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Abstract

High-resolution satellite imagery has proven useful for a broad range of tasks, in-
cluding measurement of global human population, local economic livelihoods, and
biodiversity, among many others. Unfortunately, high-resolution imagery is both
infrequently collected and expensive to purchase, making it hard to efficiently and
effectively scale these downstream tasks over both time and space. We propose a
new conditional pixel synthesis model that uses abundant, low-cost, low-resolution
imagery to generate accurate high-resolution imagery at locations and times in
which it is unavailable. We show that our model attains photo-realistic sample
quality and outperforms competing baselines on a key downstream task — object
counting — particularly in geographic locations where conditions on the ground are
changing rapidly.

1 Introduction

Recent advancements in satellite technology have enabled granular insight into the evolution of
human activity on the planet’s surface. Multiple satellite sensors now collect imagery with spatial
resolution less than 1m, and this high-resolution (HR) imagery can provide sufficient information for
various fine-grained tasks such as post-disaster building damage estimation, poverty prediction, and
crop phenotyping [15, 3, 41]. Unfortunately, HR imagery is captured infrequently over much of the
planet’s surface (once a year or less), especially in developing countries where it is arguably most
needed, and was historically captured even more rarely (once or twice a decade) [7]. Even when
available, HR imagery is prohibitively expensive to purchase in large quantities. These limitations
often result in an inability to scale promising HR algorithms and apply them to questions of broad
social importance. Meanwhile, multiple sources of publicly-available satellite imagery now provide
sub-weekly coverage at global scale, albeit at lower spatial resolution (e.g. 10m resolution for
Sentinel-2). Unfortunately, such coarse spatial resolution renders small objects like residential
buildings, swimming pools, and cars unrecognizable.

LR 2016 HR 2018 Generated 2016 Ground Truth 2016

Figure 1: Given a 10m low resolution (LR) image from 2016 and a 1m high resolution (HR) image
from 2018, we generate a photo-realistic and accurate HR image for 2016.
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In the last few years, thanks to advances in deep learning and generative models, we have seen great
progress in image processing tasks such as image colorization [43], denoising [6, 35], inpainting
[35, 27], and super-resolution [11, 21, 16]. Furthermore, pixel synthesis models such as neural
radiance field (NeRF) [26] have demonstrated great potential for generating realistic and accurate
scenes from different viewpoints. Motivated by these successes and the need for high-resolution
images, we ask whether it is possible to synthesize high-resolution satellite images using deep
generative models. For a given time and location, can we generate a high-resolution image by
interpolating the available low-resolution and high-resolution images collected over time?

To address this question, we propose a conditional pixel synthesis model that leverages the fine-
grained spatial information in HR images and the abundant temporal availability of LR images
to create the desired synthetic HR images of the target location and time. Inspired by the recent
development of pixel synthesis models pioneered by the NeRF model [26, 40, 2], each pixel in
the output images is generated conditionally independently by a perceptron-based generator given
the encoded input image features associated with the pixel, the positional embedding of its spatial-
temporal coordinates, and a random vector. Instead of learning to adapt to different viewing directions
in a single 3D scene [26], our model learns to interpolate across the time dimension for different
geo-locations with the two multi-resolution satellite image time series.

To demonstrate the effectiveness of our model, we collect a large-scale paired satellite image dataset
of residential neighborhoods in Texas using high-resolution NAIP (National Agriculture Imagery
Program, 1m GSD) and low-resolution Sentinel-2 (10m GSD) imagery. This dataset consists of
scenes in which housing construction occurred between 2014 and 2017 in major metropolitan areas
of Texas, with construction verified using CoreLogic tax and deed data. These scenes thus provide a
rapidly changing environment on which to assess model performance. As a separate test, we also pair
HR images (0.3m to 1m GSD) from the Functional Map of the World (fMoW) dataset [9] crop field
category with images from Sentinel-2.

