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Abstract

Conditional generative models of high-dimensional images have many applications,
but supervision signals from conditions to images can be expensive to acquire.
This paper describes Diffusion-Decoding models with Contrastive representations
(D2C), a paradigm for training unconditional variational autoencoders (VAEs)
for few-shot conditional image generation. D2C uses a learned diffusion-based
prior over the latent representations to improve generation and contrastive self-
supervised learning to improve representation quality. D2C can adapt to novel
generation tasks conditioned on labels or manipulation constraints, by learning from
as few as 100 labeled examples. On conditional generation from new labels, D2C
achieves superior performance over state-of-the-art VAEs and diffusion models.
On conditional image manipulation, D2C generations are two orders of magnitude
faster to produce over StyleGAN2 ones and are preferred by 50% — 60% of
the human evaluators in a double-blind study. We release our code at https:
//github.com/jiamings/d2c.

1 Introduction

Generative models trained on large amounts of unlabeled data have achieved great success in various
domains including images [8, 50, 75, 42], text [56, 2], audio [26, 71, 93, 62], and graphs [36, 67].
However, downstream applications of generative models are often based on various conditioning
signals, such as labels [61], text descriptions [60], reward values [101], or similarity with existing
data [45]. While it is possible to directly train conditional models, this often requires large amounts
of paired data [57, 74] that are costly to acquire. Hence, it would be desirable to learn conditional
generative models using large amounts of unlabeled data and as little paired data as possible.

Contrastive self-supervised learning (SSL) methods can greatly reduce the need for labeled data in
discriminative tasks by learning effective representations from unlabeled data [95, 37, 35], and have
also been shown to improve few-shot learning [39]. It is therefore natural to ask if they can also
be used to improve few-shot generation. Latent variable generative models (LVGM) are a natural
candidate for this, since they already involve a low-dimensional, structured latent representation of
the data they generate. However, generative adversarial networks (GANs, [34, 50]) and diffusion
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models [42, 84], lack explicit tractable functions to map inputs to representations, making it difficult
to optimize latent variables with SSL. Variational autoencoders (VAEs, [52, 77]), on the other hand,
can naturally adopt SSL through their encoder model, but they typically have worse sample quality.
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Figure 1: Few-shot conditional generation with the unconditional D2C model (left). With a recogni-
tion model over the latent space (middle), D2C can generate samples for novel conditions, such as
image manipulation (right). These conditions can be defined with very few labels.

In this paper, we propose Diffusion-Decoding models with Contrastive representations (D2C), a
special VAE that is suitable for conditional few-shot generation. D2C uses contrastive self-supervised
learning methods to obtain a latent space that inherits the transferrability and few-shot capabilities of
self-supervised representations. Unlike other VAEs, D2C learns a diffusion model over the latent
representations. This latent diffusion model ensures that D2C uses the same latent distribution for
both training and generation. We provide a formal argument to explain why this approach leads
to better sample quality than existing hierarchical VAEs. We further discuss how to apply D2C
to few-shot conditional generation where the conditions are defined through labeled examples or
manipulation constraints. Our approach combines a discriminative model providing conditioning
signal and generative diffusion model over the latent space, and is computationally more efficient
than methods that act directly over the image space (Figure 1).

We evaluate and compare D2C with several state-of-the-art generative models over 6 datasets. On
unconditional generation, D2C outperforms state-of-the-art VAEs and is competitive with diffusion
models under similar computational budgets. On conditional generation with 100 labeled examples,
D2C significantly outperforms state-of-the-art VAE [91] and diffusion models [84]. D2C can also
learn to perform certain image manipulation tasks from as few as 100 labeled examples. Notably, for
manipulating images, D2C is two orders of magnitude faster than StyleGAN2 [106] and preferred by
50% — 60% of human evaluations, which to our best knowledge is the first for any VAE model.

2 Background

Latent variable generative models A latent variable generative model (LVGM) is posed as a con-
ditional distribution pg : Z — P(X) from a latent variable z to a generated sample x, parametrized
by 6. To acquire new samples, LVGMs draw random latent variables z from some distribution
p(z) and map them to image samples through x ~ pg(x|z). Most LVGMs are built on top of four
paradigms: variational autoencoders (VAEs, [52, 77]), Normalizing Flows (NFs, [28, 29]), Generative
Adversarial Networks (GANS, [34]), and diffusion / score-based generative models [42, 85].

