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Abstract

Conditional generative models of high-dimensional images have many applications,
but supervision signals from conditions to images can be expensive to acquire.
This paper describes Diffusion-Decoding models with Contrastive representations
(D2C), a paradigm for training unconditional variational autoencoders (VAEs)
for few-shot conditional image generation. D2C uses a learned diffusion-based
prior over the latent representations to improve generation and contrastive self-
supervised learning to improve representation quality. D2C can adapt to novel
generation tasks conditioned on labels or manipulation constraints, by learning from
as few as 100 labeled examples. On conditional generation from new labels, D2C
achieves superior performance over state-of-the-art VAEs and diffusion models.
On conditional image manipulation, D2C generations are two orders of magnitude
faster to produce over StyleGAN2 ones and are preferred by 50% − 60% of
the human evaluators in a double-blind study. We release our code at https:
//github.com/jiamings/d2c.

1 Introduction

Generative models trained on large amounts of unlabeled data have achieved great success in various
domains including images [8, 50, 75, 42], text [56, 2], audio [26, 71, 93, 62], and graphs [36, 67].
However, downstream applications of generative models are often based on various conditioning
signals, such as labels [61], text descriptions [60], reward values [101], or similarity with existing
data [45]. While it is possible to directly train conditional models, this often requires large amounts
of paired data [57, 74] that are costly to acquire. Hence, it would be desirable to learn conditional
generative models using large amounts of unlabeled data and as little paired data as possible.

Contrastive self-supervised learning (SSL) methods can greatly reduce the need for labeled data in
discriminative tasks by learning effective representations from unlabeled data [95, 37, 35], and have
also been shown to improve few-shot learning [39]. It is therefore natural to ask if they can also
be used to improve few-shot generation. Latent variable generative models (LVGM) are a natural
candidate for this, since they already involve a low-dimensional, structured latent representation of
the data they generate. However, generative adversarial networks (GANs, [34, 50]) and diffusion
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Diffusion models Diffusion models [81, 42, 84] produce samples by reversing a Gaussian diffusion
process. We use the index α ∈ [0, 1] to denote the particular noise level of an noisy observation

x
(α) =

√
αx+

√
1− αǫ, where x is the clean observation and ǫ ∼ N (0, I) is a standard Gaussian

distribution; as α → 0, the distribution of x(α) converges to N (0, I). Diffusion models are typically

parametrized as reverse noise models ǫθ(x
(α), α) that predict the noise component of x(α) given

a noise level α, and trained to minimize ‖ǫθ(x(α), α) − ǫ‖22, the mean squared error loss between
the true noise and predicted noise. Given any non-increasing series {αi}Ti=0 between 0 and 1, the
diffusion objective for a clean sample from the data x is:

ℓdiff(x;w, θ) :=

T∑

i=1

w(αi)Eǫ∼N (0,I)[‖ǫ− ǫθ(x
(αi), αi)‖

2

2], x
(αi) :=

√
αix+

√
1− αiǫ (2)

where w : {αi}Ti=1 → R+ controls the loss weights for each α. When w(α) = 1 for all α, we recover
the denoising score matching objective for training score-based generative models [85].

Given an initial sample x0 ∼ N (0, I), diffusion models acquires clean samples (i.e., samples of x1)
through a gradual denoising process, where samples with reducing noise levels α are produced (e.g.,
x0 → x0.3 → x0.7 → x1). In particular, Denoising Diffusion Implicit Models (DDIMs, [84]) uses
an Euler discretization of some neural ODE [13] to produce samples (Figure 2, left).

We provide a more detailed description for training diffusion models in Appendix A.1 and sampling

from DDIM in Appendix A.2. For conciseness, we use the notation p(α)(x(α)) to denote the marginal

distribution of x(α) under the diffusion model, and p(α1,α2)(x(α2) | x(α1)) to denote the diffusion

sampling process from x
(α1) to x

(α2) (assuming α1 < α2).

