
Combining Recurrent, Convolutional,
and Continuous-time Models with

Linear State-Space Layers

Albert Gu†, Isys Johnson‡, Karan Goel†, Khaled Saab∗, Tri Dao†, Atri Rudra‡, Christopher Ré†
† Department of Computer Science, Stanford University

∗ Department of Electrical Engineering, Stanford University
‡ Department of Computer Science and Engineering, University at Buffalo, SUNY

{albertgu,knrg,ksaab,trid}@stanford.edu, chrismre@cs.stanford.edu
{isysjohn,atri}@buffalo.edu

Abstract

Recurrent neural networks (RNNs), temporal convolutions, and neural differential
equations (NDEs) are popular families of deep learning models for time-series data,
each with unique strengths and tradeoffs in modeling power and computational
efficiency. We introduce a simple sequence model inspired by control systems
that generalizes these approaches while addressing their shortcomings. The Lin-
ear State-Space Layer (LSSL) maps a sequence u ↦→ y by simply simulating a
linear continuous-time state-space representation ẋ = Ax+ Bu, y = Cx+Du.
Theoretically, we show that LSSL models are closely related to the three aforemen-
tioned families of models and inherit their strengths. For example, they generalize
convolutions to continuous-time, explain common RNN heuristics, and share fea-
tures of NDEs such as time-scale adaptation. We then incorporate and generalize
recent theory on continuous-time memorization to introduce a trainable subset of
structured matrices A that endow LSSLs with long-range memory. Empirically,
stacking LSSL layers into a simple deep neural network obtains state-of-the-art
results across time series benchmarks for long dependencies in sequential image
classification, real-world healthcare regression tasks, and speech. On a difficult
speech classification task with length-16000 sequences, LSSL outperforms prior
approaches by 24 accuracy points, and even outperforms baselines that use hand-
crafted features on 100x shorter sequences.

1 Introduction

A longstanding challenge in machine learning is efficiently modeling sequential data longer than a
few thousand time steps. The usual paradigms for designing sequence models involve recurrence
(e.g. RNNs), convolutions (e.g. CNNs), or differential equations (e.g. NDEs), which each come
with tradeoffs. For example, RNNs are a natural stateful model for sequential data that require
only constant computation/storage per time step, but are slow to train and suffer from optimization
difficulties (e.g., the "vanishing gradient problem" [39]), which empirically limits their ability to
handle long sequences. CNNs encode local context and enjoy fast, parallelizable training, but are not
sequential, resulting in more expensive inference and an inherent limitation on the context length.
NDEs are a principled mathematical model that can theoretically address continuous-time problems
and long-term dependencies [37], but are very inefficient.

Ideally, a model family would combine the strengths of these paradigms, providing properties like
parallelizable training (convolutional), stateful inference (recurrence) and time-scale adaptation

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

𝐴̅

#𝐵

%𝐷

̅𝐶

𝑥!

𝑢!

𝑦!

!𝑑𝑡

𝐵

𝐶

𝐴𝐷

𝑢

𝑥̇

𝑥

𝑦

Continuous-time Recurrent

Discretize

Δ𝑡

continuous data
irregular sampling

Convolutional
unbounded context
efficient inference

local information
parallelizable training

✓
✓

✓
✓

✓
✓

𝑢

𝑦

&𝐾 = (̅𝐶𝐴̅! -𝐵)

or

*

Output

Input

𝐴̅

#𝐵

̅𝐶

𝑥!

𝑢!

𝑦!−1

−1

−1

#𝐵

̅𝐶

𝑥!

𝑢!

𝑦!+1

+1

+1

Figure 1: (Three views of the LSSL) A Linear State Space Layer layer is a map ut ∈ R → yt ∈ R,
where each feature ut ↦→ yt is defined by discretizing a state-space model A,B,C,D with a parameter ∆t.
The underlying state space model defines a discrete recurrence through combining the state matrix A and
timescale ∆t into a transition matrix A. (Left) As an implicit continuous model, irregularly-spaced data
can be handled by discretizing the same matrix A using a different timescale ∆t. (Center) As a recurrent
model, inference can be performed efficiently by computing the layer timewise (i.e., one vertical slice at a
time (ut, xt, yt), (ut+1, xt+1, yt+1), . . .), by unrolling the linear recurrence. (Right) As a convolutional model,
training can be performed efficiently by computing the layer depthwise in parallel (i.e., one horizontal slice at a
time (ut)t∈[L], (yt)t∈[L], . . .), by convolving with a particular filter.

(differential equations), while handling very long sequences in a computationally efficient way.
Several recent works have turned to this question. These include the CKConv, which models a
continuous convolution kernel [44]; several ODE-inspired RNNs, such as the UnICORNN [47]; the
LMU, which speeds up a specific linear recurrence using convolutions [12, 58]; and HiPPO [24], a
generalization of the LMU that introduces a theoretical framework for continuous-time memorization.
However, these model families come at the price of reduced expressivity: intuitively, a family that is
both convolutional and recurrent should be more restrictive than either.

Our first goal is to construct an expressive model family that combines all 3 paradigms while
preserving their strengths. The Linear State-Space Layer (LSSL) is a simple sequence model that
maps a 1-dimensional function or sequence u(t) ↦→ y(t) through an implicit state x(t) by simulating
a linear continuous-time state-space representation in discrete-time

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) +Du(t), (2)

where A controls the evolution of the system and B,C,D are projection parameters. The LSSL can
be viewed as an instantiation of each family, inheriting their strengths (Fig. 1):

• LSSLs are recurrent. If a discrete step-size ∆t is specified, the LSSL can be discretized
into a linear recurrence using standard techniques, and simulated during inference as a
stateful recurrent model with constant memory and computation per time step.

• LSSLs are convolutional. The linear time-invariant systems defined by (1)+(2) are known
to be explicitly representable as a continuous convolution. Moreover, the discrete-time
version can be parallelized during training using convolutions [12, 44].

• LSSLs are continuous-time. The LSSL itself is a differential equation. As such, it can
perform unique applications of continuous-time models, such as simulating continuous
processes, handling missing data [45], and adapting to different timescales.

Surprisingly, we show that LSSLs do not sacrifice expressivity, and in fact generalize convolutions
and RNNs. First, classical results from control theory imply that all 1-D convolutional kernels can
be approximated by an LSSL [59]. Additionally, we provide two results relating RNNs and ODEs

2

that may be of broader interest, e.g. showing that some RNN architectural heuristics (such as gating
mechanisms) are related to the step-size ∆t and can actually be derived from ODE approximations.
As corollaries of these results, we show that popular RNN methods are special cases of LSSLs.