Particularly, VAEs use an inference model from x to z for training. Denoting the inference distribution
from x to z as gy (z|x), the generative distribution from z to x as pg(x|z), VAEs are trained by
minimizing the following upper bound of negative log-likelihood:

Lvag = Excpioia [Bangy (zx) [~ 108 (x[2)] + Dk (44 (2[x)[|p(2))] (1)

where pqata 1S the data distribution and Dy, is the KL-divergence.



Diffusion models Diffusion models [81, 42, 84] produce samples by reversing a Gaussian diffusion
process. We use the index a € [0, 1] to denote the particular noise level of an noisy observation
x(®) = \/ax + /1 — ae, where x is the clean observation and € ~ A/(0, I) is a standard Gaussian
distribution; as ov — 0, the distribution of x(®) converges to A/(0, I'). Diffusion models are typically
parametrized as reverse noise models ey(x(®), o) that predict the noise component of x(*) given
a noise level o, and trained to minimize ||eq(x(®) a) - 6”2, the mean squared error loss between
the true noise and predicted noise. Given any non- 1ncreasmg series {a; } X, between 0 and 1, the
diffusion objective for a clean sample from the data x is:
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where w : {a;}X_; — R controls the loss weights for each o. When w(a) = 1 for all c, we recover
the denoising score matching objective for training score-based generative models [85].

Given an initial sample xo ~ N (0, I), diffusion models acquires clean samples (i.e., samples of x1)
through a gradual denoising process, where samples with reducing noise levels « are produced (e.g.,
Xg — X0.3 — X0.7 — X1). In particular, Denoising Diffusion Implicit Models (DDIMs, [84]) uses
an Euler discretization of some neural ODE [13] to produce samples (Figure 2, left).

We provide a more detailed description for training diffusion models in Appendix A.l and sampling
from DDIM in Appendix A.2. For conciseness, we use the notation p{®) (x(®)) to denote the marginal
distribution of x(®) under the diffusion model, and p(®1:@2) (x(@2) | x(®1)) to denote the diffusion
sampling process from x(*1) to x(*2) (assuming a; < a).

Self-supervised learning of representations In self-supervised learning (SSL), representations
are learned by completing certain pretext tasks that do not require extra manual labeling [68, 25]; these
representations can then be applied to other downstream tasks, often in few-shot or zero-shot scenarios.
In particular, contrastive representation learning encourages representations to be closer between
“positive” pairs and further between “negative” pairs; contrastive predictive coding (CPC, [95]), based
on multi-class classification, have been commonly used in state-of-the-art methods [37, 16, 18, 14, 82].
Other non-contrastive methods exist, such as BYOL [35] and SimSiam [17], but they usually require
additional care to prevent the representation network from collapsing.

3 Problem Statement

Few-shot conditional generation Our goal is to learn an unconditional generative model py(x)
such that it is suitable for conditional generation. Let C(x, ¢, f) describe an event that “ f(x) = ¢”,
where c is a property value and f(x) is a property function that is unknown at training. In conditional
generation, our goal is to sample x such that the event C(x, c, f) occurs for a chosen c. If we have
access to some “ground-truth” model that gives us p(C|x) := p(f(x) = c|x), then the conditional
model can be derived from Bayes’ rule: py(x|C) o p(C |x)p9( ). These properties c include (but are
not limited to”) labels [61], text descriptions [60, 76], noisy or partial observations [11, 5, 47, 24],
and manipulation constraints [69]. In many cases, we do not have direct access to the true f (x), so
we need to learn an accurate model from labeled data [6] (e.g., (c,x) pairs).

Desiderata Many existing methods are optimized for some known condition (e.g., labels in con-
ditional GANs [8]) or assume abundant pairs between images and conditions that can be used for
pretraining (e.g., DALL-E [74] and CLIP [73] over image-text pairs). Neither is the case in this paper,
as we do not expect to train over paired data.

While high-quality latent representations are not essential to unconditional image generation (e.g.,
autoregressive [94], energy-based [31], and some diffusion models [42]), they can be beneficial
when we wish to specify certain conditions with limited supervision signals, similar to how SSL
representations can reduce labeling efforts in downstream tasks. A compelling use case is detecting
and removing biases in datasets via image manipulation, where we should not only address well-
known biases a-priori but also address other hard-to-anticipate biases, adapting to societal needs [65].

>When C refers to an event that is always true, we recover unconditioned generation.