To evaluate our model’s performance, we compare to state-of-the-art methods, including super-
resolution models. Our model outperforms all competing models in sample quality on both datasets
measured by both standard image quality assessment metrics and human perception (see example in
Figure 1). Our model also achieves 0.92 and 0.62 Pearson’s 72 in reconstructing the correct numbers
of buildings and swimming pools respectively in the images, outperforming other models in these
tasks. Results suggest our model’s potential to scale to downstream tasks that use these object counts
as input, including societally-important tasks such as population measurement, poverty prediction,
and humanitarian assessment [7, 3].

2 Related Work

Image Super-resolution SRCNN [11] is the first paper to introduce convolutional layers into a SR
context and demonstrate significant improvement over traditional SR models. SRGAN [21] improves
on SRCNN with adversarial loss and is widely compared among many GAN-based SR models for
remote sensing imagery [36, 25, 29]. DBPN [16] is a state-of-the-art SR solution that uses an iterative
algorithm to provide an error feedback system, and it is one of the most effective SR models for
satellite imagery [28]. However, [31] shows that SR is less beneficial at coarser resolution, especially
when applied to downstream object detection on satellite imagery. In addition, most SR models test
on benchmarks where LR images are artificially created, instead of collected from actual LR devices
[1, 39, 17]. SR models also generally perform worse at larger scale factors, which is closer to settings
for satellite imagery SR in real life.

SRNTT [45] applies reference-based super-resolution through neural texture transfer to mitigate
information loss in LR images by leveraging texture details from HR reference images. While SRNTT
also uses a HR reference image, it does not learn the additional time dimension to leverage the HR
image of the same object at a different time. In addition, our model uses a perceptron based generator
while SRNTT uses a CNN based generator.

Fusion Models for Satellite Imagery [12] first proposes STARFM to blend data from two remote
sensing devices, MODIS [4] and Landsat [20], for spatial-temporal super resolution to predict land
reflectance. [46] introduces an enhanced algorithm for the same task and [10] combines linear
pixel unmixing and STARFM to improve spatial details in the generated images. cGAN Fusion



[5] incorporates GAN-based models in the solution, using an architecture similar to Pix2Pix [18].
In contrast to previous work, we are particularly interested in synthesizing images with very high
resolution (< Im GSD), enabling downstream applications such as poverty level estimation.

NeRF and Pixel Synthesis Models Recent developments in deep generative models, especially
advances in perceptron-based generators, have yet to be explored in remote sensing applications.
Introduced by [26], neural radiance fields (NeRF) demonstrates great success in constructing 3D
static scenes. [23, 38] extends the notion of NeRF and incorporates time-variant representations
of the 3D scenes. [30] embeds NeRF generation into a 3D aware image generator. These works,
however, are limited to generating individual scenes, in contrast with our model which can generalize
to different locations in the dataset. [40] proposes a framework that predicts NeRF conditioning on
spatial features from input images; however, it requires constructing the 3D scenes, which is less
applicable to satellite imagery. [2] proposes a style-based 2D image generative model using an only
perceptron-based architecture; however, unlike our method, it doesn’t consider the task of conditional
2D image generation nor does it incorporate other variables such as time. In contrast, we propose a
pixel synthesis model that learns a conditional 2D spatial coordinate grid along with a continuous
time dimension, which is tailored for remote sensing, where the same location can be captured by
different devices (e.g. NAIP or Sentinel-2) at different times (e.g. year 2016 or year 2018).

3 Problem Setup

The goal of this work is to develop a method to synthesize high-resolution satellite images for
locations and times for which these images are not available. As input we are given two time-series
of high-resolution (HR) and low-resolution (LR) images for the same location. Intuitively, we wish to
leverage the rich information in HR images and the high temporal frequency of LR images to achieve
the best of both worlds.

Y

Formally, let I, | € RE*H>*W e a sequence of random variables representing high-resolution views

(t)

of a location at various time steps ¢ € T'. Similarly, let I},” € RE>HirxWir denote low-resolution

(t)

views of the same location over time. Our goal is to develop a method to estimate I/, given K

high resolution observations {1 ,(fr o htTK)} and L low-resolution ones {1, (1) v} l(fL)} for the
same location. Note the available observatlons could be taken either before or after the target time t.
Our task can be viewed as a special case of multivariate time-series imputation, where two concurrent
but incomplete series of satellite images of the same location in different resolutions are given, and
the model should predict the most likely pixel values at an unseen time step of one image series.