The generality of LSSLs does come with tradeoffs. In particular, we describe and address two
challenges that naive LSSL instantiations face when handling long sequences: (i) they inherit the
limitations of both RNNs and CNNs at remembering long dependencies, and (ii) choosing the state
matrix A and timescale ∆t appropriately are critical to their performance, yet learning them is
computationally infeasible. We simultaneously address these challenges by specializing LSSLs using
a carefully chosen class of structured matrices A, such that (i) these matrices generalize prior work
on continuous-time memory [24] and mathematically capture long dependencies with respect to a
learnable family of measures, and (ii) with new algorithms, LSSLs with these matrices A can be
theoretically sped up under certain computation models, even while learning the measure A and
timescale ∆t.

We empirically validate that LSSLs are widely effective on benchmark datasets and very long time
series from healthcare sensor data, images, and speech.

• On benchmark datasets, LSSLs obtain SoTA over recent RNN, CNN, and NDE-based methods
across sequential image classification tasks (e.g., by over 10% accuracy on sequential CIFAR) and
healthcare regression tasks with length-4000 time series (by up to 80% reduction in RMSE).

• To showcase the potential of LSSLs to unlock applications with extremely long sequences, we
introduce a new sequential CelebA classification task with length-38000 sequences. A small LSSL
comes within 2.16 accuracy points of a specialized ResNet-18 vision architecture that has 10x more
parameters and is trained directly on images.

• Finally, we test LSSLs on a difficult dataset of high-resolution speech clips, where usual speech
pipelines pre-process the signals to reduce the length by 100x. When training on the raw length-
16000 signals, the LSSL not only (i) outperforms previous methods by over 20 accuracy points
in 1/5 the training time, but (ii) outperforms all baselines that use the pre-processed length-160
sequences, overcoming the limitations of hand-crafted feature engineering.

Summary of Contributions

• We introduce Linear State-Space Layers (LSSLs), a simple sequence-to-sequence transformation
that shares the modeling advantages of recurrent, convolutional, and continuous-time methods.
Conversely, we show that RNNs and CNNs can be seen as special cases of LSSLs (Section 3).

• We prove that a structured subclass of LSSLs can learn representations that solve continuous-time
memorization, allowing it to adapt its measure and timescale (Section 4.1). We also provide new
algorithms for these LSSLs, showing that they can be sped up computationally under an arithmetic
complexity model Section 4.2.

• Empirically, we show that LSSLs stacked into a deep neural network are widely effective on time
series data, even (or especially) on extremely long sequences (Section 5).

2 Technical Background

We summarize the preliminaries on differential equations that are necessary for this work. We first
introduce two standard approximation schemes for differential equations that we will use to convert
continuous-time models to discrete-time, and will be used in our results on understanding RNNs. We
give further context on the step size or timescale ∆t, which is a particularly important parameter
involved in this approximation process. Finally, we provide a summary of the HiPPO framework for
continuous-time memorization [24], which will give us a mathematical tool for constructing LSSLs
that can address long-term dependencies.

Approximations of differential equations. Any differential equation ẋ(t) = f(t, x(t)) has an
equivalent integral equation x(t) = x(t0) +

∫︁ t

t0
f(s, x(s)) ds. This can be numerically solved by

storing some approximation for x, and keeping it fixed inside f(t, x) while iterating the equation.
For example, Picard iteration is often used to prove the existence of solutions to ODEs by iterating

3

the equation xi+1(t) := xi(t0) +
∫︁ t

t0
f(s, xi(s)) ds . In other words, it finds a sequence of functions

x0(t), x1(t), . . . that approximate the solution x(t) of the integral equation.

Discretization. On the other hand, for a desired sequence of discrete times ti, approximations
to x(t0), x(t1), . . . can be found by iterating the equation x(ti+1) = x(ti) +

∫︁ ti+1

ti
f(s, x(s)) ds.

Different ways of approximating the RHS integral lead to different discretization schemes. We single
out a discretization method called the generalized bilinear transform (GBT) which is specialized
to linear ODEs of the form (1). Given a step size ∆t, the GBT update is

x(t+∆t) = (I − α∆t ·A)−1(I + (1− α)∆t ·A)x(t) + ∆t(I − α∆t ·A)−1B · u(t). (3)

Three important cases are: α = 0 becomes the classic Euler method which is simply the first-order
approximation x(t + ∆t) = x(t) + ∆t · x′(t); α = 1 is called the backward Euler method; and
α = 1

2 is called the bilinear method, which preserves the stability of the system [61].

In Section 3.2 we will show that the backward Euler method and Picard iteration are actually related
to RNNs. On the other hand, the bilinear discretization will be our main method for computing
accurate discrete-time approximations of our continuous-time models. In particular, define A and B
to be the matrices appearing in (3) for α = 1

2 . Then the discrete-time state-space model is

xt = Axt−1 +But (4)
yt = Cxt +Dut. (5)

∆t as a timescale. In most models, the length of dependencies they can capture is roughly pro-
portional to 1

∆t . Thus we also refer to the step size ∆t as a timescale. This is an intrinsic part
of converting a continuous-time ODE into a discrete-time recurrence, and most ODE-based RNN
models have it as an important and non-trainable hyperparameter [24, 47, 58]. On the other hand,
in Section 3.2 we show that the gating mechanism of classical RNNs is a version of learning ∆t.
Moreover when viewed as a CNN, the timescale ∆t can be viewed as controlling the width of
the convolution kernel (Section 3.2). Ideally, all ODE-based sequence models would be able to
automatically learn the proper timescales.

Continuous-time memory. Consider an input function u(t), a fixed probability measure ω(t), and
a sequence of N basis functions such as polynomials. At every time t, the history of u before time t
can be projected onto this basis, which yields a vector of coefficients x(t) ∈ RN that represents an
optimal approximation of the history of u with respect to the provided measure ω. The map taking
the function u(t) ∈ R to coefficients x(t) ∈ RN is called the High-Order Polynomial Projection
Operator (HiPPO) with respect to the measure ω. In special cases such as the uniform measure
ω = I{[0, 1]} and the exponentially-decaying measure ω(t) = exp(−t), Gu et al. [24] showed that
x(t) satisfies a differential equation ẋ(t) = A(t)x(t) +B(t)u(t) (i.e., (1)) and derived closed forms
for the matrix A. Their framework provides a principled way to design memory models handling
long dependencies; however, they prove only these few special cases.

3 Linear State-Space Layers (LSSL)

We define our main abstraction, a model family that generalizes recurrence and convolutions. Sec-
tion 3.1 first formally defines the LSSL, then discusses how to compute it with multiple views.
Conversely, Section 3.2 shows that LSSLs are related to mechanisms of the most popular RNNs.

3.1 Different Views of the LSSL

Given a fixed state space representation A,B,C,D, an LSSL is the sequence-to-sequence mapping
defined by discretizing the linear state-space model (1) and (2).

Concretely, an LSSL layer has parameters A,B,C,D, and ∆t. It operates on an input u ∈ RL×H

representing a sequence of length L where each timestep has an H-dimensional feature vector. Each
feature h ∈ [H] defines a sequence (u(h)

t)t∈[L], which is combined with a timescale ∆th to define an
output y(h) ∈ RL via the discretized state-space model (4)+(5).