Self-supervised learning of representations In self-supervised learning (SSL), representations
are learned by completing certain pretext tasks that do not require extra manual labeling [68, 25]; these
representations can then be applied to other downstream tasks, often in few-shot or zero-shot scenarios.
In particular, contrastive representation learning encourages representations to be closer between
“positive” pairs and further between “negative” pairs; contrastive predictive coding (CPC, [95]), based
on multi-class classification, have been commonly used in state-of-the-art methods [37, 16, 18, 14, 82].
Other non-contrastive methods exist, such as BYOL [35] and SimSiam [17], but they usually require
additional care to prevent the representation network from collapsing.

3 Problem Statement

Few-shot conditional generation Our goal is to learn an unconditional generative model pθ(x)
such that it is suitable for conditional generation. Let C(x, c, f) describe an event that “f(x) = c”,
where c is a property value and f(x) is a property function that is unknown at training. In conditional
generation, our goal is to sample x such that the event C(x, c, f) occurs for a chosen c. If we have
access to some “ground-truth” model that gives us p(C|x) := p(f(x) = c|x), then the conditional
model can be derived from Bayes’ rule: pθ(x|C) ∝ p(C|x)pθ(x). These properties c include (but are
not limited to2) labels [61], text descriptions [60, 76], noisy or partial observations [11, 5, 47, 24],
and manipulation constraints [69]. In many cases, we do not have direct access to the true f(x), so
we need to learn an accurate model from labeled data [6] (e.g., (c,x) pairs).

Desiderata Many existing methods are optimized for some known condition (e.g., labels in con-
ditional GANs [8]) or assume abundant pairs between images and conditions that can be used for
pretraining (e.g., DALL-E [74] and CLIP [73] over image-text pairs). Neither is the case in this paper,
as we do not expect to train over paired data.

While high-quality latent representations are not essential to unconditional image generation (e.g.,
autoregressive [94], energy-based [31], and some diffusion models [42]), they can be beneficial
when we wish to specify certain conditions with limited supervision signals, similar to how SSL
representations can reduce labeling efforts in downstream tasks. A compelling use case is detecting
and removing biases in datasets via image manipulation, where we should not only address well-
known biases a-priori but also address other hard-to-anticipate biases, adapting to societal needs [65].

2When C refers to an event that is always true, we recover unconditioned generation.
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Table 1: A comparison of several common paradigms for generative modeling. [Explicit x → z]: the
mapping from x to z is directly trainable, which enables SSL; [No prior hole]: latent distributions used
for generation and training are identical (Sec. 4.2), which improves generation; [Non-adversarial]:
training procedure does not involve adversarial optimization, which improves training stability.

Model family
Explicit x → z No prior hole Non-Adversarial
(Enables SSL) (Better generation) (Stable training)

VAE [52, 77], NF [28] ✔ ✗ ✔

GAN [34] ✗ ✔ ✗

BiGAN [30, 32] ✔ ✔ ✗

DDIM [84] ✗ ✔ ✔

D2C ✔ ✔ ✔

Therefore, a desirable generative model should not only have high sample quality but also contain
informative latent representations. While VAEs are ideal for learning rich latent representations due
to being able to incorporate SSL within the encoder, they generally do not achieve the same level of
sample quality as GANs and diffusion models.

4 Diffusion-Decoding Generative Models with Contrastive Learning

In this paper, we present Diffusion-Decoding generative models with Contrastive Learning (D2C), an
extension to VAEs with high-quality samples and high-quality latent representations, and are thus
well suited to few-shot conditional generation. Moreover, unlike GAN-based methods, D2C does not
involve unstable adversarial training (Table 1).

As its name suggests, the generative model for D2C has two components – diffusion and decoding;
the diffusion component operates over the latent space and the decoding component maps from
latent representations to images. Let us use the α index notation for diffusion random variables:

z
(0) ∼ p(0)(z(0)) := N (0, I) is the “noisy” latent variable with α = 0, and z

(1) is the “clean” latent

variable with α = 1. The generative process of D2C, which we denote pθ(x|z(0)), is then defined as:

z
(0) ∼ p(0)(z(0)), z

(1) ∼ p
(0,1)
θ (z(1)|z(0))

︸ ︷︷ ︸

diffusion

, x ∼ pθ(x|z(1))
︸ ︷︷ ︸

decoding

, (3)

where p(0)(z(0)) = N (0, I) is the prior distribution for the diffusion model, p
(0,1)
θ (z(1)|z(0)) is the

diffusion process from z
(0) to z

(1), and pθ(x|z(1)) is the decoder from z
(1) to x. Intuitively, D2C

models produce samples by drawing z
(1) from a diffusion process and then decoding x from z

(1).

