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Abstract

Decision makers rely on probabilistic forecasts to predict the loss of different
decision rules before deployment. When the forecasted probabilities match the
true frequencies, predicted losses will be accurate. Although perfect forecasts are
typically impossible, probabilities can be calibrated to match the true frequencies
on average. However, we find that this average notion of calibration, which is
typically used in practice, does not necessarily guarantee accurate decision loss
prediction. Specifically in the regression setting, the loss of threshold decisions,
which are decisions based on whether the forecasted outcome falls above or below
a cutoff, might not be predicted accurately. We propose a stronger notion of
calibration called threshold calibration, which is exactly the condition required to
ensure that decision loss is predicted accurately for threshold decisions. We provide
an efficient algorithm which takes an uncalibrated forecaster as input and provably
outputs a threshold-calibrated forecaster. Our procedure allows downstream
decision makers to confidently estimate the loss of any threshold decision under any
threshold loss function. Empirically, threshold calibration improves decision loss
prediction without compromising on the quality of the decisions in two real-world
settings: hospital scheduling decisions and resource allocation decisions.

1 Introduction

Decision makers need to understand the consequences of their decisions prior to making them. When
decisions are based on predictions from a machine learning model, the decision loss – the loss
incurred under a decision rule based on the predictions – summarizes the consequences of these
decisions. As an example, suppose a machine learning practitioner develops a model to predict patient
length-of-stay in the hospital [17, 3]. A hospital decides whether they have capacity to admit new
patients based on the model’s predictions of current patients’ length-of-stay (e.g. for each current
patient who is predicted to have a length-of-stay that is less than k days, the hospital schedules a
new patient). Incorrect decisions due to the model’s predictions cause the hospital to accrue costs
from under-utilizing resources or overbooking procedures. The decision loss is an aggregation of
the costs incurred from incorrect decisions. To determine whether a decision rule is safe to use, the
hospital would like to have an accurate estimate of the decision loss under different choices of k
and different costs associated with errors. This type of decision-making scenario occurs in many
high-stakes settings such as designing interventions for adverse weather events [33, 9] and resource
allocation decisions using economic estimates [15, 32].

Probabilistic predictions (probabilistic forecasts) can be used to estimate decision loss prior to
deployment. In this work, we consider the regression setup, where a forecast is represented by
a cumulative distribution function over the possible outcomes. If the forecasted probabilities of
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words, given a fixed input x ∈ X , the forecaster outputs the predicted CDF h[x] ∈ F(Y). Ideally,
the forecaster aims to predict the CDF of Y given X .

To further clarify the notation, for a fixed input-label pair (x, y) ∈ X × Y , h[x] is a CDF over the
predicted label values and h[x](y) ∈ [0, 1] is the value of the CDF h[x] at the point y. We note that
h[X] is a random variable that takes values in F(Y) and h[X](Y ) is a random variable that takes
values in [0, 1].

Let h∗[X] be the true conditional CDF of Y given X . We use ∼ to denote the distribution of a

random variable. We have that Y ∼ h∗[X]. We introduce a new random variable Ỹ to represent a

label distributed according to the h[X], the forecasted conditional distribution, so Ỹ ∼ h[X].

2.2 Decision-Making

Let A be a countable action space. A decision rule δ : X → A is any map from an input x (e.g.
a current patient’s attributes) to an action a (e.g. admit a new patient). We assume that a decision
maker has a loss function ℓ : X ×Y ×A → R, describing the loss incurred when choosing an action
a on an input-label pair (x, y). Because the labels y are unobserved, the decision maker often wants
to minimize their expected loss assuming that the labels are distributed according to the forecasted
distribution. As a result, they use the Bayes decision rule with respect to h.

Definition 1 (Bayes Decision Rule). Given a space of decision rules ∆, the Bayes decision rule
with respect to the forecaster h is the decision rule in ∆ that minimizes the expected loss under the
forecasted distribution

δ∗h = arg inf
δ∈∆

EXEỸ∼h[X][ℓ(X, Ỹ , δ(X))]]

2.3 Threshold Decisions

We focus on the setting where the decision maker aims to minimize a threshold loss function. The
action space A consists of two actions so A = {0, 1}. A threshold loss function ℓ is defined as
follows

ℓ(x, y, a) =
∑

i∈{0,1}

c1,iI(y ≤ y0, a = i) +
∑

i∈{0,1}

c0,iI(y > y0, a = i),

where ci,j ∈ R. The ci,j’s denote decision costs, costs associated with different outcome-action pairs,
and y0 is a decision threshold. Let L be the space of threshold loss functions, which are all losses of
this form with any ci,j ∈ R and y0 ∈ R.

Given a threshold loss function ℓ, the decision maker can use the Bayes decision rule δ∗h in Definition 1
to select which action to take. We show that the resulting decision rules always take the form of

δ∗h(x) = I(h[x](y0) ≥ α) or δ∗h(x) = I(h[x](y0) ≤ α)

for some parameters α ∈ [0, 1] and y0 ∈ Y that depends on the loss function (proved in Appendix B).
We call such decision rules threshold decision rules because intuitively, they choose the action based
on whether h[x](y0) is greater (or less) than a threshold α. We denote the space of such decision
rules as ∆h. Since the decision maker’s loss function is a threshold loss function, the decision maker
can restrict the space of decision rules they consider to threshold decision rules on the forecasted
CDFs.

3 Reliable Decision-Making with Threshold Calibration

3.1 Problem Setup

Forecasts are often produced by one group, such as machine learning practitioners or scientists, and
consumed by another, such as policy makers or private agents [14]. Motivated by this paradigm, we
model these two entities separately:

1. A forecaster h takes inputs x ∈ X and produces CDFs h[x] over the possible outcomes in
Y. The provider of h does not know the specific downstream tasks for which h is used.
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2. A decision maker has a dataset of unlabeled inputs D = {xi}
n
i=1, binary action space

A = {0, 1}, and a threshold loss function ℓ ∈ L of interest. The decision maker must take
an action ai ∈ A for each unlabeled input xi. The decision maker uses the forecaster h to
select {ai}

n
i=1 because (1) the decision maker does not have enough labeled data to build

their own model locally or (2) building the model requires a domain expert.