Computationally, the discrete-time LSSL can be viewed in multiple ways (Fig. 1).

4

As a recurrence. The recurrent state xt−1 ∈ RH×N carries the context of all inputs before time t.
The current state xt and output yt can be computed by simply following equations (4)+(5). Thus the
LSSL is a recurrent model with efficient and stateful inference, which can consume a (potentially
unbounded) sequence of inputs while requiring fixed computation/storage per time step.

As a convolution. For simplicity let the initial state be x−1 = 0. Then (4)+(5) explicitly yields

yk = C
(︁
A
)︁k

Bu0 + C
(︁
A
)︁k−1

Bu1 + · · ·+ CABuk−1 +Buk +Duk. (6)

Then y is simply the (non-circular) convolution y = KL(A,B,C) ∗ u+Du, where

KL(A,B,C) =
(︁
CAiB

)︁
i∈[L]

∈ RL = (CB,CAB, . . . , CAL−1B). (7)

Thus the LSSL can be viewed as a convolutional model where the entire output y ∈ RH×L can be
computed at once by a convolution, which can be efficiently implemented with three FFTs.

The computational bottleneck. We make a note that the bottleneck of (i) the recurrence view is
matrix-vector multiplication (MVM) by the discretized state matrix A when simulating (4), and
(ii) the convolutional view is computing the Krylov function KL (7). Throughout this section we
assumed the LSSL parameters were fixed, which means that A and KL(A,B,C) can be cached for
efficiency. However, learning the parameters A and ∆t would involve repeatedly re-computing these,
which is infeasible in practice. We revisit and solve this problem in Section 4.2.

3.2 Expressivity of LSSLs

For a model to be both recurrent and convolutional, one might expect it to be limited in other ways.
Indeed, while [12, 44] also observe that certain recurrences can be replaced with a convolution, they
note that it is not obvious if convolutions can be replaced by recurrences. Moreover, while the LSSL
is a linear recurrence, popular RNN models are nonlinear sequence models with activation functions
between each time step. We now show that LSSLs surprisingly do not have limited expressivity.

Convolutions are LSSLs. A well-known fact about state-space systems (1)+(2) is that the output
y is related to the input u by a convolution y(t) =

∫︁
h(τ)u(t − τ)dτ with the impulse response h

of the system. Conversely, a convolutional filter h that is a rational function of degree N can be
represented by a state-space model of size N [59]. Thus, an arbitrary convolutional filter h can be
approximated by a rational function (e.g., by Padé approximants) and represented by an LSSL.

In the particular case of LSSLs with HiPPO matrices (Sections 2 and 4.1), there is another intuitive
interpretation of how LSSL relate to convolutions. Consider the special case when A corresponds to
a uniform measure (in the literature known as the LMU [58] or HiPPO-LegT [24] matrix). Then for a
fixed dt, equation (1) is simply memorizing the input within sliding windows of 1

∆t elements, and
equation (2) extracts features from this window. Thus the LSSL can be interpreted as automatically
learning convolution filters with a learnable kernel width.

RNNs are LSSLs. We show two results about RNNs that may be of broader interest. Our first
result says that the ubiquitous gating mechanism of RNNs, commonly perceived as a heuristic to
smooth optimization [28], is actually the analog of a step size or timescale ∆t.
Lemma 3.1. A (1-D) gated recurrence xt = (1 − σ(z))xt−1 + σ(z)ut, where σ is the sigmoid
function and z is an arbitrary expression, can be viewed as the GBT(α = 1) (i.e., backwards-Euler)
discretization of a 1-D linear ODE ẋ(t) = −x(t) + u(t).

Proof. Applying a discretization requires a positive step size ∆t. The simplest way to parameter-
ize a positive function is via the exponential function ∆t = exp(z) applied to any expression z.
Substituting this into (3) with A = −1, B = 1, α = 1 exactly produces the gated recurrence.

While Lemma 3.1 involves approximating continuous systems using discretization, the second result
is about approximating them using Picard iteration (Section 2). Roughly speaking, each layer of
a deep linear RNN can be viewed as successive Picard iterates x0(t), x1(t), ... approximating a
function x(t) defined by a non-linear ODE. This shows that we do not lose modeling power by using

5

linear instead of non-linear recurrences, and that the nonlinearity can instead be “moved” to the depth
direction of deep neural networks to improve speed without sacrificing expressivity.
Lemma 3.2. (Infinitely) deep stacked LSSL layers of order N = 1 with position-wise non-linear
functions can approximate any non-linear ODE ẋ(t) = −x+ f(t, x(t)).

We note that many of the most popular and effective RNN variants such as the LSTM [28], GRU [14],
QRNN [5], and SRU [33], involve a hidden state xt ∈ RH that involves independently “gating”
the H hidden units. Applying Lemma 3.1, they actually also approximate an ODE of the form in
Lemma 3.2. Thus LSSLs and these popular RNN models can be seen to all approximate the same
type of underlying continuous dynamics, by using Picard approximations in the depth direction and
discretization (gates) in the time direction. Appendix C gives precise statements and proofs.

3.3 Deep LSSLs

The basic LSSL is defined as a sequence-to-sequence map from R
L → R

L on 1D sequences of
length L, parameterized by parameters A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , D ∈ R1×1,∆t ∈ R.
Given an input sequence with hidden dimension H (in other words a feature dimension greater than 1),
we simply broadcast the parameters B,C,D,∆t with an extra dimension H . Each of these H copies
is learned independently, so that there are H different versions of a 1D LSSL processing each of the
input features independently. Overall, the standalone LSSL layer is a sequence-to-sequence map with
the same interface as standard sequence model layers such as RNNs, CNNs, and Transformers.

The full LSSL architecture in a deep neural network is defined similarly to standard sequence
models such as deep ResNets and Transformers, involving stacking LSSL layers connected with
normalization layers and residual connections. Full architecture details are described in Appendix B,
including the initialization of A and ∆t, computational details, and other architectural details.

4 Combining LSSLs with Continuous-time Memorization

In Section 3 we introduced the LSSL model and showed that it shares the strengths of convolutions
and recurrences while also generalizing them. We now discuss and address its main limitations, in
particular handling long dependencies (Section 4.1) and efficient computation (Section 4.2).

4.1 Incorporating Long Dependencies into LSSLs

The generality of LSSLs means they can inherit the issues of recurrences and convolutions at address-
ing long dependencies (Section 1). For example, viewed as a recurrence, repeated multiplication by
A could suffer from the vanishing gradients problem [39, 44]. We confirm empirically that LSSLs
with random state matrices A are actually not effective (Section 5.4) as a generic sequence model.

