluating the HyperSPN can be much more memory-efficient, as shown by the reduced number of
trainable parameters and as described by the techniques in Section 3.1.
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Table 1: Twenty Datasets. We plot the test log-likelihood and the number of trainable parameters.
Bold values indicate the best results between the two regularization strategies of Weight Decay and
HyperSPN, using the same SPN structure and optimizer. Underlined values indicate the best results
when compared also to reported values in literature using EiNETs/Adam⋆ and RAT-SPN/sEM†.

Name Variables
Adam Adam Adam sEM

Weight Decay HyperSPN ⋆ †
Log-LH # Params Log-LH # Params Log-LH Log-LH

NLTCS 16 -6.02 40050 -6.01 9115 -6.04 -6.01
MSNBC 17 -6.04 42550 -6.05 9615 -6.03 -6.04
KDDCup2k 64 -2.14 160050 -2.13 33115 -2.15 -2.13
Plants 69 -13.41 172550 -13.27 35615 -13.74 -13.44
Audio 100 -40.14 250050 -39.74 51115 -40.22 -39.96
Jester 100 -52.99 250050 -52.74 51115 -53.10 -52.97
Netflix 100 -57.18 250050 -56.62 51115 -57.10 -56.85
Accidents 111 -35.55 277550 -35.40 56615 -37.45 -35.49
Retail 135 -10.90 337550 -10.89 68615 -10.97 -10.91
Pumsb-star 163 -31.08 407550 -31.07 82615 -39.23 -32.53
DNA 180 -98.42 450050 -98.79 91115 -97.68 -97.23
Kosarek 190 -10.88 475050 -10.90 96115 -10.92 -10.89
MSWeb 294 -10.14 735050 -9.90 148115 -10.26 -10.12
Book 500 -34.84 1250050 -34.86 251115 -35.15 -34.68
EachMovie 500 -52.85 1250050 -51.62 251115 -55.49 -53.63
WebKB 839 -159.68 2097550 -157.69 420615 -160.51 -157.53
Reuters-52 889 -90.15 2222550 -86.12 445615 -92.76 -87.37
20Newsgrp 910 -154.36 2275050 -152.49 456115 -154.41 -152.06
BBC 1058 -262.77 2645050 -254.44 530115 -267.86 -252.14
Ad 1556 -54.82 3890050 -28.58 779115 -63.82 -48.47

On the two right-most columns, we directly copy over results reported in literature. We compare with
training EiNETs on Adam (the same optimizer as our setup) [24], and training RAT-SPNs on sEM (a
similar network structure as our setup) [25]. We see that HyperSPN also compares favorably to these
reported results (the best values underlined).

To illustrate the regularization effects of HyperSPN, we plot training curves on the training and
validation data for the Plants and for Pumsb-star datasets. We use the same HyperSPN model
described above. For clarity, let M denote the size of its underlying SPN and m denote its true
number of learnable parameters (those in its external neural network and embeddings). We then
construct two SPNs – one with size M (SPN-Large) and one with size m (SPN-Small) – and overlay
their training curves in Figure 5. For both plots in Figure 5a and 5b, SPN-Large suffers from
overfitting on the training data (presumably due to the large degrees of freedom), and SPN-Small fits
the data poorly (presumably limited by the size of the SPN). Instead, HyperSPN strikes the balance
between the expressiveness of a large underlying SPN, and regularization properties from the compact
neural network with low degrees of freedom. This translates to better generalization on the validation
data shown in the plots of Figure 5, and on the testing data shown in Table 1.

4.2 Amazon Baby Registries

We conduct similar experiments on the Amazon Baby Registries dataset [8]. We repeat the same
experimental setup of maximizing the log-likelihood of data, and use the same model structure for
HyperSPN and Weight Decay as their respective structures described in the previous section.

In Table 2, we see that HyperSPN clearly outperforms Weight Decay as a regularization technique,
giving better test log-likelihoods (in bold) while using around 5 times fewer trainable parameters. On
the right-most column we include results as reported in literature [37] on training EiNETs using sEM.
Although the comparison with this right-most column is hard to interpret due to the differences in
model architecture, optimization procedure, and regularization, we still note that HyperSPNs compare
favorably on the majority of the datasets (best values underlined).
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6 Conclusion

We propose HyperSPNs, a new paradigm of training large probabilistic circuits using a small-scale
external neural network to generate the parameters of the probabilistic circuit. HyperSPNs provide
regularization by aggressively reducing the degrees of freedom through a soft weight-sharing strategy.
We show empirical improvements in the generalization performance of PCs compared to competing
regularization methods, across both discrete and continuous density estimation tasks, and across
different state-of-the-art PC structures. As a bonus, HyperSPNs enable memory-efficient storage and
evaluation, combining the expressiveness of large PCs with the compactness of small models.

Limitations and Future Work Our analysis of the memory efficiency of HyperSPNs is limited
their storage and evaluation, since training HyperSPNs involves manipulating of the gradients through
the underlying SPN. Future work can look into combining HyperSPNs with techniques from memory-
efficient back propagation [4, 10] to train very large SPNs that do not fit in memory.
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