Multiple decision makers may rely on the same forecaster but have different loss functions. Further,
a decision maker’s loss function can change if their decision costs or decision threshold change.
In this setting, we identify the conditions on h that the provider can enforce to ensure reliable
decision-making under threshold decisions.

3.2 Reliability Gap

Decision makers often need to accurately estimate the average decision loss incurred under a decision
rule prior to deployment. To quantify the accuracy of these decision loss predictions, we define the
reliability gap.

Definition 2 (Reliability Gap). Given a forecaster h, we define the the reliability gap γ(δ, ℓ) of a
particular decision rule δ under a loss function ℓ as

γ(δ, ℓ) = |EXEỸ∼h[X][ℓ(X, Ỹ , δ(X))]− EXEY∼h∗[X][ℓ(X,Y, δ(X))]|.

The first term in the equation is the average decision loss predicted by the forecaster. Under the

forecasted distribution, the labels Ỹ are distributed according to h[X]. As a result, the first term does
not depend on the true labels and can be computed by the decision maker using the unlabeled data
prior to deployment. The second term is the true average decision loss. Under the true conditional
distribution, the labels Y are distributed according to h∗[X]. So, the second term can be thought of as
the loss that is incurred at test-time. One caveat is that the reliability gap quantifies the reliability of
average decision loss prediction and obtaining zero reliability gap does not imply any instance-based
guarantees for individual decisions.

When the forecaster perfectly matches the true distribution (i.e. h = h∗), we have γ(δ, ℓ) = 0 for any
decision rule δ and any loss function ℓ. However, in practice, we cannot assume that the forecaster
predicts the true distribution. In addition, we would like the forecaster to be applicable for different
downstream decision makers. As a result, we study the necessary and sufficient conditions on the
forecaster that guarantee zero reliability gap for any threshold decision on the forecasted CDFs and
any threshold loss function.

3.3 Threshold Calibration

We define the property of threshold calibration and show that it is necessary and sufficient to ensure
zero reliability gap under any threshold decision on the forecasted CDFs and any threshold loss
function. The lemma and theorem in this section are proven in Appendix B.

We define the property of threshold calibration below.

Definition 3 (Threshold Calibration). A forecaster h satisfies threshold calibration if

Pr[h[X](Y ) ≤ c | h[X](y0) ≤ α] = c ∀y0 ∈ Y, α ∈ [0, 1], ∀c ∈ [0, 1]. (1)

A threshold-calibrated forecaster is average-calibrated on subsets of the predicted CDFs that sat-
isfy h[X](y0) ≤ α.We make the following observation about conditioning on the complementary
predicted CDFs.

Lemma 1. Given a forecaster h that satisfies Definition 3, then we have that ∀y0 ∈ Y, α ∈
[0, 1], ∀c ∈ [0, 1],Pr[h[X](Y ) ≤ c | h[X](y0) > α] = c.

In a threshold decision task, a decision maker will take action a given inputs with predicted CDFs
satisfying h[X](y0) ≤ α (and take a complementary action given inputs with predicted CDFs
satisfying h[X](y0) > α). Intuitively, threshold calibration ensures that the forecaster satisfies
average calibration on the subsets of predicted CDFs where the decision maker chooses a = 0 and
a = 1.
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Threshold calibration is a specific type of group calibration [28], where calibration across the
collection of groups G = {(X,Y ) ∈ X ×Y | h[X](y0) ≤ α}y0∈Y,α∈[0,1] is desired. Since threshold
calibration requires achieving calibration on intersecting groups, it is also related to the notion of
multicalibration [18]. In Section 4, we give an efficient algorithm for achieving threshold calibration
that is inspired by previous work on multicalibration.

Using Definition 3 and Lemma 1, we define the threshold calibration error (TCE) to measure deviation
from threshold calibration at a threshold y0 ∈ Y and quantile α ∈ [0, 1].

Definition 4 (Threshold Calibration Error).

TCE(h, y0, α) =

∫ 1

0

|Pr[h[X](Y ) ≤ c | h[X](y0) ≤ α]− c| dc

+

∫ 1

0

|Pr[h[X](Y ) ≤ c | h[X](y0) > α]− c| dc.

Threshold calibration is a desirable property due to its connection to achieving zero reliability gap.

Theorem 1. Let L be the space of threshold loss functions. Given a forecaster h, let ∆h be the space
of threshold decision rules on the forecasted CDFs of h. A forecaster h satisfies threshold calibration
if and only if γ(δ, ℓ) = 0 ∀δ ∈ ∆h, ∀ℓ ∈ L.

We obtain this result by observing that the expected decision loss under the true distribution can be
decomposed into two terms. The first term corresponds to the cost incurred from “false positive”
errors and the second term corresponds to the cost incurred from “false negative” errors. Under
threshold calibration, the forecaster’s predicted error rates match the true error rates. Since the
decision loss (with any choice of costs) is a linear combination of these error rates, the expected
decision loss predicted by the forecaster matches the expected decision loss under the true distribution.
Thus, under a threshold-calibrated forecaster, we achieve zero reliability gap under any threshold
decision on the forecasted CDFs and any threshold loss function.

3.4 Comparison to Existing Calibration Definitions

We compare threshold calibration to other methods for calibrating probabilistic forecasts. Average
calibration is the standard definition of calibration for regression [23, 12].