However, one advantage of these mathematical continuous-time models is that they are theoretically
analyzable, and specific A matrices can be derived to address this issue. In particular, the HiPPO
framework (Section 2) describes how to memorize a function in continuous time with respect to a
measure ω [24]. This operator mapping a function to a continuous representation of its past is denoted
hippo(ω), and was shown to have the form of equation (1) in three special cases. However, these
matrices are non-trainable in the sense that no other A matrices were known to be hippo operators.

To address this, we theoretically resolve the open question from [24], showing that hippo(ω) for any
measure ω 1 results in (1) with a structured matrix A.
Theorem 1 (Informal). For an arbitrary measure ω, the optimal memorization operator hippo(ω)
has the form ẋ(t) = Ax(t) +Bu(t) (1) for a low recurrence-width (LRW) [17] state matrix A.

For measures covering the classical orthogonal polynomials (OPs) [52] (in particular, corresponding
to Jacobi and Laguerre polynomials), there is even more structure.
Corollary 4.1. For ω corresponding to the classical OPs, hippo(ω) is 3-quasiseparable.

Although beyond the scope of this section, we mention that LRW matrices are a type of structured
matrix that have linear MVM [17]. In Appendix D we define this class and prove Theorem 1. Quasi-

1To be precise, the measures that correspond to orthogonal polynomials [52].

6

separable matrices are a related class of structured matrices with additional algorithmic properties.
We define these matrices in Definition 4 and prove Corollary 4.1 in Appendix D.3.

Theorem 1 tells us that a LSSL that uses a state matrix A within a particular class of structured
matrices would carry the theoretical interpretation of continuous-time memorization. Ideally, we
would be able to automatically learn the best A within this class; however, this runs into computational
challenges which we address next (Section 4.2). For now, we define the LSSL-fixed or LSSL-f to be
one where the A matrix is fixed to one of the HiPPO matrices prescribed by [24].

4.2 Theoretically Efficient Algorithms for the LSSL

Although A and ∆t are the most critical parameters of an LSSL which govern the state-space (c.f.
Section 4.1) and timescale (Sections 2 and 3.2), they are not feasible to train in a naive LSSL. In
particular, Section 3.1 noted that it would require efficient matrix-vector multiplication (MVM) and
Krylov function (7) for A to compute the recurrent and convolutional views, respectively. However,
the former seems to involve a matrix inversion (3), while the latter seems to require powering A up L
times.

In this section, we show that the same restriction of A to the class of quasiseparable (Corollary 4.1),
which gives an LSSL the ability to theoretically remember long dependencies, simultaneously grants
it computational efficiency.

First of all, it is known that quasiseparable matrices have efficient (linear-time) MVM [40]. We show
that they also have fast Krylov functions, allowing efficient training with convolutions.

Theorem 2. For any k-quasiseparable matrix A (with constant k) and arbitrary B,C, the Krylov
function KL(A,B,C) can be computed in quasi-linear time and space Õ(N + L) and logarithmic
depth (i.e., is parallelizable). The operation count is in an exact arithmetic model, not accounting for
bit complexity or numerical stability.

We remark that Theorem 2 is non-obvious. To illustrate, it is easy to see that unrolling (7) for a general
matrix A takes time LN2. Even if A is extremely structured with linear computation, it requires LN
operations and linear depth. The depth can be reduced with the squaring technique (batch multiply by
A,A2, A4, . . .), but this then requires LN intermediate storage. In fact, the algorithm for Theorem 2
is quite sophisticated (Appendix E) and involves a divide-and-conquer recursion over matrices of
polynomials, using the observation that (7) is related to the power series C(I −Ax)−1B .

Unless specified otherwise, the full LSSL refers to an LSSL with A satisfying Corollary 4.1. In
conclusion, learning within this structured matrix family simultaneously endows LSSLs with long-
range memory through Theorem 1 and is theoretically computationally feasible through Theorem 2.
We note the caveat that Theorem 2 is over exact arithmetic and not floating point numbers, and thus
is treated more as a proof of concept that LSSLs can be computationally efficient in theory. We
comment more on the limitations of the LSSL in Section 6.

5 Empirical Evaluation

We test LSSLs empirically on a range of time series datasets with sequences from length 160 up to
38000 (Sections 5.1 and 5.2), where they substantially improve over prior work. We additionally
validate the computational and modeling benefits of LSSLs from generalizing all three main model
families (Section 5.3), and analyze the benefits of incorporating principled memory representations
that can be learned (Section 5.4).

Baselines. Our tasks have extensive prior work and we evaluate against previously reported best
results. We highlight our primary baselines, three very recent works explicitly designed for long
sequences: CKConv (a continuous-time CNN) [44], UnICORNN (an ODE-inspired RNN) [47], and
Neural Controlled/Rough Differential Equations (NCDE/NRDE) (a sophisticated NDE) [31, 37].
These are the only models we are aware of that have experimented with sequences of length >10k.

5.1 Image and Time Series Benchmarks

7

Table 1: (Pixel-by-pixel image classification.)
(Top) our methods. (Middle) recurrent baselines.
(Bottom) convolutional + other baselines.

Model sMNIST pMNIST sCIFAR

LSSL 99.53 98.76 84.65
LSSL-fixed 99.50 98.60 81.97

LipschitzRNN 99.4 96.3 64.2
LMUFFT [12] - 98.49 -
UNIcoRNN [47] - 98.4 -
HiPPO-RNN [24] 98.9 98.3 61.1
URGRU [25] 99.27 96.51 74.4
IndRNN [34] 99.0 96.0 -
Dilated RNN [8] 98.0 96.1 -
r-LSTM [56] 98.4 95.2 72.2

CKConv [44] 99.32 98.54 63.74
TrellisNet [4] 99.20 98.13 73.42
TCN [3] 99.0 97.2 -
Transformer [56] 98.9 97.9 62.2

Table 2: (Vital signs prediction.) RMSE for pre-
dicting respiratory rate (RR), heart rate (HR), and
blood oxygen (SpO2). * indicates our own runs to
complete results for the strongest baselines.

Model RR HR SpO2

LSSL 0.350 0.432 0.141
LSSL-fixed 0.378 0.561 0.221

UnICORNN [47] 1.06 1.39 0.869*
coRNN [47] 1.45 1.81 -
CKConv 1.214* 2.05* 1.051*
NRDE [37] 1.49 2.97 1.29
IndRNN [47] 1.47 2.1 -
expRNN [47] 1.57 1.87 -
LSTM 2.28 10.7 -
Transformer 2.61* 12.2* 3.02*

XGBoost [55] 1.67 4.72 1.52
Random Forest [55] 1.85 5.69 1.74
Ridge Regress. [55] 3.86 17.3 4.16

Table 3: (Sequential
CelebA Classification.)

LSSL-f ResNet

Att. 78.89 81.35
MSO 92.36 93.92
Smil. 90.95 92.89
WL 90.57 93.25

We test on the sequential MNIST, permuted MNIST, and sequential CI-
FAR tasks (Table 1), popular benchmarks which were originally designed
to test the ability of recurrent models to capture long-term dependencies
of length up to 1k [2]. LSSL sets SoTA on sCIFAR by more than 10
points. We note that all results were achieved with at least 5x fewer
parameters than the previous SoTA (Appendix F).