In order to train a D2C model, we use an inference model qφ(z
(1)|x) that predicts proper z(1) latent

variables from x; this can directly incorporate SSL methods [99], leading to the following objective:

LD2C(θ, φ;w) := LD2(θ, φ;w) + λLC(qφ), (4)

LD2(θ, φ;w) := E
x∼pdata,z(1)∼qφ(z(1)|x)[− log pθ(x|z(1)) + ℓdiff(z

(1);w, θ)], (5)

where ℓdiff is defined as in Eq.(2), LC(qφ) denotes any contrastive predictive coding objective [95]
with rich data augmentations [37, 16, 18, 14, 82] (details in Appendix A.3) and λ > 0 is a weight
hyperparameter. We illustrate D2C in Figure 2, and its training procedure in Appendix A.4.

4.1 Relationship to maximum likelihood

The D2 objective (LD2) appears similar to the original VAE objective (LVAE). Here, we make an
informal statement that the D2 objective function is deeply connected to the variational lower bound
of log-likelihood; we present the full statement and proof in Appendix B.1.

Theorem 1. (informal) For any valid {αi}Ti=0, there exists some weights ŵ : {αi}Ti=1 → R+ for the
diffusion objective such that −LD2 is a variational lower bound to the log-likelihood, i.e.,

−LD2(θ, φ; ŵ) ≤ Epdata [log pθ(x)], (6)

where pθ(x) := E
z0∼p(0)(z(0))[pθ(x|z(0))] is the marginal probability of x under the D2C model.
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Proof. (sketch) We construct a qφ that satisfies these properties (top-right figure). First, we truncate
the Gaussian and divide them into regions with same probability mass; then we support qφ over half
of these regions (so δ > 0.49); finally, we show that the divergences are small enough.

In contrast to addressing prior holes by optimization, diffusion models eliminate prior holes by

construction, since the diffusion process from z
(1) to z

(0) is constructed such that the distribution

of z(α) always converges to a standard Gaussian as α → 0. As a result, the distribution of latent
variables used during training is arbitrarily close to that used in generation4, which is also the case in
GANs. Therefore, our argument provides an explanation as to why we observe better sample quality
results from GANs and diffusion models than VAEs and NFs.

5 Few-shot Conditional Generation with D2C

In this section, we discuss how D2C can be used to learn to perform conditional generation from
few-shot supervision. We note that D2C is only trained on images and not with any other data
modalities (e.g., image-text pairs [74]) or supervision techniques (e.g., meta-learning [22, 6]).

Algorithm 1 Conditional generation with D2C

1: Input n examples {(xi, ci)}
n
i=1, property c.

2: Acquire latents z
(1)
i ∼ qφ(z

(1)|xi) for i ∈ [n];

3: Train model rψ(c|z
(1)) over {(z

(1)
i , ci)}

n
i=1

4: Sample latents with ẑ
(1) ∼ rψ(c|z

(1)) · p
(1)
θ (z(1))

(unnormalized);
5: Decode x̂ ∼ pθ(x|ẑ

(1)).
6: Output x̂.

Algorithm We describe the general algorithm
for conditional generation from a few images
in Algorithm 1, and detailed implementations
in Appendix C. With a model over the latent

space (denoted as rψ(c|z(1))), we draw condi-
tional latents from an unnormalized distribution
with the diffusion prior (line 4). This can be
implemented in many ways such as rejection
sampling or Langevin dynamics [66, 86, 27].

Conditions from labeled examples Given a few labeled examples, we wish to produce diverse
samples with a certain label. For labeled examples we can directly train a classifier over the

latent space, which we denote as rψ(c|z(1)) with c being the class label and z
(1) being the latent

representation of x from qφ(z
(1)|x). If these examples do not have labels (i.e., we merely want to

generate new samples similar to given ones), we can train a positive-unlabeled (PU) classifier [33]
where we assign “positive” to the new examples and “unlabeled” to training data. Then we use

the classifier with the diffusion model pθ(z
(1)|z(0)) to produce suitable values of z(1), such as by

rejecting samples from the diffusion model that has a small rψ(c|z(1)).