Definition 5 (Average Calibration). A forecaster h satisfies average calibration if

Pr[h[X](Y ) ≤ c] = c ∀c ∈ [0, 1].

In other words, a forecaster is average-calibrated if the true label Y is below the c-th quantile of the
forecasted CDF h[x] exactly c percent of the time.

In contrast, distribution calibration is a much stronger definition of calibration [31]. Intuitively,
distribution calibration requires a forecaster to be calibrated for every distribution in the forecaster’s
model family.

Definition 6 (Distribution Calibration). A forecaster h satisfies distribution calibration if

Pr[h[X](Y ) ≤ c | h[X] = g] = c ∀g ∈ F(Y),

where F is space of CDFs corresponding to the forecaster’s model family.

We outline the relationship between average, threshold, and distribution calibration in the following
proposition.

Proposition 1. If a forecaster satisfies distribution calibration, then it satisfies threshold calibration.
If a forecaster satisfies threshold calibration, then it satisfies average calibration.

We note that the converses of the statements in Proposition 1 are not necessarily true. A threshold-
calibrated forecaster does not necessarily satisfy distribution calibration. An average-calibrated
forecaster does not necessarily satisfy threshold calibration or distribution calibration (see Appendix
C). This implies that an average-calibrated forecaster does not satisfy the necessary condition of
Theorem 1, meaning that the reliability gap under threshold decisions may not be zero. So, decision
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makers who rely on a forecaster that only satisfies average calibration (but not threshold calibration)
are not guaranteed to accurately estimate their decision loss under threshold decisions.

From Proposition 1, we have that a distribution-calibrated forecaster satisfies the necessary condition
of Theorem 1. However, distribution calibration can be challenging to achieve in practice because
the same CDF is rarely predicted more than one time on the training samples, making it difficult to
guarantee calibration without compromising the sharpness of the forecasts. Sharpness corresponds
to the width of the prediction intervals generated from the forecasts, and sharp forecasts yield
short prediction intervals. Although distribution calibration is theoretically guaranteed to yield zero
reliability gap, we observe that achieving distribution calibration is challenging when the model
family is complex (Section 5).

Finally, we emphasize the threshold calibration is exactly the condition needed to guarantee the
reliability gap is zero in Theorem 1.

4 Achieving Threshold Calibration

We design a recalibration algorithm that takes an uncalibrated forecaster as input and provably outputs
a threshold-calibrated forecaster. Our algorithm is an iterative procedure that terminates when the
maximum TCE is less than a user specified threshold ǫ. Our key result is that the algorithm must
terminate after O(1/ǫ2) iterations.

Pseudo-code for the algorithm is shown in Algorithm 1. Intuitively, at each iteration of the algorithm,
we find the yt0 and αt where the TCE in Definition 4 is maximized. This partitions the input X into
two parts: those where h[x](yt0) ≤ αt and those where h[x](yt0) > αt. For each partition, we use a
standard recalibration algorithm (Isotonic regression [23]) to achieve average calibration. Intuitively,
after the recalibration step, the forecaster should satisfy average calibration for each partition, and
hence the TCE in Definition 4 must be (close to) 0 for yt0 and αt. We repeat this procedure until the
TCE is less than ǫ for every possible y0 and α.

Algorithm 1: Threshold Recalibration

1 Input: Forecaster h : X → F(Y), maximum error ǫ > 0
2 Output: A threshold-calibrated forecaster

3 Set h0 ← h
4 for t = 1, 2, · · · until maximum threshold calibration error supy0,α

TCE(ht−1, y0, α) ≤ ǫ do

5 Find the y0 and α that maximize threshold calibration error.

yt0, α
t ← arg sup

(y0,α)∈Y×[0,1]
TCE(ht−1, y0, α)

6 Partition input features X into X0 ← {x ∈ X | h
t−1[x][yt0] ≤ αt} and X1 = X \ X0.

7 Use Isotonic regression to learn recalibration maps φt
0, φ

t
1 : F(Y)→ F(Y) on X0 and X1

respectively.
8 Apply the recalibration map to obtain new prediction functions.

ht[x]←

{
φt
0(h

t−1[x]) if x ∈ X0

φt
1(h

t−1[x]) otherwise

9 end

10 return hT where T is the final iteration count.

The following theorem shows that our iterative threshold calibration procedure converges in a small
number of iterations. The intuition of the proof is that after each iteration, the L2 distance between
the prediction functions h and the true CDF h∗ must decrease by at least ǫ2. Therefore, the algorithm
must terminate before the L2 distance decreases below 0 (which is impossible). A full proof is
provided in Appendix B.

Theorem 2. Algorithm 1 converges after at most O(1/ǫ2) iterations and outputs a forecaster with
threshold calibration error at most ǫ.

For simplicity, we do not consider finite sample approximation of the TCE in line 5 of Algorithm 1.
Line 5 can be interpreted in two ways: line 5 estimates the TCE on the true distribution (which we
can only do with infinite samples), or on the empirical distribution (i.e. the uniform distribution on

6



the recalibration data). Under the former interpretation, Theorem 2 holds assuming that line 5 can
estimate the true TCE (which is the ideal scenario with infinite data). Under the latter interpretation,
Theorem 2 holds for the empirical distribution, i.e. it guarantees that Algorithm 1 will output a
forecaster with threshold calibration error at most ǫ on the empirical distribution rather than the true
distribution. We will instead use experiments to show that Algorithm 1 can generalize to the true
distribution. Note that under both interpretations, Algorithm 1 will converge after at most O(1/ǫ2)
iterations. For completeness, we describe the finite sample version of the algorithm in Appendix A.

5 Experiments

In the following experiments, we demonstrate that threshold calibration can minimize the reliability
gap (1) across a range of decision costs, (2) across a range of decision thresholds, and (3) in simple
and complex model families. Across all datasets and forecaster model families that we consider, we
find that threshold calibration outperforms the baselines in reducing the size of the reliability gap
while attaining similar or improved decision loss compared to the baselines.