We additionally use the BDIMC healthcare datasets (Table 2), a suite
of widely studied time series regression problems of length 4000 on
estimating vital signs. LSSL reduces RMSE by more than two-thirds on all datasets.

5.2 Speech and Image Classification for Very Long Time Series

Raw speech is challenging for ML models due to high-frequency sampling resulting in very long
sequences. Traditional systems involve complex pipelines that require feeding mixed-and-matched
hand-crafted features into DNNs [42]. Table 4 reports results for the Speech Commands (SC)
dataset [31] for classification of 1-second audio clips. Few methods have made progress on the raw
speech signal, instead requiring pre-processing with standard mel-frequency cepstrum coefficients
(MFCC). By contrast, LSSL sets SoTA on this dataset while training on the raw signal. We note
that MFCC extracts sliding window frequency coefficients and thus is related to the coefficients
x(t) defined by LSSL-f (Section 2, Section 4.1, [24], Appendix D). Consequently, LSSL may be
interpreted as automatically learning MFCC-type features in a trainable basis.

To stress-test the LSSL’s ability to handle extremely long sequences, we create a challenging new
sequential-CelebA task, where we classify 178× 218 images = 38000-length sequences for 4 facial
attributes: Attractive (Att.), Mouth Slightly Open (MSO), Smiling (Smil.), Wearing Lipstick (WL)
[36]. We chose the 4 most class-balanced attributes to avoid well-known problems with class
imbalance. LSSL-f comes close to matching the performance of a specialized ResNet-18 image
classification architecture that has 10× the parameters (Table 3). We emphasize we are the first to
demonstrate that this is possible to do with a generic sequence model.

5.3 Advantages of Recurrent, Convolutional, and Continuous-time Models

We validate that the generality of LSSLs endows it with the strengths of all three families.

Convergence Speed. As a recurrent and NDE model that incorporates new theory for continuous-
time memory (Section 4.1), the LSSL has strong inductive bias for sequential data, and converges
rapidly to SoTA results on our benchmarks. With its convolutional view, training can be parallelized
and it is also computationally efficient in practice. Table 5 compares the time it takes the LSSL-f to

8

Table 4: (Raw Speech Classification; Timescale Shift.) (Top): Raw signals (length 16000); 1 → f indicates
test-time change in sampling rate by a factor of f . (Bottom): Pre-processed MFCC features used in prior work
(length 161). ✗ denotes computationally infeasible.

LSSL LSSL-f CKConv UnICORNN N(C/R)DE ODE-RNN [45] GRU-ODE [16]

1 → 1 95.87 90.64 71.66 11.02 16.49 ✗ ✗
1 → 1

2
88.66 78.01 65.96 11.07 15.12 ✗ ✗

MFCC 93.58 92.55 95.3 90.64 89.8 65.9 47.9

Table 5: (Modeling and Computational Benefits of LSSLs.) In each benchmark category, we compare the
number of epochs (ep.) it takes a LSSL-f to reach the previous SoTA (PSoTA) results as well as a near-SoTA
target. We also report the wall clock time it took to reach PSoTA relative to the previous best model.

Permuted MNIST BDIMC Heart Rate Speech Commands RAW

98% Acc. PSoTA Time 1.5 RMSE PSoTA Time 65% Acc. PSoTA Time

LSSL-fixed 16 ep. 104 ep. 0.19× 9 ep. 10 ep. 0.07× 9 ep. 10 ep. 0.14×
CKConv 118 ep. 200 ep. 1.0× ✗ ✗ ✗ 188 ep. 280 ep. 1.0×
UnICORNN 75 ep. ✗ ✗ 116 ep. 467 ep. 1.0× ✗ ✗ ✗

achieve SoTA, in either sample (measured by epochs) or computational (measured by wall clock)
complexity. In all cases, LSSLs reached the target in a fraction of the time of the previous model.

Timescale Adaptation. Table 4 also reports the results of continuous-time models that are able to
handle unique settings such as missing data in time series, or test-time shift in timescale (we note
that this is a realistic problem, e.g., when deployed healthcare models are tested on EEG signals
that are sampled at a different rate [48, 49]). We note that many of these baselines were custom
designed for such settings, which is of independent interest. On the other hand, LSSLs perform
timescale adaptation by simply changing its ∆t values at inference time, while still outperforming the
performance of prior methods with no shift. Additional results on the CharacterTrajectories dataset
from prior work [31, 44] are in Appendix F, where LSSL is competitive with the best baselines.

5.4 LSSL Ablations: Learning the Memory Dynamics and Timescale

We demonstrate that the ∆t and A parameters, which LSSLs are able to automatically learn in
contrast to prior work, are indeed critical to the performance of these continuous-time models. We
note that learning ∆t adds only O(H) parameters and learning A adds O(N) parameters, adding
less than 1% parameter count compared to the base models with O(HN) parameters.

Memory dynamics A. We validate that vanilla LSSLs suffer from the modeling issues described in
Section 4. We tested that LSSLs with random A matrices (normalized appropriately) perform very
poorly (e.g., 62% on pMNIST). Further, we note the consistent increase in performance from LSSL-f
to LSSL despite the negligible parameter difference. These ablations show that (i) incorporating the
theory of Theorem 1 is actually necessary for LSSLs, and (ii) further training the structured A is
additionally helpful, which can be interpreted as learning the measure for memorization (Section 4.1).

Timescale ∆t. Section 3.2 showed that LSSL’s ability to learn ∆t is its direct generalization of the
critical gating mechanism of popular RNNs, which previous ODE-based RNN models [12, 24, 47, 58]
cannot learn. We note that on sCIFAR, LSSL-f with poorly-specified ∆t gets only 49.3% accuracy.
Additional results in Appendix F show that learning ∆t alone provides an orthogonal boost to learning
A, and visualizes the noticeable change in ∆t over the course of training.

6 Discussion

In this work we introduced a simple and principled model (LSSL) inspired by a fundamental
representation of physical systems. We showed theoretically and empirically that it generalizes and
inherits the strengths of the main families of modern time series models, that its main limitations of
long-term memory can be resolved with new theory on continuous-time memorization, and that it is
empirically effective on difficult tasks with very long sequences.

9

Related work. The LSSL is related to several rich lines of work on recurrent, convolutional, and
continuous-time models, as well as sequence models addressing long dependencies. Appendix A
provides an extended related work connecting these topics.