In this paper, we consider a special case where the goal is to estimate [ ,(ltr) given a single high-
resolution image I ,(Ltr) and a single low-resolution image [ l(f,) also from time ¢. We focus on this

special case because while typically L > K, it is reasonable to assume [ ,(fr) NIy} l(:/) | 1, l(:) fort' # t,
i.e., given a LR image at the target time ¢, other LR views from different time steps provide little or
no additional information. Given the abundant availability of LR imagery, it is often safe to assume

access to l(:,) at target time ¢. Figure 1 provides a visualization of this task.

I(t) I(t)

For training, we assume access to paired triplets {1, ., I}, I, @ )} collected across a geographic

region of interest where t’ # ¢. At inference time, we assume availability for I l(r) and [ ﬁ) and the
model needs to generalize to previously unseen locations. Note that at inference time, the target time
t and reference time ¢’ may not have been seen in the training set either.

4 Method

Given I{" and I{" of the target location and target time £, our method generates I\") € RCXHxW
with a four-module conditional pixel synthesis model. Figure 2 is an illustration of our framework.

The generator G of our model consists of three parts: image feature mapper F : RE*XH*XW
RCreaxHXW ‘nogitional encoder F, and the pixel synthesizer G,,. For each spatial coordinate (z, )
of the target HR image, the image feature mapper extracts the neighborhood information around
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Figure 2: An illustration of our proposed framework (discriminator omitted). The input images are

processed by the image feature mapper F' to obtain 1 (te)a. Then with its spatial-temporal coordinate

(z,y,t) encoded by E, each pixel is synthesized conditionally independently given the image feature

associated with its spatial coordinate ](cte)a (x,y) and a random vector z.

(z,y) €4{0,1,...., H} x{0, 1, ..., W} from Il(rt) and I,(fr), as well as the global information associated
with the coordinate in the two input images. The positional encoder learns a representation of the
spatial-temporal coordinate (x, y, t), where ¢ is the temporal coordinate of the target image. The pixel
synthesizer then uses the information obtained from the image feature mapper and the positional
encoding to predict the pixel value at each coordinate. Finally, we incorporate an adversarial loss in
our training, and thus include a discriminator D as the final component of our model.

Image Feature Mapper Before extracting features, we first perform nearest neighbor resampling

I 1(:) to match the dimensionality of the HR image and concatenate [, l(:) and [ ,(lf:)

along the spectral bands to form the input 7'}, = concat[I") ,(frl)] € R2O*HXW Then the mapper

Ir

processes I'", with a neighborhood encoder Fi : R2CXH*W _y RCreaxH'xW’ 4 olobal encoder

Fy : RCOseaxH'xW' o ROseaxH'XW' apnq 4 neighborhood decoder Fp : RCreaxH' xW" _,
RC7eaxHXW The neighborhood encoder and decoder learn the fine structural features of the images,
and the global encoder learns the overall inter-pixel relationships as it observes the entire image.

to the LR image

Fg uses sliding window filters to map a small neighborhood of each coordinate into a value stored
in the neighborhood feature map I ,(fe) € RCreaxH'XW' anq Fp uses another set of filters to trans-
form the global feature map I;? € RCreaxH'xW' pack to the original coordinate grid. F is a

self-attention module that takes I as the input and learns functions Q, K : RCfeaxH' xW' _,
RCrea/SXH'W' 7 RCreaxH' W' _y RCreaxH'W anq g scalar parameter ~ to map 152 to ]gz).