5.1 Datasets

We consider datasets that relate to real-world decision-making tasks and standard benchmarks. In the
main paper, we show results on the UCI Protein and the MIMIC-III datasets. All remaining results
can be found in Appendix A.

MIMIC-III. Patient length-of-stay predictions are used for hospital scheduling and resource man-
agement [17]. We consider a patient length-of-stay forecaster trained on patient admission laboratory
values from the MIMIC-III dataset [20]. In our decision task, the hospital decides to schedule a new
patient for an elective procedure if a current patient is predicted to have a short length of stay.

Demographic and Health Survey (DHS). Local wealth measurements are used to inform resource
allocation decisions. We use the DHS data from Sheehan et al. [30] to predict asset wealth from
satellite images as done in Yeh et al. [32] and Sheehan et al. [30]. Our experimental setup is motivated
by the decision task defined in Yeh et al. [32], where aid is allocated to regions where the predicted
asset wealth falls below a particular threshold.

UCI Regression Datasets. We evaluate on a suite of UCI regression datasets (Naval, Protein, Energy,
Crime) [11]. They are common benchmarks in the uncertainty quantification literature [31, 2, 8, 23].

5.2 Experimental Setup and Baselines

Experimental Setup. We consider a forecaster that outputs Gaussian distributions and a forecaster
that outputs Gaussian-Laplace mixture distributions. We use a train/validation/test split. The un-
calibrated forecaster is a neural network trained on the training set with the validation set used for
early stopping. For large datasets (Protein, Energy, Naval, MIMIC-III), the recalibration transform is
trained on the validation set. For small datasets (Crime, DHS), the recalibration transform is trained
on the training and validation set. On the test set, we evaluate our method and the baselines using
decision-making metrics (Section 5.3). Calibration metrics are also measured and results are provided
in Appendix A.

Baselines. We compare the uncalibrated forecaster to the forecaster after enforcing average, threshold,
or distribution calibration through a posthoc recalibration procedure. Methods for achieving these
properties are described in Appendix A.

5.3 Decision-Making Metrics

We simulate decision makers enumerated i = 1, 2 . . .M who use a probabilistic forecaster
h for their threshold decision tasks. We assume that there is no cost associated with
true positives or true negatives, and the total cost of a false positive plus a false nega-
tive is equal to 10 for all decision makers. As a result, decision maker i’s task is deter-
mined by a decision threshold yi0 and decision cost ratio ci. Each decision maker has a
loss function ℓi(x, y, a) = 10ciI(a = 1, y ≥ yi0) + 10(1− ci)I(a = 0, y < yi0) and a decision rule
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have been studied in [23, 8]. In addition, methods for achieving stronger calibration notions have
also been introduced such as distribution calibration [31] and individual calibration [34]. Calibration
and trustworthy predictions in the medical domain are also studied in [16]. [16] introduces the notion
of D-calibration, which is related to our average calibration baseline, but is tailored to the survival
analysis task. A perfectly average calibrated prediction function is also D-calibrated, and vice versa.

Multicalibration. Our definition of threshold calibration is most related to the line of work on
multicalibration [18, 21]. Given a large collection G of potentially intersecting groups of the data, a
predictor is multicalibrated on G if it is simultaneously calibrated on every sufficiently large group in
G [18]. Previous works give methods for achieving mean and moment multicalibration for predictor
functions. Our iterative procedure for achieving threshold calibration is inspired by methods for
achieving multicalibration.

7 Limitations and Societal Impact

Our work demonstrates that certain types of calibration enable decision makers to estimate decision
loss before deployment, which should not be confused with enabling decision makers to make
optimal decisions. For example, a forecaster that always outputs the marginal distribution of Y is
threshold-calibrated but likely incurs high decision loss. Furthermore, posthoc recalibration is limited
by the quality of the baseline model. If the baseline model outputs the marginal distribution of Y ,
then it is already threshold-calibrated but likely is not useful for decision making. Applying our
threshold calibration method will not offer any benefit in this case.

Also, our work assumes that predictions of Y do not affect the true label Y . However, when
predictions are used to make decisions, they can often influence the outcome they aim to predict [27].
Our work does not account for these performative effects, so the decision loss may not be accurately
estimated in these settings. Future work could focus on developing calibration procedures that enable
forecasters to be robust to such distribution shifts. In addition, we specifically focus on binary-action
threshold decisions. Future work may generalize our results to the setting where decision makers
have loss functions involving multiple thresholds and multiple actions.

There is a potential for negative societal impact if threshold calibration is incompatible with fairness
criteria. Nevertheless, we note that the perfect predictor (that predicts the true conditional probability)
satisfies our calibration definition. Consequently, if the perfect predictor satisfies some fairness notion
(such as group calibration), then our calibration definition is also compatible with that fairness notion.
Note that the perfect predictor does not satisfy a fairness notion called demographic parity, hence our
calibration definition is not compatible with demographic parity either.

8 Conclusion

We show that a threshold-calibrated forecaster theoretically guarantees accurate decision loss estima-
tion under threshold decision losses and threshold decision rules. We provide an iterative procedure
for achieving threshold calibration and show that in practice it minimizes the reliability gap relative
to baselines without compromising the forecaster’s decision loss. Such estimates permit decision
makers to reason about the consequences of their decisions prior to deployment.
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A Experimental Setup and Additional Results

A.1 Reproducibility

We provide a link to our code below. The code includes scripts for downloading the UCI regression
datasets. Accessing the MIMIC-III dataset requires an ethics training course and permissions [20], so
we do not provide the dataset or download information in the code.

• https://drive.google.com/file/d/12Qh1AWsJcx6UzrRAVYPAYPNemRBj7500/
view?usp=sharing.