Tuning. Our models are very simple, consisting of identical L(inear)SSL layers with simple position-
wise non-linear modules between layers (Appendix B). Our models were able to train at much higher
learning rates than baselines and were not sensitive to hyperparameters, of which we did light tuning
primarily on learning rate and dropout. In contrast to previous baselines [4, 31, 44], we did not use
hyperparameters for improving stability and regularization such as weight decay, gradient clipping,
weight norm, input dropout, etc. While the most competitive recent works introduce at least one
hyperparameter of critical importance (e.g. depth and step size [37], α and ∆t [47], ω0 [44]) that are
difficult to tune, the LSSL-fixed has only ∆t, which the full LSSL can even learn automatically (at
the expense of speed).

Limitations. Sections 1 and 3 and Fig. 1 mention that a potential benefit of having the recurrent
representation of LSSLs may endow it with efficient inference. While this is theoretically possible,
this work did not experiment on any applications that leverage this. Follow-up work showed that it is
indeed possible in practice to speed up some applications at inference time.

Theorem 2’s algorithm is sophisticated (Appendix D) and was not implemented in the first version of
this work. A follow-up to this paper found that it is not numerically stable and thus not usable on
hardware. Thus the algorithmic contributions in Theorem 2 serve the purpose of a proof-of-concept
that fast algorithms for the LSSL do exist in other computation models (i.e., arithmetic operations
instead of floating point operations), and leave an open question as to whether fast, numerically stable,
and practical algorithms for the LSSL exist.

As described in Appendix B, by freezing the A matrix and ∆t timescale, the LSSL-fixed is able to be
computed much faster than the full LSSL, and is comparable to prior models in practice (Table 5).
However, beyond computational complexity, there is also a consideration of space efficiency. Both
the LSSL and LSSL-fixed suffer from a large amount of space overhead (described in Appendix B) –
using O(NL) instead of O(L) space when working on a 1D sequence of length L – that essentially
stems from using the latent state representation of dimension N . Consequently, the LSSL can be
space inefficient and we used multi-GPU training for our largest experiments (speech and high
resolution images, Tables 3 and 4).

These fundamental issues with computation and space complexity were revisited and resolved in
follow-up work to this paper, where a new state space model (the Structured State Space) provided a
new parameterization and algorithms for state spaces.

Conclusion and future work. Modern deep learning models struggle in applications with very long
temporal data such as speech, videos, and medical time-series. We hope that our conceptual and
technical contributions can lead to new capabilities with simple, principled, and less engineered
models. We note that our pixel-level image classification experiments, which use no heuristics (batch
norm, auxiliary losses) or extra information (data augmentation), perform similar to early convnet
models with vastly more parameters, and is in the spirit of recent attempts at unifying data modalities
with a generic sequence model [18]. Our speech results demonstrate the possibility of learning
better features than hand-crafted processing pipelines used widely in speech applications. We are
excited about potential downstream applications, such as training other downstream models on top of
pre-trained state space features.

Acknowledgments

We thank Arjun Desai, Ananya Kumar, Laurel Orr, Sabri Eyuboglu, Dan Fu, Mayee Chen, Sarah
Hooper, Simran Arora, and Trenton Chang for helpful feedback on earlier drafts. We thank David
Romero and James Morrill for discussions and additional results for baselines used in our experiments.
This work was done with the support of Google Cloud credits under HAI proposals 540994170283
and 578192719349. AR and IJ are supported under NSF grant CCF-1763481. KS is supported by the
Wu Tsai Neuroscience Interdisciplinary Graduate Fellowship. We gratefully acknowledge the support
of NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315 (Beyond Sparsity),
CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR under No. N000141712266
(Unifying Weak Supervision); ONR N00014-20-1-2480: Understanding and Applying Non-Euclidean
Geometry in Machine Learning; N000142012275 (NEPTUNE); the Moore Foundation, NXP, Xilinx,

10

LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson,
Qualcomm, Analog Devices, the Okawa Foundation, American Family Insurance, Google Cloud,
Salesforce, Total, the HAI-AWS Cloud Credits for Research program, the Stanford Data Science
Initiative (SDSI), and members of the Stanford DAWN project: Facebook, Google, and VMWare. The
Mobilize Center is a Biomedical Technology Resource Center, funded by the NIH National Institute
of Biomedical Imaging and Bioengineering through Grant P41EB027060. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views, policies, or endorsements,
either expressed or implied, of NIH, ONR, or the U.S. Government.

References
[1] George B. (George Brown) Arfken, Hans Jürgen Weber, and Frank E Harris. Mathematical

methods for physicists : a comprehensive guide / George B. Arfken, Hans J. Weber, Frank E.
Harris. Academic Press, Amsterdam, 7th ed. edition, 2013. ISBN 0-12-384654-4.

[2] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In The International Conference on Machine Learning (ICML), pages 1120–1128, 2016.

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trellis networks for sequence modeling. In The
International Conference on Learning Representations (ICLR), 2019.

[5] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural
networks. arXiv preprint arXiv:1611.01576, 2016.

[6] John Charles Butcher and Nicolette Goodwin. Numerical methods for ordinary differential
equations, volume 2. Wiley Online Library, 2008.

[7] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical system
view on recurrent neural networks. In International Conference on Learning Representations,
2019.

[8] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[9] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):1–12,
2018.

[10] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

[11] T. S. Chihara. An introduction to orthogonal polynomials. Dover Books on Mathematics. Dover
Publications, 2011. ISBN 9780486479293.

[12] Narsimha Chilkuri and Chris Eliasmith. Parallelizing legendre memory unit training. The
International Conference on Machine Learning (ICML), 2021.

[13] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258,
2017.

[14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

11

[15] Jared Quincy Davis, Albert Gu, Tri Dao, Krzysztof Choromanski, Christopher Ré, Percy Liang,
and Chelsea Finn. Catformer: Designing stable transformers via sensitivity analysis. In The
International Conference on Machine Learning (ICML), 2021.

[16] Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[17] Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-
pronged progress in structured dense matrix vector multiplication. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1060–1079. SIAM,
2018.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[19] Y. Eidelman and I. Gohberg. On a new class of structured matrices. Integral Equations and
Operator Theory, 34, 1999.

[20] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. In International Conference on Learning
Representations, 2021.

[21] Karl J Friston, Lee Harrison, and Will Penny. Dynamic causal modelling. Neuroimage, 19(4):
1273–1302, 2003.

[22] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous
time recurrent neural networks. Neural networks, 6(6):801–806, 1993.

[23] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2013.

[24] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent
memory with optimal polynomial projections. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.
cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html.

[25] Albert Gu, Caglar Gulcehre, Tom Le Paine, Matt Hoffman, and Razvan Pascanu. Improving the
gating mechanism of recurrent neural networks. In The International Conference on Machine
Learning (ICML), 2020.

[26] Ramin Hasani, Mathias Lechner, Alexander Amini, Lucas Liebenwein, Max Tschaikowski,
Gerald Teschl, and Daniela Rus. Closed-form continuous-depth models. arXiv preprint
arXiv:2106.13898, 2021.

[27] Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid
time-constant networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[29] Ian D Jordan, Piotr Aleksander Sokół, and Il Memming Park. Gated recurrent units viewed
through the lens of continuous time dynamical systems. Frontiers in computational neuroscience,
page 67, 2021.