The image feature mapper F' = Fg o F4 o Fp and we denote Ij(f) =F(I ®

ca o) and the image feature

associated with coordinate (x,y) as I () (z,y) € RE <. Details are available in Appendix A.

fea
Positional Encoder Following [2], we also include both the Fourier feature and the spatial coor-
dinate embedding in the positional encoder E. The Fourier feature is calculated as ey, (z,y,t) =

sin(By, (2% — 1, 2245 — 1, 1)) where By, € R?*C7ea is a learnable matrix and u is the time
unit. This encoding of ¢ allows our model to handle time-series with various lengths and to ex-
trapolate to time steps that are not seen at training time. £ also learns a C'yeq x H x W matrix
eco and the spatial coordinate embedding for (z,y,t) is extracted from the vector at (z,y) in ec,.
The positional encoding of (x,y,t) is the channel concatenation of ey, (z,y,t) and eco(z,y,1),

E(x,y,t) = concatley, (x,y,t), eco(,y,t)] € R2Cfea,

Pixel Synthesizer Pixel Synthesizer G, can be viewed as an analogy of simulating a conditional
2 + 1D neural radiance field with fixed viewing direction and camera ray using a perceptron based



model. Instead of learning the breadth representation of the location, G, learns to scale in the time
dimension in a fixed spatial coordinate grid. Each pixel is synthesized conditionally independently

given 1ty E(z,y,t), and a random vector z € RZ. G, first learns a function g, to map E(x,y,t)

fea’
to RC7<a, then obtains the input to the fully-connected layers e(x, y,t) = g.(E(z,y,t))+1 J(fe)a (z,9).

Following [2, 19], we use a m-layer perceptron based mapping network M to map the noise vector z
into a style vector w, and use n modulated fully-connected layers (ModFC) to inject the style vector
into the generation to maintain style consistency among different pixels of the same image. We map
the intermediate features to the output space for every two layers and accumulate the output values as
the final pixel output.

With all components combined, the generated pixel value at (x, y,t) can be calculated as
I{)(e.y) = Glay, 1. 2110 1,,)) = Gyp(B(ay.1). FUG)). 2)

Loss Function The generator is trained with the combination of the conditional GAN loss and L
loss. The objective function is

G* = argmGinmgxﬁcGAN(G, D)+ ML, (G)

Logan(G,D) = Ellog DI, X, 1V 1)) + B[l — log D(G(X, 2|1V, 1)), x, 1V 1))

Ir r> Ir >

where X is the temporal-spatial coordinate grid {(z,y,t)|0 < z < H,0 < y < W} for I}(fT)
£1,(G) = EIIL) = GOX 2110 1),

lr

S Experiments

5.1 Datasets

Texas Housing Dataset We collect a dataset consisting of 286717 houses and their surrounding
neighborhoods from CoreLogic tax and deed database that have an effective year built between 2014
and 2017 in Texas, US. We reserve 14101 houses from 20 randomly selected zip codes as the testing
set and use the remaining 272616 houses from the other 759 zip codes as the training set. For each
house in the dataset, we obtain two LR-HR image pairs, one from 2016 and another from 2018. In
total, there are 1146868 multi-resolution images collected from different sensors for our experiments.
We source high resolution images from NAIP (1m GSD) and low resolution images from Sentinel-2
(10m GSD) and only extract RGB bands from Google Earth Engine [14]. More details can be found
in Appendix C.

FMoW-Sentinel2 Crop Field Dataset We derive this dataset from the crop field category in
Functional Map of the World (fMoW) dataset [9] for the task of generating images over a greater
number of time steps. We pair each fMoW image with a lower resolution Sentinel-2 RGB image
captured at the same location and a similar time. We prune locations with fewer than 2 timestamps,
yielding 1752 locations and a total of 4898 fMoW-Sentinel2 pairs. Each location contains between
2-15 timestamps spanning from 2015 to 2017. We reserve 237 locations as the testing set and the
remaining 1515 locations as the training set. More details can be found in Appendix C.

5.2 Implementation Details

Model Details We choose H = W = 256, C' = 3 (the concatenated RGB bands of the input
images), Cfeq = 256, m = 3, n = 14 and A = 100 for all of our experiments. We use non-
saturating conditional GAN loss for G and R; penalty for D, which has the same network structure
as the discriminator in [19, 2]. We train all models using Adam optimizer with learning rate
2x 1073, 8y = 0,5, = 0.99, ¢ = 108, We train each model to convergence, which takes around
4-5 days on 1 NVIDIA Titan XP GPU. Further details can be found in Appendix A and B.