Table 1: A comparison of several common paradigms for generative modeling. [Explicit x — z]: the
mapping from x to z is directly trainable, which enables SSL; [No prior hole]: latent distributions used
for generation and training are identical (Sec. 4.2), which improves generation; [Non-adversarial]:
training procedure does not involve adversarial optimization, which improves training stability.

Model famil Explicit x — z No prior hole Non-Adversarial
¥ (Enables SSL)  (Better generation)  (Stable training)

VAE [52, 77], NF [28] v X v

GAN [34] X 4 X

BiGAN [30, 32] 4 v X

DDIM [84] X v 4

D2C \ 4 4 4

Therefore, a desirable generative model should not only have high sample quality but also contain
informative latent representations. While VAEs are ideal for learning rich latent representations due
to being able to incorporate SSL within the encoder, they generally do not achieve the same level of
sample quality as GANs and diffusion models.

4 Diffusion-Decoding Generative Models with Contrastive Learning

In this paper, we present Diffusion-Decoding generative models with Contrastive Learning (D2C), an
extension to VAEs with high-quality samples and high-quality latent representations, and are thus
well suited to few-shot conditional generation. Moreover, unlike GAN-based methods, D2C does not
involve unstable adversarial training (Table 1).

As its name suggests, the generative model for D2C has two components — diffusion and decoding;
the diffusion component operates over the latent space and the decoding component maps from
latent representations to images. Let us use the « index notation for diffusion random variables:
20 ~ p©(z(0)) := N(0, I is the “noisy” latent variable with v = 0, and z() is the “clean” latent
variable with o = 1. The generative process of D2C, which we denote pg(x|z(?)), is then defined as:

20 ~ pO(20), 20~ pPD (@M [20), x ~ py(x|zD), 3)
—_——— ——
diffusion decoding

where p(®)(2(®)) = N(0, I is the prior distribution for the diffusion model, péo’l) (zM)2(0) is the
diffusion process from z(?) to z(1), and py(x|z(!)) is the decoder from z(!) to x. Intuitively, D2C
models produce samples by drawing z(!) from a diffusion process and then decoding x from z(V).

In order to train a D2C model, we use an inference model q¢(z(1) |x) that predicts proper z(!) latent
variables from x; this can directly incorporate SSL methods [99], leading to the following objective:

Lpac(8, ¢;w) := Lpa(0, ¢;w) + ALc(gg), “4)
Lpa(0, ¢3w) = By 20y (o) ) [— 108 Po (x[2)) + L (215w, 0)], )
where (g is defined as in Eq.(2), Lo (g4) denotes any contrastive predictive coding objective [95]

with rich data augmentations [37, 16, 18, 14, 82] (details in Appendix A.3) and A > 0 is a weight
hyperparameter. We illustrate D2C in Figure 2, and its training procedure in Appendix A 4.

4.1 Relationship to maximum likelihood

The D2 objective (Lp2) appears similar to the original VAE objective (Lyag). Here, we make an
informal statement that the D2 objective function is deeply connected to the variational lower bound
of log-likelihood; we present the full statement and proof in Appendix B.1.
Theorem 1. (informal) For any valid {c; } £, there exists some weights 1 : {c;}_, — R for the
diffusion objective such that — Lps is a variational lower bound to the log-likelihood, i.e.,

_LD2 (97 ¢, 12}) S Epdata [log pa (X)]7 (6)

where pg(x) == E, 0 ()P (x|20)] is the marginal probability of x under the D2C model.
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Figure 2: Tllustration of components of a D2C model. On top of the encoding and decoding between
x and z()), we use a diffusion model to generate z(!) from a Gaussian z(?). The red lines in the
diffusion prior describe several smooth ODE trajectories from o = 0 to a = 1.

Proof. (sketch) The diffusion term {q;r upper bounds the KL divergence between g4(z1|x) and
pél) (z(l)) for suitable weights [42, 84], which recovers a VAE objective. O

Moreover, since some contrastive losses are lower bounds to mutual information [82], D2C can
be treated as an implementation of the InfoVAE approach [103], where the latent variables are
encouraged to have higher mutual information with the observations. Since the evidence lower bound
(ELBO) for VAEs do not necessarily promote informative latent representations [15], D2C comes
with the benefit of being able to learn more informative latents despite not exactly optimizing an
ELBO.