A.2 Baseline Forecasters

In our experiments, a forecaster is trained on data {(xi, yi)}
n
i=1. We assume the labels yi are drawn

i.i.d. from a distribution with a parameters θi. We consider two types of predictive distributions,
a unimodal Gaussian distribution and a mixture of a Gaussian and a Laplace distribution. For a
Gaussian distribution, the distribution parameters θi consists of a mean µi and standard deviation σi.
For a mixture of a Laplace and Gaussian distribution, the distribution parameters θi consist of the
weight assigned to the Gaussian component wi, the Gaussian mean µi and standard deviation σi, and
the Laplace location mi and scale bi.

The forecaster is a neural network hw where w denotes the parameters of the network. The network
takes x as input. For the Gaussian forecaster, the network outputs the parameters of a Gaussian
distribution (2 parameters). For the Gaussian-Laplace forecaster, the network takes x as input and
outputs the parameters of a Gaussian-Laplace distribution (5 parameters). The network can be trained
by using negative log likelihood of the predictive distribution as the loss function.

A.3 Recalibration Procedure

The posthoc recalibration transforms are fit using a recalibration dataset. We detail the recalibration
procedure for each type of calibration.

A.3.1 Average.

To enforce average calibration, we use the method defined in [23], using the recalibration dataset to
fit a single isotonic regression with linear interpolation.

A.3.2 Threshold

We use a finite sample version of the method described in Section 4 to enforce threshold calibration.
We run the algorithm for T = 40 iterations for all datasets. We give a detailed outline of the algorithm
we use.

Algorithm 2: Threshold Recalibration

1 Input: Uncalibrated forecaster h : X → F(Y), recalibration dataset D = {xi, yi}
n
i=1,

discretization parameter K ∈ Z+, number of iterations T
2 Output: A threshold-calibrated model hT : X → F(Y).
3 m,M ← infi∈[n] yi, supi∈[n] yi

4 Y ← {m+ (M−m)j
K

| j = 1, 2, . . .K}

5 Q ← { j
K
| j = 1, 2, . . .K}

6 h0 ← h
7 for t = 1, 2, 3, . . . T do
8 Select the (yt0, α

t, ) that yields the highest TCE.

(yt0, α
t)← arg sup

(y0,α)∈Y×Q
T̂CE(ht−1, y0, α)

9 Compute ht applying Algorithm 3 with the arguments ht−1, yt0, α
t,D

10 end

11 return hT
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Algorithm 3: Recalibration at Single Threshold-Quantile Pair

1 Input: Uncalibrated forecaster h : X → F(Y), recalibration dataset D = {xi, yi}
n
i=1, threshold

y0 ∈ R, quantile α ∈ [0, 1], discretization parameter K ∈ Z+.
2 Output: A model h : X → F(Y) that is threshold-calibrated at a threshold y0 and quantile α.
3 Partition the data based on whether h[xi](y0) ≤ α:
4 I1 ← {i ∈ [n] | h[xi](y0) ≤ α}.
5 I2 ← [n] \ I1.
6 Learn recalibration functionsRk for each Ik :
7 for k = 1, 2 do

8 Create recalibration dataset Dk ← {h[xi](yi), P̂k(h[xi](yi))}i∈Ik
, where

P̂k(p)← |{i ∈ Ik | h[xi](yi) ≤ p}|/|Ik|.
9 Train a model Rk on Dk (e.g. isotonic regression).

10 h[x]←

{
R1(h[x]) if h[x](y0) ≤ α

R2(h[x]) otherwise

11 return h

Recalibration at a Single Threshold-Quantile Pair (Algorithm 3). Given an uncalibrated model
h, a recalibration dataset D, and a discretization parameter K, we propose a simple recalibration
procedure for enforcing calibration for a single threshold-quantile pair y0, α (Algorithm 3). We give
an overview of the algorithm. First, we partition the recalibration samples into two bins, I1 and I2,
based on whether the predicted CDF value h[x](y0) is greater than α. Next, we learn a recalibration
transform Rk for Ik using a method similar to [23]. To ensure that the recalibrated forecaster outputs
valid CDFs, we require that each Rk : [0, 1]→ [0, 1] and is monotonically increasing. For a particular
sample (x, y), the appropriate recalibration transform Rk to apply depends on whether h[x](y0) is
greater than α.

A.3.3 Distribution.

To enforce distribution calibration, we construct p-dimensional grid where p is the number of
parameters in the forecaster’s model family. For Gaussian distributions, we have p = 2. For Gaussian-
Laplace mixture distributions, we have p = 5. We set the grid boundaries by computing the range of
each distribution parameter on the validation set. We uniformly partition each axis of the grid into
K bins. Each validation sample is sorted into a single grid cell based on the predicted distribution
parameters. We fit an isotonic regression model (with linear interpolation) as in [23] using the
validation samples that fall into a particular grid cell. For evaluation, we sort the test examples into
the appropriate grid cell and apply the corresponding recalibration model. We set the number of bins
for each parameter to K = 20.

A.4 Calibration Metrics

The expected calibration error (ECE) is used to measure deviations from average calibration [23]. It
is defined as follows

ECE(h) =

∫

c∈[0,1]

|Pr[h[X](Y ) ≤ c]− c| dc.

We contrast this definition with TCE, threshold calibration error, which measures deviations from
threshold calibration. Smaller ECE implies better average calibration. Smaller TCE implies better
threshold calibration.

A.5 Hospital Scheduling Decisions on MIMIC-III

A.5.1 Dataset

Medical Information Mart for Intensive Care III (MIMIC-III) is a freely accessible medical database
of critically ill patients admitted to the intensive care unit (ICU) at Beth Israel Deaconess Medical
Center (BIDMC) from 2001 to 2012 [20, 13]. During that time, BIDMC switched clinical information
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systems from Carevue (2001-2008) to Metavision (2008-2012). To ensure data consistency, only data
archived via the Metavision system was used in the dataset.