We provide two versions of the image feature mapper. In version "EAD", we use convolutional
layers and transpose convolutional layers with stride > 1 in Fig and Fp. In version "EA", we use
convolutional layers with stride = 1 in F'r and an identity function in Fp. For version "EA", we use
a patch-based training and inference method with a patch size of 64 because of memory constraints,



and denote it as "EA64". The motivation for including both "EAD" and "EA" is to examine the
capabilities of F' with and without spatial downsampling or upsampling. "EAD" can sample 1500
images in around 2.5 minutes (10 images/s) and "EA64" can sample 1500 images in around 19
minutes (1.3 image/s). More details can be found in Appendix A and B.

Baselines We compare our method with two groups of baseline methods: image fusion models and
super-resolution (SR) models. We use cGAN Fusion [5], which leverages the network structure of
the leading image-to-image translation model Pix2Pix [18] to combine different imagery products
for surface reflectance prediction. We also compare our model with the original Pix2Pix framework.
For SR baselines, we choose SRGAN [21], which is widely compared among other GAN based SR
models for satellite imagery [36, 25, 29]. We also compare our method with DBPN [16], which is a
state-of-the-art SR model for satellite imagery [28].

5.3 Image Generation Quality

Input LR 2016

Ours(EAD) Pix2Pix DBPN

Ground Truth

Sl H3[e ¥

Input HR 2018 Ours EAB4)

cGAN Fusion

Figure 3: Samples from all models on the Texas housing dataset with setting ¢’ > ¢. Our models show
advantages in both sample quality and structural detail consistency with the ground truth, especially
in areas with house or pool construction (zoomed in with colored boxes).

We examine generated image quality using both our Texas housing dataset and our fMoW-Sentinel2
crop field dataset. Figures 3 and 4 present qualitative results from our approach and from baselines.
Table 1 shows quantitative results on the Texas housing dataset and Table 2 shows quantitative results
on the fMoW-Sentinel2 crop field dataset. Overall, our models outperform all baseline approaches in
all evaluation metrics.

Evaluation Metrics To assess image generation quality, we report standard sample quality metrics
SSIM [37], FSIM [42], and PSNR to quantify the visual similarity and pixel value accuracy of the
generated images. We also include LPIPS [44] using VGG [32] features, which is a deep perceptual
metric used in previous works to evaluate generation quality in satellite imagery [13]. LPIPS leverages
visual features learned in deep convolutional neural networks that better reflect human perception.
We report the average score of each metric given every possible pair of ¢, ¢’ where ¢t # t.

Texas Housing Dataset The dataset focuses on regions with residential building construction

between 2014 and 2017, so we separately analyze the task to predict I }(:,i«) when ¢’ > t and when
t' < t on the Texas housing dataset. ¢’ > ¢ represents the task to "rewind" the construction of the
neighborhood and ¢' < ¢t represents the task to "predict" construction. Our models achieve more

photo-realistic sample quality (measured by LPIPS), maintain better structural similarity (measured



Table 1: Image sample quality quantitative results on Texas housing data. ¢’ > t denotes the task for
generating an image in the past given a future HR image, and ¢’ < ¢ denotes the task for generating
an image in the future given a past HR image.

t >t <t

Model  —orNiF—PSNRT FSIMT LPIPS] | SSIMT  PSNRT  FSIMT LPIPS]

Pix2Pix 0.5432  20.8420 0.7522  0.4243 | 0.3909 17.9528 0.6802  0.4909
c¢GAN Fusion | 0.5976 21.5226 0.7713  0.3936 | 0.4220 17.8763 0.6897 0.4726
DBPN 0.5781 21.4716 0.7102  0.5101 | 0.4572 18.9330 0.6384 0.5910
SRGAN 0.5361 21.1968 0.6999  0.5261 | 0.4221 18.9772 0.6387 0.5694

Ours (EAD) | 0.6470 22.4906 0.7904 0.3695 | 0.5225 19.7675 0.7280  0.4275
Ours (EA64) | 0.6570 22.5552 0.7902 0.3764 | 0.5338 19.8547 0.7269 0.4342

by SSIM and FSIM), and obtain higher pixel accuracy (measured by PSNR) in both tasks compared
to other approaches. With the more challenging task ¢’ < ¢, where input HR images contain fewer
constructed buildings than the ground truth HR images, our method exceeds the performance of other
models by a greater margin.