4.2 D2C models address latent posterior mismatch in VAEs

While D2C is a special case of VAE, we argue that D2C is non-trivial in the sense that it addresses a
long-standing problem in VAE methods [90, 87], namely the mismatch between the prior distribution
po(z) and the aggregate (approximate) posterior distribution g4(z) := E,, . (x)[q¢(2[x)]. A mis-
match could create “holes” [79, 43, 3] in the prior that the aggregate posterior fails to cover during
training, resulting in worse sample quality, as many latent variables used during generation are likely
to never have been trained on. We formalize this notion in the following definition.

Definition 1 (Prior hole). Let p(z), q(z) be two distributions with supp(q) C supp(p). We say that
q has an (€, §)-prior hole with respect to (the prior) p for €,6 € (0,1), § > ¢, if there exists a set
S € supp(P), such that [¢p(z)dz > 6 and [ q(z)dz < e.

Intuitively, if ¢, (z) has a prior hole with large § and small € (e.g., inversely proportional to the number
of training samples), then it is very likely that latent variables within the hole are never seen during
training (small €), yet frequently used to produce samples (large §). Most existing methods address
this problem by optimizing certain statistical divergences between g4 (z) and pg(z), such as the KL
divergence or Wasserstein distance [88]. However, we argue in the following statement that prior
holes might not be eliminated even if we optimize certain divergence values to be reasonably low,
especially when g, (z) is very flexible. We present the formal statement and proof in Appendix B.2.

il |

- -il“
3This is reasonably low for realistic VAE models (NVAE [91] reports a KL divergence of around 2810 nats).

p(2)
a()

Theorem 2. (informal) Let pg(z) = N(0,1). For any € > 0, there exists
a q4(z) with an (e,0.49)-prior hole, such that Dxi,(qs||pe) < log2'and
Walqs,po) < v forany v > 0, where Wy is the 2-Wasserstein distance.




Proof. (sketch) We construct a g that satisfies these properties (top-right figure). First, we truncate
the Gaussian and divide them into regions with same probability mass; then we support g4 over half
of these regions (so § > 0.49); finally, we show that the divergences are small enough. O

In contrast to addressing prior holes by optimization, diffusion models eliminate prior holes by
construction, since the diffusion process from z() to z(9) is constructed such that the distribution
of z(®) always converges to a standard Gaussian as & — 0. As a result, the distribution of latent
variables used during training is arbitrarily close to that used in generation*, which is also the case in
GAN:Ss. Therefore, our argument provides an explanation as to why we observe better sample quality
results from GANs and diffusion models than VAEs and NFs.

5 Few-shot Conditional Generation with D2C

In this section, we discuss how D2C can be used to learn to perform conditional generation from
few-shot supervision. We note that D2C is only trained on images and not with any other data
modalities (e.g., image-text pairs [74]) or supervision techniques (e.g., meta-learning [22, 6]).

Algorithm ~ We describe the general algorithm  Algorithm 1 Conditional generation with D2C
for conditional generation from a few images

in Algorithm 1, and detailed implementations
in Appendix C. With a model over the latent
space (denoted as 7 (c|z(1)), we draw condi-
tional latents from an unnormalized distribution : Sample latents with 21 ~ ry(c|z!)) - pén (M)
with the diffusion prior (line 4). This can be (unnormalized);

implemented in many ways such as rejection : Decode X ~ po (x|2®).

sampling or Langevin dynamics [66, 86, 27]. 6: Output X.

: Input n examples {(x;, ¢;) }i—1, property c.
M L go (2P |x:) for i € [n];

: Acquire latents z;
- Train model -, (c|z(*)) over {(ZED, Ci) et

AW N =

W

Conditions from labeled examples Given a few labeled examples, we wish to produce diverse
samples with a certain label. For labeled examples we can directly train a classifier over the
latent space, which we denote as rw(c|z(1)) with ¢ being the class label and z(!) being the latent
representation of x from ¢4 (z(*)|x). If these examples do not have labels (i.e., we merely want to
generate new samples similar to given ones), we can train a positive-unlabeled (PU) classifier [33]
where we assign “positive” to the new examples and “unlabeled” to training data. Then we use
the classifier with the diffusion model py(z(M|z(?)) to produce suitable values of z(!), such as by
rejecting samples from the diffusion model that has a small 7, (c|z(}).