Feature Selection. We select the same patient features and imputed values as in [17]. A total
of 17 variables were extracted from the chartevents table to include in the dataset - capillary refill,
blood pressure (systolic, diastolic, and mean), fraction of inspired oxygen, Glasgow Coma Score
(eye opening response, motor response, verbal response, and total score), serum glucose, heart rate,
respiratory rate, oxygen saturation, respiratory rate, temperature, weight, and arterial pH. For each
unique ICU stay, values were extracted for the first 24 hours upon admission to the ICU and averaged.
Normal values were imputed for missing variables as shown in Table 1. There are 26089 unique ICU
stays in the dataset. The final dataset consisted of the total length of ICU stay and the mean value for
each of the 17 variables across the first 24 hours.

Variable MIMIC-III item ids from chartevents table Imputed value
Capillary refll rate (223951, 224308) 0
Diastolic blood pressure (220051, 227242, 224643, 220180, 225310) 59.0
Systolic blood pressure (220050, 224167, 227243, 220179, 225309) 118.0
Mean blood pressure (220052, 220181, 225312) 77.0
Fraction inspired oxygen (223835) 0.21
GCS eye opening (220739) 4
GCS motor response (223901) 6
GCS verbal response (223900) 5
GCS total (220739 + 223901 + 223900) 15
Glucose (228388, 225664, 220621, 226537) 128.0
Heart Rate (220045) 86
Height (226707, 226730) 170.0
Oxygen saturation (220227, 220277, 228232) 98.0
Respiratory rate (220210, 224688, 224689, 224690) 19
Temperature (223761, 223762) 97.88
Weight (224639, 226512, 226531) 178.6
pH (223830) 7.4

Table 1: Variables included in dataset

Dataset Splits. For each of 6 random seeds [0, 1, 2, 3, 4, 5], we generate different dataset splits.
Given a random seed, we randomly split off 30% of the original dataset to use as the test set. The
remaining dataset are further partitioned into a validation set and training set. The validation set
consists of 10% of the remaining data.

A.5.2 Toy Example.

Setup. The decision task of interest in Figure 1 is identifying patients with LOS longer than 3.5 days.
The optimal decision rule is φ(y) = I(y ≥ y0). In the absence of true LOS values, the forecast-based
decision rule δ(X) = I(h[x](y0) ≤ α) where α ∈ [0, 1]. To evaluate decision rules, we consider a
loss function of the form ℓ(x, y, a) = 5I(a = 1, y < y0) + 5I(a = 0, y ≥ y0). So, false positives
and false negatives incur equal cost and right decisions incur no cost.

Forecaster Training Procedure. For each dataset split, we train an average-calibrated forecaster
and a threshold-calibrated forecaster.

To obtain a forecaster that obtains perfect average calibration, we train a neural network with 3 hidden
layers of 100 units and ReLU activation on training split of the dataset with ECE as the loss function.
We check the validation ECE at each epoch and save the model that obtains lowest validation ECE.

To obtain a threshold-calibrated forecaster, we train a neural network with 3 hidden layers of 100
units and ReLU activation on the training split of the dataset with TCE as the loss function. We use a
discretization parameter of K = 100 for training the forecaster. We check the validation TCE at each
epoch and save the model that obtains lowest validation TCE.

We train both forecasters for 300 iterations.

Results. Since the forecasters are only trained with a calibration objective, we do not expect them to
provide accurate decisions. Nevertheless, we assess the reliability of the forecasters by evaluating how
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Method Reliability Gap Decision Loss TCE ECE
Forecaster

Gaussian None 0.103 ± 0.019 0.189 ± 0.008 0.227 ± 0.017 0.115 ± 0.01
Average 0.027 ± 0.005 0.17 ± 0.005 0.093 ± 0.019 0.009 ± 0.004
Threshold 0.017 ± 0.006 0.17 ± 0.005 0.055 ± 0.013 0.011 ± 0.003
Distribution 0.033 ± 0.006 0.173 ± 0.006 0.061 ± 0.008 0.011 ± 0.004

Gaussian-Laplace None 0.033 ± 0.002 0.165 ± 0.003 0.082 ± 0.01 0.034 ± 0.003
Average 0.027 ± 0.005 0.165 ± 0.003 0.052 ± 0.007 0.009 ± 0.003
Threshold 0.015 ± 0.005 0.166 ± 0.003 0.048 ± 0.014 0.011 ± 0.002
Distribution 0.077 ± 0.013 0.188 ± 0.006 0.115 ± 0.02 0.032 ± 0.009

Table 3: Recalibration results for Patient Length-of-Stay Forecasting on MIMIC-III dataset. We
observe that threshold calibration procedure decreases the reliability gap.

A.6 Resource Allocation Decisions on Demographic and Health Survey

A.6.1 Dataset

We use the satellite images and asset wealth data for African countries of Tanzania, Malawi, Mozam-
bique, Uganda, Rwanda, Zimbabwe from the Demographic and Health Surveys (DHS) from 2009-
2011 [30]. We use the nightlight bands of the satellite images. The dataset contains 4191 samples.

Dataset Splits. For each of 6 random seeds [0, 1, 2, 3, 4, 5], we generate different dataset splits.
Given a random seed, we randomly split off 30% of the original dataset to use as the test set. The
remaining dataset are further partitioned into a validation set and training set. The validation set
consists of 10% of the remaining data.

A.6.2 Recalibration Experiment Details

Baseline Models. The neural network model that we use is a pretrained Resnet18 architecture from
the Pytorch model zoo, which is adjusted to have grayscale inputs. The input shape 255× 255× 1
and the number of outputs of network is the number of parameters of the predicted distribution.