Our results in Figure 3 confirm these findings with qualitative examples. Patches selected and
zoomed in with colored bounding boxes show regions with significant change between ¢ and #'. Our
model generates images with greater realism and higher structural information accuracy compared to
baselines. While Pix2Pix and cGAN Fusion are also capable of synthesizing convincing images, they
generate inconsistent building shapes, visual artifacts, and imaginary details like the swimming pool
in the red bounding boxes. DBPN and SRGAN are faithful to information provided by the LR input
but produce blurry images that are far from the ground truth.

Ground Truth

Input LR

ours (EA64)

Pix2Pix

2016-07-25

2016-10-09

2016-11-10

Figure 4: Samples from all models on the fMoW-Sentinel2 crop field dataset. Each row represents
the results on the same location at a different timestamp given the same HR input from 2016-09-06.

fMoW-Sentinel2 Crop Field Dataset We conduct experiments on the fMoW-Sentinel2 crop field
dataset to compare model performance in settings with less data, fewer structural changes, and longer
time series with unseen timestamps at test time. Our model outperforms baselines in all metrics,
see Table 2. Figure 4 shows the image samples from different models on the fMoW-Sentinel2 crop
field dataset. While image-to-image translation models fail to maintain structural similarity and SR
models fail to attain realistic details, our model generates precise and realistic images.

Discussion It is not surprising that our models generate high resolution details because they leverage
a rich prior of what HR images look like, acquired via the cGAN loss, and GANs are capable of
learning to generate high frequency details [19, 2]. Despite considerable information loss, inputs
from LR devices still provide sufficient signal for HR image generation (e.g. swimming pools may
change LR pixel values in a way that is detectable by our models but not by human perception).
Experiments in Figure 3 and Section 5.5 show that these signals are enough for our model to reliably
generate HR images that are high quality and applicable to downstream tasks.
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Table 2: Image sample quality quantitative results on fMoW-

0.54 Sentinel2 crop field dataset.
~os2 Ces Model SSIMtT PSNRT FSIM?T LPIPS|
— Wit Pix2Pix 0.2144 14.0276 0.6418 0.5847
0.50 wot c¢GAN Fusion | 0.2057 14.1353 0.6409 0.5912
0 100 200 300 400 500 600 DBPN 0.3621 15.7878 0.6323  0.6428
|t - t] (Day) SRGAN 0.3479 153502 0.6323  0.6301
. . . Ours (EAD) | 0.3526 16.5769 0.6887  0.5629
Figure 5: Ablation study on learning the 15 (EAG4) | 0.3905 16.8879 0.6827 0.5197

temporal embeddings in our model using
fMoW-Sentinel2 crop field dataset.

In more extreme scenarios (e.g. LR captured by MODIS with 250m GSD v.s. HR captured by NAIP
with 1m GSD), LR provides very limited information and therefore yields excessive uncertainty in
generation. In this case, the high resolution details generated by our model are more likely to deviate
from the ground truth.

It is worth noting that our LR images are captured by remote sensing devices (e.g. Sentinel-2), as
opposed to synthetic LR images created by downsampling used in many SR benchmarks. As shown
in our experiments, leading SR models such as DBPN and SRGAN do not perform well in this
setting.

5.4 Ablation Study

We perform an ablation study on different components of our framework. We consider the following
configurations for comparison: "No G p" setting removes the pixel synthesizer to examine the effects
of Gp; "Linear F" and "E only" use a single fully-connected layer and a single 3 x 3 convolutional
layer with stride = 1 respectively to verify the influence of a deep multi-layer image feature mapper
F'. "ED Only" removes the global encoder F'4 and "A Only" removes the neighborhood encoder F'
and decoder Fp. Note that because [2] has conducted thorough analysis on various settings of the
positional encoder, we omit the configurations to assess the effects of spatial encoding in F£.