[30] Anil Kag, Ziming Zhang, and Venkatesh Saligrama. Rnns incrementally evolving on an
equilibrium manifold: A panacea for vanishing and exploding gradients? In International
Conference on Learning Representations, 2020.

[31] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. arXiv preprint arXiv:2005.08926, 2020.

12

https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html

[32] Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled
time series. arXiv preprint arXiv:2006.04418, 2020.

[33] Tao Lei, Yu Zhang, Sida I Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly
parallelizable recurrence. arXiv preprint arXiv:1709.02755, 2017.

[34] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural
network (IndRNN): Building a longer and deeper RNN. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5457–5466, 2018.

[35] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the
difficulty of training transformers. The International Conference on Machine Learning (ICML),
2020.

[36] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In ICCV, pages 3730–3738. IEEE Computer Society, 2015. ISBN 978-1-4673-8391-2.
URL http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#LiuLWT15.

[37] James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, and Terry Lyons. Neural rough
differential equations for long time series. The International Conference on Machine Learning
(ICML), 2021.

[38] Murphy Yuezhen Niu, Lior Horesh, and Isaac Chuang. Recurrent neural networks in the eye of
differential equations. arXiv preprint arXiv:1904.12933, 2019.

[39] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–1318, 2013.

[40] Clément Pernet. Computing with quasiseparable matrices. In Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, pages 389–396, 2016.

[41] KB Petersen and MS Pedersen. The matrix cookbook, version 20121115. Technical Univ.
Denmark, Kongens Lyngby, Denmark, Tech. Rep, 3274, 2012.

[42] M. Ravanelli, T. Parcollet, and Y. Bengio. The pytorch-kaldi speech recognition toolkit. In In
Proc. of ICASSP, 2019.

[43] David W Romero, Robert-Jan Bruintjes, Jakub M Tomczak, Erik J Bekkers, Mark Hoogendoorn,
and Jan C van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel
sizes. arXiv preprint arXiv:2110.08059, 2021.

[44] David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn.
Ckconv: Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611,
2021.

[45] Yulia Rubanova, Tian Qi Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In Advances in Neural Information Processing Systems,
pages 5321–5331, 2019.

[46] T. Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network
(cornn): An accurate and (gradient) stable architecture for learning long time dependencies. In
International Conference on Learning Representations, 2021.

[47] T Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very
long time dependencies. The International Conference on Machine Learning (ICML), 2021.

[48] Khaled Saab, Jared Dunnmon, Christopher Ré, Daniel Rubin, and Christopher Lee-Messer.
Weak supervision as an efficient approach for automated seizure detection in electroencephalog-
raphy. NPJ Digital Medicine, 3(1):1–12, 2020.

[49] Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Meysam
Golmohammadi, Iyad Obeid, and Joseph Picone. The Temple University hospital seizure
detection corpus. Frontiers in neuroinformatics, 12:83, 2018.

13

http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#LiuLWT15

[50] Jie Shen, Tao Tang, and Li-Lian Wang. Orthogonal Polynomials and Related Approximation
Results, pages 47–140. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-
3-540-71041-7. doi: 10.1007/978-3-540-71041-7_3. URL https://doi.org/10.1007/
978-3-540-71041-7_3.

[51] Victor Shoup. A computational introduction to number theory and algebra. Cambridge
university press, 2009.

[52] G. Szegö. Orthogonal Polynomials. Number v.23 in American Mathematical Society colloquium
publications. American Mathematical Society, 1967. ISBN 9780821889527.

[53] G. Szegő. Orthogonal Polynomials. American Mathematical Society: Colloquium publications.
American Mathematical Society, 1975. ISBN 9780821810231.

[54] Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In The Interna-
tional Conference on Learning Representations (ICLR), 2018.

[55] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I Webb. Time series
extrinsic regression. Data Mining and Knowledge Discovery, pages 1–29, 2021. doi: https:
//doi.org/10.1007/s10618-021-00745-9.

[56] Trieu H Trinh, Andrew M Dai, Minh-Thang Luong, and Quoc V Le. Learning longer-term
dependencies in RNNs with auxiliary losses. In The International Conference on Machine
Learning (ICML), 2018.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2017.

[58] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time
representation in recurrent neural networks. In Advances in Neural Information Processing
Systems, pages 15544–15553, 2019.

[59] Robert L Williams, Douglas A Lawrence, et al. Linear state-space control systems. Wiley
Online Library, 2007.

[60] Max A Woodbury. Inverting modified matrices. Memorandum report, 42:106, 1950.

[61] Guofeng Zhang, Tongwen Chen, and Xiang Chen. Performance recovery in digital imple-
mentation of analogue systems. SIAM journal on control and optimization, 45(6):2207–2223,
2007.

[62] Huaguang Zhang, Zhanshan Wang, and Derong Liu. A comprehensive review of stability
analysis of continuous-time recurrent neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 25(7):1229–1262, 2014.

14

https://doi.org/10.1007/978-3-540-71041-7_3
https://doi.org/10.1007/978-3-540-71041-7_3

A Related Work

We provide an extended related work comparing the LSSL to previous recurrent, convolutional, and
continuous-time models.

HiPPO The LSSL is most closely related to the HiPPO framework for continuous-time memory
[24] and its predecessor, the Legendre Memory Unit (LMU) [58]. The HiPPO-RNN and the LMU
define dynamics of the form of equation (1), and incorporate it into an RNN architecture. A successor
to the LMU, the LMU-FFT [12] keeps the original linear dynamics, allowing the LMU to be computed
with a cached convolution kernel.

These methods all suffer from two main limitations. First, the state matrix A and discretization
timescale ∆t cannot be trained due to both limitations in theoretical understanding of which A
matrices are effective, as well as computational limitations. Second, (1) is a 1-D to N -D map,
requiring states to be projected back down to 1-D. This creates an overall 1-D bottleneck in the state,
limiting the expressivity of the model.

Compared to these, the LSSL does not use a conventional RNN architecture, instead keeping the
linear recurrence (4) and downprojecting it with the second part of the state space representation (5).
To avoid the 1-D feature bottlneck, it simply computes H copies of this 1-D to 1-D independently,
creating an overall H-dimensional sequence-to-sequence model. However, this exacerbates the
computational issue, since the work is increased by a factor of H .

This work resolves the expressivity issue with new theory. Compared to HiPPO and the LMU, LSSL
allows training the A matrix by showing generalized theoretical results for the HiPPO framework,
showing that there is a parameterized class of structured state spaces that are HiPPO operators.

The LSSL makes progress towards the second issue with new algorithms for these structured matrices
(Theorem 2). However, as noted in Sections 4.2 and 6, the algorithm presented in Theorem 2 was
later found to be not practical, and an improved representation and algorithm was found in subsequent
work.