Baseline Training Procedure. The baseline models are trained for a maximum of 100 epochs with
batch size equal to 32 and we use the Adam optimizer with learning rate 1e-3. Each epoch we check
the loss obtained on the validation set and select the model that minimizes the loss on the validation
set.

Recalibration Procedure. Due to the small size of the dataset, the training set and validation set
are used to train the recalibration transform.

A.6.3 Recalibration Results.

In Table 4, we show the mean reliability gap and mean decision loss obtained over all M decision
makers and TCE and ECE of the forecaster on the DHS Asset Wealth dataset. The standard deviation
is computed over 6 randomized trials. The findings are consistent with the findings reported in Section
5; we observe that threshold calibration minimizes the reliability gap and obtains the lowest TCE
among the baselines without compromising the decision loss.

A.7 UCI Regression Datasets

A.7.1 Datasets

We use 4 UCI regression datasets. Three of the datasets, Protein, Energy, and Naval, are large and
contain 45730, 19735, and 11934 samples respectively. The smaller dataset, Crime, contains 1994
samples.

Dataset Splits. For each of 6 random seeds [0, 1, 2, 3, 4, 5], we generate different dataset splits.
Given a random seed, we randomly split off 30% of the original dataset to use as the test set. The
remaining dataset are further partitioned into a validation set and training set. The validation set
consists of 10% of the remaining data.
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Reliability Gap Decision Loss TCE ECE
Dataset Method

Protein None 0.052 ± 0.009 0.474 ± 0.008 0.054 ± 0.009 0.014 ± 0.005
(n=45730) Average 0.041 ± 0.006 0.474 ± 0.008 0.046 ± 0.008 0.005 ± 0.001

Threshold 0.029 ± 0.002 0.473 ± 0.009 0.034 ± 0.005 0.006 ± 0.002
Distribution 0.130 ± 0.025 0.531 ± 0.011 0.113 ± 0.011 0.038 ± 0.007

Energy None 0.028 ± 0.007 0.157 ± 0.014 0.075 ± 0.011 0.023 ± 0.006
(n=19735) Average 0.029 ± 0.008 0.157 ± 0.014 0.058 ± 0.015 0.008 ± 0.004

Point 0.025 ± 0.004 0.157 ± 0.013 0.054 ± 0.011 0.012 ± 0.004
Distribution 0.033 ± 0.007 0.163 ± 0.015 0.089 ± 0.016 0.038 ± 0.007

Naval None 0.086 ± 0.009 0.167 ± 0.012 0.202 ± 0.075 0.091 ± 0.039
(n=11934) Average 0.091 ± 0.017 0.170 ± 0.012 0.083 ± 0.021 0.014 ± 0.007

Threshold 0.042 ± 0.009 0.145 ± 0.011 0.055 ± 0.012 0.013 ± 0.007
Distribution 0.067 ± 0.014 0.143 ± 0.013 0.183 ± 0.031 0.086 ± 0.017

Crime None 0.081 ± 0.017 0.357 ± 0.014 0.091 ± 0.024 0.030 ± 0.010
(n=1994) Average 0.075 ± 0.020 0.356 ± 0.015 0.079 ± 0.026 0.022 ± 0.007

Threshold 0.066 ± 0.010 0.355 ± 0.010 0.078 ± 0.016 0.026 ± 0.007
Distribution 0.097 ± 0.018 0.382 ± 0.021 0.093 ± 0.019 0.034 ± 0.012

Table 6: Gaussian-Laplace Mixture Forecaster Recalibration. Threshold calibration can decrease the
size of the reliability gap. Distribution calibration can be challenging to enforce in model families
with more parameters, and we see that it can be detrimental to the performance of the forecaster.

The Bayes decision rule with respect to the forecasted distribution is

δ∗(X) =

{
1 if Pr(Ỹ < y0 | X) ≤ c01−c11

c01+c10−c11−c00

0 else

Equivalently,

δ∗(X) =

{
1 if h[X](y0) ≤

c01−c11
c01+c10−c11−c00

0 else
.

Thus, the Bayes decision rule is a threshold decision rule given by

δ∗(X) = I

(
h[X](y0) ≤

c01 − c11
c01 + c10 − c11 − c00

)
.

B.2 Proof of Lemma 1

Proof. Let f be a forecaster h : X → F(Y) that satisfies Definition 3. Then we have that

Pr[h[X](Y ) ≤ c] = Pr[h[X](Y ) ≤ c | h[X](y0) ≤ 1] = c, (2)

where y0 ∈ Y. By the law of total probability, we have that

Pr[h[X](Y ) ≤ c] = Pr[h[X](Y ) ≤ c, h[X](y0) > α] + Pr[h[X](Y ) ≤ c, h[X](y0) ≤ α]. (3)

From Definition 3, we have that α ∈ [0, 1], y0 ∈ Y ,

Pr[h[X](y0) ≤ c | h[X](y0) ≤ α] = c.

Pr[h[X](y0) ≤ c, h[X](y0) ≤ α]

Pr[h[X](y0) ≤ α]
= c

Pr[h[X](Y ) ≤ c]− Pr[h[X](Y ) ≤ c, h[X](y0) > α]

1− Pr[h[X](y0) > α)
= c

c− Pr[h[X](Y ) ≤ c, h[X](y0) > α]

1− Pr[h[X](y0) > α)
= c
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Rearranging the terms, we find that

Pr[h[X](Y ) ≤ c | h[X](y0) > α] =
Pr[h[X](Y ) ≤ c, h[X](y0) > α]

Pr[h[X](y0) > α]
= c.

Thus, if a forecaster satisfies Definition 3, then it also satisfies

Pr[h[X](Y ) ≤ c | h[X](y0) > α] = c ∀y0 ∈ Y, ∀α ∈ [0, 1], c ∈ [0, 1].