As shown in Table 3, each component contributes significantly to performance in all evaluation
aspects. While "EA64" outperforms "EAD" in SSIM and PSNR with a small margin, we observe
slight checkerboard artifacts in the images generated by "EA64" (details in Appendix G). Overall,
"EAD" is the most realistic to the human eye, which is consistent with the LPIPS results. However,
"EA64" has stronger performance in a more data-constrained setting as shown in the fMoW-Sentinel2
crop field experiment. Samples generated by different configurations can be found in Appendix F.

We also demonstrate the effects of learning the time dimension in our model. Parameterizing
our model with a continuous time dimension enables it to be applicable to time series of varying
lengths with non-uniform time intervals (e.g. fMoW-Sentinel2 Crop Field dataset). Moreover, this
parameterization also improves model performance. We train a modified version of "EA64" to
exclude the time component in £ and compare the LPIPS values of the generated images to ones
from the original "EA64" in Figure 5. In conjunction with the additional analysis in Appendix F,
we show that the time-embedded model outperforms the same model without temporal encoding.
Therefore, the time dimension is crucial to our model’s performance, especially in areas with sparse
HR satellite images over long periods of time.

We also include further details and analysis of our ablation study in Appendix F, including additional
results for the effectiveness of the temporal dimension in E, comparison of different patch sizes for
"EA" and training with different input choices.

5.5 Human Evaluation for Downstream Applications

Because our goal is to generate realistic and meaningful HR images that can benefit downstream tasks,
we also conduct human evaluations to examine the potential of using our models for downstream
applications. We deploy three human evaluation experiments on Amazon Mechanical Turk to measure



Table 3: Ablation study on the effects of different components of our model on Texas housing
dataset. "+" represents adding certain components, "-" represents removing the components, and "*"
represents different configurations from the original setting. See Section 5.4 for more details.

Model | Fgx Fa Fp Gp | SSIMt PSNR? FSIM} LPIPS)
NoGp" | + + + - | 05338 202712 0.7399 0.44%2
"Linear F" | * - -+ | 04585 18.8164 0.7006 0.4845
"EOnly" | * - -+ | 04761 19.0881 0.7146 0.4604
"EDOnly" | + - + + | 05414 202483 0.7392 0.4340
"AOnly" | - + -+ |05280 200312 07196 0.4418
"EA6A™ | + + -+ | 05954 21.2050 0.7586 0.4053
"EAD" | + + +  + | 05848 21.1291 0.7592 0.3985

Table 4: Human evaluation results on Texas housing dataset.

Images r2 with mean count | 72 with median count % times selected
Buildings  Pools | Buildings Pools Similarity Realism
HR ¢’ 0.1475 0.1009 0.1595 0.1997 - -
DBPN 0.8785 0.0227 0.8823 -0.0640 1.75% 1.25%
cGAN Fusion 0.8793 -0.0707 0.9093 -0.0367 45.00% 49.00%
Ours (EAD) 0.9174 0.6158 0.9298 0.5953 53.25% 49.75%

the object reconstruction performance, similarity to ground truth HR images, and perceived realism
of images generated by different models.

Building and Swimming Pool Count Object counting in HR satellite imagery has numerous
applications, including environmental regulation [22], aid targeting [33], and local-level poverty
mapping [3]. Therefore, we choose object counting as the primary downstream task for human
evaluation. We randomly sample 200 locations in the test set of our Texas housing dataset, and assess
the image quality generated under the setting ¢’ = 2018 > ¢ = 2016. Each image is evaluated by
3 workers, and each worker is asked to count the number of buildings as well as the number of
swimming pools in the image. In each location, we select images generated from our model (EAD),

c¢GAN Fusion, and DBPN, as well as the corresponding ground truth HR image / }(fr) from 2016 and

HR image I ,(;) from 2018 (denoted as HR t'). We choose buildings and swimming pools as our
target objects since both can serve as indicators of regional wealth [3, 8] and both occur with high
frequency in the areas of interest. Swimming pools are particularly challenging to reconstruct due to
their small size and high shape variation, making them an ideal candidate for measuring small-scale
object reconstruction performance.