Conditions from manipulation constraints Given a few labeled examples, here we wish to learn
how to manipulate images. Specifically, we condition over the event that “x has label c but is

similar to image x̄”. Here rψ(c|z(1)) is the unnormalized product between the classifier conditional

probability and closeness to the latent z̄(1) of x̄ (e.g., measured with RBF kernel). We implement line
4 of Alg. 1 with a Lanvegin-like procedure where we take a gradient step with respect to the classifier
probability and then correct this gradient step with the diffusion model. Unlike many GAN-based
methods [12, 72, 97, 45, 98], D2C does not need to optimize an inversion procedure at evaluation
time, and thus the latent value is much faster to compute; D2C is also better at retaining fine-grained
features of the original image due to the reconstruction loss.

6 Related Work

Latent variable generative models Most deep generative models explicitly define a latent rep-
resentation, except for some energy-based models [41, 31] and autoregressive models [94, 93, 10].
Unlike VAEs and NFs, GANs do not explicitly define an inference model and instead optimize a
two-player game. In terms of sample quality, GANs currently achieve superior performance over
VAEs and NFs, but they can be difficult to invert even with additional optimization [48, 100, 7]. This
can be partially addressed by training reconstruction-based losses with GANs [54, 55]. Moreover,

4We expand this argument in Appendix B.2.
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the GAN training procedure can be unstable [9, 8, 63], lack a informative objective for measuring
progress [4], and struggle with discrete data [102]. Diffusion models [27] achieves high sample
quality without adversarial training, but its latent dimension must be equal to the image dimension. A
concurrent work [92] applied score-based generative modeling on the latent space of an VAE, and
achieved similar improvements compared to regular VAEs.

Addressing posterior mismatch in VAEs Most methods address this mismatch problem by im-
proving inference models [64, 51, 89], prior models [90, 3, 87], or objective functions [103, 104,
105, 1, 59]; all these approaches optimize the posterior model to be close to the prior. In Section 4.2,
we explain why these approaches do not necessarily remove large “prior holes”, so their sample
qualities remain relatively poor even after many layers [91, 19]. Other methods adopt a “two-stage”
approach [23], which fits a generative model over the latent space of autoencoders [96, 75, 26, 74].
[62] have applied diffusion models directly on latent spaces learned by a music VAE.

Conditional generation with unconditional models To perform conditional generation over an
unconditional LVGM, most methods assume access to a discriminative model (e.g., a classifier); the
latent space of the generator is then modified to change the outputs of the discriminative model. The
disciminative model can operate on either the image space [66, 70, 27] or the latent space [80, 98]. For
image space discriminative models, plug-and-play generative networks [66] control the attributes of
generated images via Langevin dynamics [78]; these ideas are also explored in diffusion models [86].
Image manipulation methods are based on GANs often operate with latent space discriminators [80,
98]. However, these methods have some trouble manipulating real images because of imperfect
reconstruction [107, 7]. This is not a problem in D2C since a reconstruction objective is optimized.

7 Experiments

We examine the conditional and unconditional generation qualities of D2C over CIFAR-10 [53],
CIFAR-100 [53], fMoW [21], CelebA-64 [58], CelebA-HQ-256 [48], and FFHQ-256 [49]. Our
D2C implementation is based on the state-of-the-art NVAE [91] autoencoder structure, the U-Net
diffusion model [42], and the MoCo-v2 contrastive representation learning method [16]. We also
consider the D2 objective where we do not applying the contrastive loss in the NVAE autoencoder;
we also tried adding contrastive loss directly to the VAE objective, but we were unable to achieve
satisfactory generation results (reconstruction MSE remains high). This is possibly due to the many
regularizations needed for NVAE to work well, which could conflict with contrastive learning5.

We keep the diffusion series hyperparameter {αi}Ti=1 identical to ensure a fair comparison with
different diffusion models. For the contrastive weight λ in Equation (4), we consider the value of
λ = 10−4 based on the relative scale between the LC and LD2; we find that the results are relatively
insensitive to λ. We use 100 diffusion steps for DDIM and D2C unless mentioned otherwise, as
running with longer steps is not computationally economical despite tiny gains in FID [84]. We
include additional training details, such as architectures, optimizers and learning rates in Appendix C.