Conditions from manipulation constraints Given a few labeled examples, here we wish to learn
how to manipulate images. Specifically, we condition over the event that “x has label c but is
similar to image x”. Here 7, (c|z(!)) is the unnormalized product between the classifier conditional
probability and closeness to the latent z(!) of X (e.g., measured with RBF kernel). We implement line
4 of Alg. | with a Lanvegin-like procedure where we take a gradient step with respect to the classifier
probability and then correct this gradient step with the diffusion model. Unlike many GAN-based
methods [12, 72, 97, 45, 98], D2C does not need to optimize an inversion procedure at evaluation
time, and thus the latent value is much faster to compute; D2C is also better at retaining fine-grained
features of the original image due to the reconstruction loss.

6 Related Work

Latent variable generative models Most deep generative models explicitly define a latent rep-
resentation, except for some energy-based models [4 1, 31] and autoregressive models [94, 93, 10].
Unlike VAEs and NFs, GANs do not explicitly define an inference model and instead optimize a
two-player game. In terms of sample quality, GANs currently achieve superior performance over
VAEs and NFs, but they can be difficult to invert even with additional optimization [48, 100, 7]. This
can be partially addressed by training reconstruction-based losses with GANs [54, 55]. Moreover,

*We expand this argument in Appendix B.2.



the GAN training procedure can be unstable [9, &, 63], lack a informative objective for measuring
progress [4], and struggle with discrete data [102]. Diffusion models [27] achieves high sample
quality without adversarial training, but its latent dimension must be equal to the image dimension. A
concurrent work [92] applied score-based generative modeling on the latent space of an VAE, and
achieved similar improvements compared to regular VAEs.

Addressing posterior mismatch in VAEs Most methods address this mismatch problem by im-
proving inference models [64, 51, 89], prior models [90, 3, 87], or objective functions [103, 104,
105, 1, 59]; all these approaches optimize the posterior model to be close to the prior. In Section 4.2,
we explain why these approaches do not necessarily remove large “prior holes”, so their sample
qualities remain relatively poor even after many layers [91, 19]. Other methods adopt a “two-stage”
approach [23], which fits a generative model over the latent space of autoencoders [96, 75, 26, 74].
[62] have applied diffusion models directly on latent spaces learned by a music VAE.

Conditional generation with unconditional models To perform conditional generation over an
unconditional LVGM, most methods assume access to a discriminative model (e.g., a classifier); the
latent space of the generator is then modified to change the outputs of the discriminative model. The
disciminative model can operate on either the image space [66, 70, 27] or the latent space [80, 98]. For
image space discriminative models, plug-and-play generative networks [66] control the attributes of
generated images via Langevin dynamics [78]; these ideas are also explored in diffusion models [86].
Image manipulation methods are based on GANs often operate with latent space discriminators [80,
98]. However, these methods have some trouble manipulating real images because of imperfect
reconstruction [107, 7]. This is not a problem in D2C since a reconstruction objective is optimized.

7 Experiments

We examine the conditional and unconditional generation qualities of D2C over CIFAR-10 [53],
CIFAR-100 [53], fMoW [21], CelebA-64 [58], CelebA-HQ-256 [48], and FFHQ-256 [49]. Our
D2C implementation is based on the state-of-the-art NVAE [91] autoencoder structure, the U-Net
diffusion model [42], and the MoCo-v2 contrastive representation learning method [16]. We also
consider the D2 objective where we do not applying the contrastive loss in the NVAE autoencoder;
we also tried adding contrastive loss directly to the VAE objective, but we were unable to achieve
satisfactory generation results (reconstruction MSE remains high). This is possibly due to the many
regularizations needed for NVAE to work well, which could conflict with contrastive learning‘; .

We keep the diffusion series hyperparameter {c;}. ; identical to ensure a fair comparison with
different diffusion models. For the contrastive weight A\ in Equation (4), we consider the value of
A = 10~ based on the relative scale between the L¢ and Lps; we find that the results are relatively
insensitive to \. We use 100 diffusion steps for DDIM and D2C unless mentioned otherwise, as
running with longer steps is not computationally economical despite tiny gains in FID [84]. We
include additional training details, such as architectures, optimizers and learning rates in Appendix C.

Table 2: Quality of representations and generations with LVGMs.