We measure the performance of each setting using the square of Pearson’s correlation coefficient (r2)
between true and estimated counts, as in previous research [3]. As human-level object detection is
still an open problem especially for satellite imagery [24, 34], human evaluation on this task serves
as an upper bound on the performance of automatic methods on this task.

As shown in Table 4, our model outperforms baselines on both tasks, with the most significant perfor-
mance advantage in the swimming pool counting task. Note that in rapidly changing environments
like our Texas housing dataset, using the HR image of a nearby timestamp ¢’ cannot provide an
accurate prediction of time ¢, which indicates the importance of obtaining higher temporal resolution
in HR satellite imagery. Our model maintains the best object reconstruction performance among all
models experimented, especially for small scale objects.

Similarity to Ground Truth and Image Realism Aside from object counting, we also conduct
human evaluation on the image sample quality. With 400 randomly selected testing locations in our
Texas housing test set, each worker is asked to either select the generated image that best matches
a given ground truth HR image, or select the most realistic image from 3 generated images shown
in random order. All images are generated under the setting ¢’ = 2018 > ¢ = 2016, and we choose
the same models as the ones in the object counting experiment. Human evaluation results on image



sample quality align with our quantitative metric results. Our model produces the most realistic and
accurate images among the compared models. Note that although cGAN Fusion generates realistic
images, it fails to maintain structural information accuracy, resulting in lower performance in the
similarity to ground truth task.

5.6 Temporal Extrapolation

Ground Truth 2017 LR 2017 Generated 2017 HR 2018 Generated 2019 LR 2019 Ground Truth 2019

P

Figure 6: Temporal extrapolation application of our model. HR 2018 is the input NAIP image to
both generated images shown in the figure. LR 2017 and LR 2019 are Sentinel-2 images of the same
region in 2017 and 2019. Since NAIP imagery is not available in Texas for 2017 and 2019, the ground
truth is obtained via Google Earth Pro. Note that the capture dates of the ground truth and the LR
images are not perfectly aligned due to a lack of image availability.

z

&

Given a HR image at any time and LR images at the desired timestamps, we provide some evidence
that our model is able to generate HR images at timestamps unavailable in the training dataset.
Figure 6 demonstrates an example of such an application of our model. With the LR images from
Sentinel-2, we generate HR images in 2017 and 2019, two years that do not have NAIP coverage in
Texas. We compare the generated images with ground truth acquired from Google Earth Pro since the
corresponding NAIP images are not available. Although the timestamps of the ground truth and LR
images are not perfectly aligned, our generated images still show potential in reconstructing structural
information reflected in the ground truth. More rigorous assessment of temporal extrapolation
performance requires a more extensive dataset, which we leave to future work.

6 Conclusion and Statement of Broader Impact

We propose a conditional pixel synthesis model that uses the fine-grained spatial information in
HR images and the abundant temporal availability of LR images to create the desired synthetic HR
images of the target location and time. We show that our model achieves photorealistic sample quality
and outperforms competing baselines on a crucial downstream task, object counting.

We hope that the ability to extend access to HR satellite imagery in areas with temporally sparse HR
imagery availability will help narrow the data gap between regions of varying economic development
and aid in decision making. Our method can also reduce the costs of acquiring HR imagery, making
it cheaper to conduct social and economic studies over larger geographies and longer time scales.

That being said, our method does rely on trustworthy satellite imagery provided by reliable orga-
nizations. Just like most SR models, our model is vulnerable to misinformation (e.g. the failure
cases presented in Appendix G due to unreliable LR input). Therefore, we caution against using
generated images to inform individual policy (e.g. retroactively applying swimming pool permit
fees) or military decisions. Exploration of performance robustness to adversarial examples is left to
future study. Furthermore, we acknowledge that increasing the temporal availability of HR satellite
imagery has potential applications in surveillance. Finally, we note that object counting performance
is measured through human evaluation due to dataset limitations, and we leave measurement of
automated object counting performance to future work.
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