Table 2: Quality of representations and generations with LVGMs.

Model
CIFAR-10 CIFAR-100 fMoW

FID ↓ MSE ↓ Acc ↑ FID ↓ MSE ↓ Acc ↑ FID ↓ MSE ↓ Acc ↑
NVAE [91] 36.4 0.25 18.8 42.5 0.53 4.1 82.25 0.30 27.7
DDIM [84] 4.16 2.5 22.5 10.16 3.2 2.2 37.74 3.0 23.5

D2 (Ours) 15.1 0.24 40.6 19.85 0.48 17.89 - - -
D2C (Ours) 10.15 0.76 76.02 14.62 0.44 42.75 44.7 2.33 66.9

7.1 Unconditional generation

For unconditional generation, we measure the sample quality of images using the Frechet Inception
Distance (FID, [40]) with 50,000 images. In particular, we extensively evaluate NVAE [91] and

5See https://github.com/NVlabs/NVAE#known-issues for a detailed description.
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Figure 3: Generated samples on CIFAR-10 (left), fMoW (mid), and FFHQ 256× 256 (right).

DDIM [84], a competitive VAE model and a competitive diffusion model as baselines because we
can directly obtain features from them without additional optimization steps6. For them, we report
mean-squared reconstruction error (MSE, summed over all pixels, pixels normalized to [0, 1]) and
linear classification accuracy (Acc., measured in percentage) over z1 features for the test set.

We report sample quality results7 in Tables 2, and 3. For FID, we outperform NVAE in all datasets and
outperform DDIM on CelebA-64 and CelebA-HQ-256, which suggests our results are competitive
with state-of-the-art non-adversarial generative models. In Table 2, we additionally compare NVAE,
DDIM and D2C in terms of reconstruction and linear classification accuracy. As all three methods
contain reconstruction losses, the MSE values are low and comparable. However, D2C enjoys much
better linear classification accuracy than the other two thanks to the contrastive SSL component. We
further note that training the same contrastive SSL method without LD2 achieves slightly higher
78.3% accuracy on CIFAR-10. We tried improving this via ResNet [38] encoders, but this significantly
increased reconstruction error, possibly due to loss of information in average pooling layers.

Table 3: FID scores over different faces dataset with LVGMs.

Model CelebA-64 CelebA-HQ-256 FFHQ-256

NVAE [91] 13.48 40.26 26.02
DDIM [84] 6.53 25.6 -

D2C (Ours) 5.7 18.74 13.04

7.2 Few-shot conditional generation from examples

We demonstrate the advantage of D2C representations by performing few-shot conditional generation
over labels. We consider two types of labeled examples: one has binary labels for which we train
a binary classifier; the other is positive-only labeled (e.g., images of female class) for which we
train a PU classifier. Our goal here is to generate a diverse group of images with a certain label. We
evaluate and compare three models: D2C, NVAE and DDIM. We train a classifier rψ(c|z) over the
latent space of these models; we also train a image space classifier and use it with DDIM (denoted as
DDIM-I). We run Algorithm 1 for these models, where line 4 is implemented via rejection sampling.
As our goal is to compare different models, we leave more sophisticated methods [27] as future work.

First, we consider performing 8 conditional generation tasks over CelebA-64 with 2 binary classifiers
(trained over 100 samples, 50 for each class) and 4 PU classifiers (trained over 100 positively labeled
and 10k unlabeled samples). We also report a “naive” approach where we use all the training images
(regardless of labels) and compute its FID with the corresponding subset of images (e.g., all images
versus blond images). In Table 4, we report the FID score between generated images (5k samples)
and real images of the corresponding label.

Next, we perform a similar experiment on CIFAR-10, but with 50 labels for each of the 10 classes.
For each label, we evaluate the FID between the real images and generated images under that label

6For DDIM, the latent representations x(0) are obtained by reversing the neural ODE process.
7Due to space limits, we place additional CIFAR-10 results in Appendix D.
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