B.3 Proof of Theorem 1

Proof of Theorem 1. Before proving the theorem we need a simple Lemma

Lemma 2. For any pair of random variables U, V , E[U | V ] = 0 almost surely if and only if
∀c ∈ R,E[UI(V > c)] = 0.

We first show that if a forecaster h is threshold-calibrated, then the forecaster yields zero reliability
gap for any threshold decision rule under any threshold loss function. Suppose we have a threshold
loss function with decision threshold y0 ∈ Y.

Let U = h∗[X](y0) and Ũ = h[X](y0). Suppose h satisfies threshold calibration Pr[h[X](Y ) ≤ c |
h[X](y0) ≤ α] = c, under the new notation this implies that

E[I(h[X](Y ) ≤ c)− c | Ũ ≤ α] = 0

We can further derive

E[U − Ũ | Ũ ≤ α] = E[h∗[X](y0)− h[X](y0) | Ũ ≤ α]

= E[I(Y ≤ y0)− h[X](y0) | Ũ ≤ α]

= E[I(h[X](Y ) ≤ h[X](y0))− h[X](y0) | Ũ ≤ α] Monotonicity

= 0

Therefore, we have that E[(U − Ũ)I(Ũ ≤ α)] = 0, ∀α ∈ [0, 1]. We can use this fact to show that the
reliability gap must be equal to 0.

For any loss function ℓ and threshold decision rule δh we have that the true average decision loss can
be written as follows:

E[ℓ(X,Y, δh(X))] = E[ℓ(X,Y, 1)I(δh(X) = 1)] + E[ℓ(X,Y, 0)I(δh(X) = 0)]

Similarly, the predicted average decision loss can be written as follows:

E[ℓ(X, Ỹ , δh(X))] = E[ℓ(X,Y, 1)I(δh(X) = 1)] + E[ℓ(X,Y, 0)I(δh(X) = 0)]

WLOG, it suffices to show that

E[ℓ(X,Y, 1)I(δh(X) = 1)]− E[ℓ(X, Ỹ , 1)I(δh(X) = 1)] = 0 ∀α, c ∈ [0, 1], y0 ∈ Y.

We find that

E[ℓ(X,Y, 1)I(δh(X) = 1)]− E[ℓ(X, Ỹ , 1)I(δh(X) = 1)]

=E[c11I(Y ≥ y0, δh(X) = 1)] + E[c01I(Y ≤ y0, δh(X) = 1)]

− E[c11I(Ỹ ≥ y0, δh(X) = 1)]− E[c01I(Ỹ < y0, δh(X) = 1)]

=E[c11(1− I(Y < y0))I(δh(X) = 1)] + E[c01I(Y < y0)I(δh(X) = 1)]

− E[c11(1− I(Ỹ < y0)I(δh(X) = 1)]− E[c01I(Ỹ < y0)I(δh(X) = 1)]

=E[c11(1− U)I(Ũ ≤ α)]− E[c01UI(Ũ ≤ α)]

− E[c11(1− Ũ)I(Ũ ≤ α)]− E[c01UI(Ũ ≤ α)]

=0.
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The first line follows from the definition of ℓ. The second line holds because
I(Y ≥ y0) = 1− I(Y < y0). The thirdline follows from the definition of U and Ũ . The last line

follows from the fact that E[U − Ũ | Ũ ] = 0 almost surely. Thus, if h is threshold calibrated, then
the reliability gap is equal to zero.

We also show that the converse holds. If for any threshold loss ℓ and threshold decision rule δh we
have

E[ℓ(X,Y, δh(X))]− E[ℓ(X, Ỹ , δh(X))] = 0,

then E[(U − Ũ)I(Ũ ≤ α)] = 0 for any α ∈ [0, 1]. As a result, by Lemma 2 E[U − Ũ | Ũ ] = 0
almost surely, so we have that

Pr[h[X](Y ) ≤ c | h[X](y0) = α] = c ∀α, c ∈ [0, 1], y0 ∈ Y

which is equivalent to the threshold calibration condition:

Pr[h[X](Y ) ≤ c | h[X](y0) ≤ α] = c ∀α, c ∈ [0, 1], y0 ∈ Y.

B.4 Proof of Proposition 1

Proof. Let h be a forecaster h : X → F(Y) where F(Y) is a class of continuous CDFs mapping
Y → [0, 1].

1. Suppose a forecaster h satisfies distribution calibration, we show that it must also be
threshold-calibrated. Let g ∈ F(Y). For any y0 ∈ Y and α ∈ [0, 1],

Pr[h[X](Y ) ≤ c | h[X](y0) ≤ α] = E[I(h[X](Y ) ≤ c) | h[X](y0) ≤ α]

= E[Pr[h[X](Y ) ≤ c | h[X](y0) ≤ α, h[X] = g]]

= E[Pr[h[X](Y ) ≤ c | g(y0) ≤ α, h[X] = g]]

= E[Pr[h[X](Y ) | h[X] = g]]

= c.

The first line is from the definition of probability. The second is due to law of iterated
expectations. The third line also follows from the fact that h[X] = g determines whether
h[X](y0) ≤ α. The third line follows from the definition of distribution calibration.

2. Suppose a forecaster h satisfies threshold calibration, then it must be average-calibrated. For
all x ∈ X , y0 ∈ Y, α = 1

Pr[h[X](Y ) ≤ c] = Pr[h[X](Y ) ≤ c | h[X](y0) ≤ 1]

= c.

B.5 Proof of Theorem 2

Proof of Theorem 2. Denote X0 = {x, ht[x](yt) ≤ αt} and X1 = {x, ht[x](yt) > αt} and suppose
that

∑

j=0,1

P (Xj)

∫

y

(FY |X1
(y)− F ∗

Y |Xj
(y))2dy ≥ ǫ
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