CIFAR-10 | CIFAR-100 fMoW
FID| MSE| Acct|FID| MSE| Acct |FID| MSE| Acct

NVAE [91] | 364 0.25 18.8 42.5 0.53 4.1 82.25 0.30 27.7
DDIM [84] | 4.16 2.5 22.5 | 10.16 3.2 2.2 37.74 3.0 235

D2 (Ours) 15.1 0.24 40.6 | 19.85 0.48 17.89 - - -
D2C (Ours) | 10.15 0.76  76.02 | 14.62 0.44  42.75 | 447 2.33 66.9

Model

7.1 Unconditional generation

For unconditional generation, we measure the sample quality of images using the Frechet Inception
Distance (FID, [40]) with 50,000 images. In particular, we extensively evaluate NVAE [91] and

>See https://github.com/NVlabs/NVAE#known-issues for a detailed description.



DDIM [84], a competitive VAE model and a competitive diffusion model as baselines because we
can directly obtain features from them without additional optimization steps®. For them, we report
mean-squared reconstruction error (MSE, summed over all pixels, pixels normalized to [0, 1]) and
linear classification accuracy (Acc., measured in percentage) over z; features for the test set.

We report sample quality results’ in Tables 2, and 3. For FID, we outperform NVAE in all datasets and
outperform DDIM on CelebA-64 and CelebA-HQ-256, which suggests our results are competitive
with state-of-the-art non-adversarial generative models. In Table 2, we additionally compare NVAE,
DDIM and D2C in terms of reconstruction and linear classification accuracy. As all three methods
contain reconstruction losses, the MSE values are low and comparable. However, D2C enjoys much
better linear classification accuracy than the other two thanks to the contrastive SSL component. We
further note that training the same contrastive SSL. method without Lo achieves slightly higher
78.3% accuracy on CIFAR-10. We tried improving this via ResNet [38] encoders, but this significantly
increased reconstruction error, possibly due to loss of information in average pooling layers.

Table 3: FID scores over different faces dataset with LVGMs.

Model \ CelebA-64 CelebA-HQ-256 FFHQ-256
NVAE [91] 13.48 40.26 26.02
DDIM [84] 6.53 25.6 -
D2C (Ours) | 5.7 18.74 13.04

7.2 Few-shot conditional generation from examples

We demonstrate the advantage of D2C representations by performing few-shot conditional generation
over labels. We consider two types of labeled examples: one has binary labels for which we train
a binary classifier; the other is positive-only labeled (e.g., images of female class) for which we
train a PU classifier. Our goal here is to generate a diverse group of images with a certain label. We
evaluate and compare three models: D2C, NVAE and DDIM. We train a classifier 7 (c|z) over the
latent space of these models; we also train a image space classifier and use it with DDIM (denoted as
DDIM-I). We run Algorithm | for these models, where line 4 is implemented via rejection sampling.
As our goal is to compare different models, we leave more sophisticated methods [27] as future work.

First, we consider performing 8 conditional generation tasks over CelebA-64 with 2 binary classifiers
(trained over 100 samples, 50 for each class) and 4 PU classifiers (trained over 100 positively labeled
and 10k unlabeled samples). We also report a “naive” approach where we use all the training images
(regardless of labels) and compute its FID with the corresponding subset of images (e.g., all images
versus blond images). In Table 4, we report the FID score between generated images (5k samples)
and real images of the corresponding label.

Next, we perform a similar experiment on CIFAR-10, but with 50 labels for each of the 10 classes.
For each label, we evaluate the FID between the real images and generated images under that label

SFor DDIM, the latent representations x(© are obtained by reversing the neural ODE process.
"Due to space limits, we place additional CIFAR-10 results in Appendix D.



and take the average FID over the 10 labels. The average FID for D2C, DDIM, and NVAE are
32.57, 82.78, and 95.45 respectively (note that FIDs are expected to be higher because it is evaluated
with 5k real samples per class instead of the commonly used 50k). This shows that D2C performs
significantly better than DDIM and NVAE on the few-shot conditional generation task for both
datasets, illustrating the advantage of contrastive representations for few-shot conditional generation.
We demonstrate some figures in the appendix.

Table 4: FID scores for few-shot conditional generation with various types of labeled examples.
Naive performs very well for non-blond due to class percentages.

Method | Classes (% in trainset) | D2C DDIM NVAE DDIM-I | Naive

Male (42%) 13.44 3838  41.07 29.03 26.34
Bi Female (58%) 9.51 19.25 16.57 15.17 18.72
inary
Blond (15%) 17.61 3139 31.24 29.09 27.51
Non-Blond (85%) 8.94 9.67 16.73 19.76 3.77
Male (42%) 16.39 37.03 4278 19.60 26.34
PU Female (58%) 12.21 1542  18.36 14.96 18.72
Blond (15%) 10.09 30.20 31.06 76.52 27.51
Non-Blond (85%) 9.09 9.70 17.98 9.90 3.77

Fair generative modeling with D2C  We illustrate some conditional generation results with D2C
(from 100 “blond” labels) in Figure 4 (left), which exhibits a biased gender ratio (3 examples out of
36). This kind of dataset bias in CelebA is well-documented in previous work [46]; among all the
images with the “blond” attribute, only 5.6 are labeled as “male”. In fact, we observe that the D2C
samples have a similar gender bias as the original dataset since D2C has learned the data distribution
quite well. To mitigate the presence of dataset bias in D2C’s samples, we leverage a conditional
generation approach. This is in contrast to previous methods that try to learn a fair generative model
via a carefully designed representative dataset [20]. We give a concrete instantiation of our method
in the case of gender bias that can be generalized to all attributes. Suppose our goal is to achieve
a balanced gender ratio among all the generated images with “blond” attribute; we can do so by
generating the same number of samples conditioned on the (1) “blond, male” attributes and the (2)
“blond, female” attributes. Figure 4 (right) demonstrates that D2C can be used for fair generative
modeling by simply specifying our desired constraints with a handful of labels.
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Figure 4: (Left) While D2C generations are faithful to the CelebA distributions, it also learns from
the biases within the dataset. (Right) Conditional generation can make D2C a fairer generative model.

7.3 Few-shot conditional generation from manipulation constraints

Finally, we consider image manipulation where we use binary classifiers that are learned over 50
labeled instances for each class. To manipulate an image, we first acquire its latent code, move its
latent code towards the decision boundary of the classifier and then use the diffusion prior to make the



Original

Figure 5: Image manipulation results for blond (top) and red lipstick (bottom). D2C is better than
StyleGAN?2 at preserving details of the original image, such as eyes, earrings, and background.

Red lipstick Blond
DDIM DDIM
NVAE NVAE
StyleGAN2 StyleGAN2
D2C D2C
00 01 02 03 04 05 0.0 0.1 0.2 0.3

Figure 6: AMT evaluation over image manipulations. z-axis shows the percentage that the evaluator
selects the image generated from the corresponding model out of 4 images from each model.

sample more realistic. We perform Amazon Mechanical Turk (AMT) evaluations over two attributes
in the CelebA-256 dataset, blond and red lipstick, over D2C, DDIM, NVAE and StyleGAN?2 [50] (see
Figure 5). The evaluation is double-blinded: neither we nor the evaluators know the correspondence
between generated image and underlying model during the study. We include more details (algorithm,
setup and human evaluation) in Appendix C and additional qualitative results (such as beard and
gender attributes) in Appendix D.

In Figure 8, we show the percentage of manipulations preferred by AMT evaluators for each model,
D2C slightly outperforms StyleGAN2 for blond and significantly outperforms StyleGAN?2 for red
lipstick. When we compare D2C with only StyleGAN2, D2C is preferred over 51.5% for blond
and 60.8% for red lipstick. An additional advantage of D2C is that the manipulation is much faster
than StyleGAN?2, since the latter requires additional optimization over the latent space to improve
reconstruction [106]. On the same Nvidia 1080Ti GPU, it takes 0.013 seconds to obtain the latent
code in D2C, while the same takes 8 seconds [106] for StyleGAN2 (615x slower). As decoding is
very fast for both models, D2C generations are around two orders of magnitude faster to produce.

8 Discussions and Limitations

We introduced D2C, a VAE-based generative model with a latent space suitable for few-shot condi-
tional generation. To our best knowledge, our model is the first unconditional VAE to demonstrate
superior image manipulation performance than StyleGAN2, which is surprising given our use of a
regular NVAE architecture. We believe that with better architectures, such as designs from Style-
GAN2 or Transformers [44], D2C can achieve even better performance. It is also interesting to
formally investigate the integration between D2C and other types of conditions on the latent space, as
well as training D2C in conjunction with other domains and data modalities, such as text [74], in a
fashion that is similar to semi-supervised learning. Nevertheless, we note that our model have to be
used properly in order to mitigate potential negative societal impacts, such as deep fakes.
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