Continuous-time CNNs. The CKConv is the only example of a continuous-time CNN that we
are aware of, and is perhaps the strongest baseline in our experiments. Rather than storing a finite
sequence of weights for a convolution kernel, the CKConv parameterizes it as an implicit function
from [0, 1] → R which allows sampling it at any resolution. A successor to the CKConv is the
FlexConv [43], which learns convolutional kernels with a flexible width. This is similar to the
convolution interpretation of LSSL when using certain HiPPO bases (Section 3.2).

Continuous-time RNNs. The connection from RNNs to continuous-time models have been known
since their inception, and recent years have seen an explosion of CT-RNN (continuous-time RNN)
models based on dynamical systems or ODEs. We briefly mention a few classic and modern works
along these lines, categorizing them into a few main topics.

First are theoretical works that analyze the expressivity of RNNs from a continuous-time perspective.
The connection between RNNs and dynamical systems has been studied since the 90s [22], fleshing
out the correspondence between different dynamical systems and RNN architectures [38]. Modern
treatments have focused on analyzing the stability [62] and dynamics [29] of RNNs.

Second, a large class of modern RNNs have been designed that aim to combat vanishing gradients
from a dynamical systems analysis. These include include the AntisymmetricRNN [7], iRNN [30],
and LipschitzRNN [20], which address the exploding/vanishing gradient problem by reparatermizing
the architecture or recurrent matrix based on insights from an underlying dynamical system.

Third is a class of models that are based on an explicit underlying ODE introduced to satisfy various
properties. This category includes the UnICORNN [47] and its predecessor coRNN [46] which
discretize a second-order ODE inspired by oscillatory systems. Other models include the Liquid Time-
Constant Networks (LTC) [27] and successor CfC [26], which use underlying dynamical systems with
varying time-constants with stable behavior and provable rates of expressivity measured by trajectory
length. The LTC is based on earlier dynamic causal models (DCM) [21], which are a particular ODE
related to state spaces with an extra bilinear term. Finally, the LMU [58] and HiPPO [24] also fall in
this category, whose underlying ODEs are mathematically derived for continuous-time memorization.

15

Fourth, the recent family of neural ODEs [10], originally introduced as continuous-depth models,
have been adapted to continuous-time, spawning a series of “ODE-RNN” models. Examples include
the ODE-RNN [45], GRU-ODE-Bayes [16], and ODE-LSTM [32], which extend adjoint-based
neural ODEs to the discrete input setting as an alternative to standard RNNs. Neural Controlled
Differential Equations (NCDE) [31] and Neural Rough Differential Equations (NRDE) [37] are
memory efficient versions that integrate observations more smoothly and can be extended to very
long time series.

Gating mechanisms. As a special case of continuous-time RNNs, some works have observed
the relation between gating mechanisms and damped dynamical systems [54]. Some examples
of continuous-time RNNs based on such damped dynamical systems include the LTC [27] and
iRNN [30]. Compared to these, Lemma 3.1 shows a stronger result that sigmoid gates are not just
motivated by being an arbitrary monotonic function with range (0, 1), but the exact formula appears
out of discretizing a damped ODE.

B Model Details

B.1 (M)LSSL Computation

Section 3.1 noted that some of the computations for using the LSSL are expensive to compute. When
the LSSL fixes the A and ∆t parameters (e.g. when they are not trained, or at inference time), these
computational difficulties can be circumvented by caching particular computations. In particular, this
case applies to the LSSL-f. Note that in this case, the other state-space matrices C and D comprise
the O(HN) trainable parameters of the fixed-transition LSSL.

In particular, we assume that there is a black-box inference algorithm for this system, i.e. matrix-
vector multiplication by A (an example of implementing this black box for a particular structured
class is in Appendix E.2). We then compute and cache

• the transition matrix A, which is computed by applying the black-box A MVM algorithm to
the identity matrix I .

• the Krylov matrix

K(A,B) = (B,AB, (A)2B, ...) ∈ RN×L, (8)

which is computed in a parallelized manner by the squaring technique for exponentiation,
i.e. batch multiply by A, (A)2, (A)4,

At inference time, the model can be unrolled recurrently with A. At training time, the convolutional
filter KL(A,B,C) (equation (7)) is computed with a matrix multiplication C · K(A,B) before
convolving with the input u.

Table 7 provides more detailed complexity of this version of the LSSL with fixed A,∆t.

Note that as mentioned in Section 6, this cached algorithm is fairly fast, but the main drawback is
that materializing the Krylov matrix (8) requires O(NL) instead of O(L) space.

B.2 Initialization of A

The LSSL initializes the A parameter in (1) to the HiPPO-LegS operator, which was derived to solve
a particular continuous-time memorization problem. This matrix A ∈ RN×N is

Ank =

⎧⎨⎩
(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

.

Note that the LSSL-f is the LSSL with a non-trainable A (and ∆t), so that A is fixed to the above
matrix.

16

B.3 Initialization of ∆t

One distinction between the LSSL and the most related prior work is that the inclusion of the
projection (2) makes the layer a 1-dimensional to 1-dimensional map, instead of 1-D to N -D [24, 58].
This enables us to concatenate H copies of this map (at the expense of computation, cf. Section 4.2
and Appendix D). Even when ∆t is not trained as in the LSSL-f, these H copies allow multiple
timescales to be considered by setting ∆t differently for each copy.

In particular, we initialize ∆t log-uniformly in a range ∆tmin,∆tmax (i.e., ∆t is initialized within
this range, such that log∆t is uniformly distributed). The maximum and minimum values were
generally chosen to be a factor of 100 apart such that the length of the sequences in the dataset are
contained in this range. Specific values for each model and dataset are in Appendix F. We did not
search over these as a hyperparameter, but we note that it can be tuned for additional performance
improvements in our experiments.

B.4 Deep Neural Network Architecture

The Deep LSSL models used in our experiments simply stack together LSSL layers in a simple deep
neural network architecture. We note the following architecture details.

Channels. The state-space model (1)+(2) accepts a 1-dimensional input u, but does not strictly
have to return a 1-dimensional output y. By making the matrices in (2) dimension C ∈ RM×N , D ∈
RM×1, the output y will be dimension M instead of 1.

We call M the number of channels in the model.

Feedforward. There are two drawbacks with the current definition of LSSL:

• They are defined by running H independent copies of a state-space model, which means the
H input features do not interact at all.

• If the channel dimension is M > 1, then the LSSL is a map from dimension 1 to M , which
means residuals cannot be applied.

These are both addressed by introducing a position-wise feedforward layer after the LSSL of shape
H · M → H . This simultaneously mixes the hidden features, and projects the output back to
dimension 1 if necessary. There is also an optional non-linearity in between the LSSL and this
feedforward projection; we fix it to the GeLU activation function in our models.

We note that this factorization of parallel convolutions on the H features followed by a position-wise
linear map is very similar to depth-wise separable convolutions [13].

Residuals and normalization. To stack multiple layers of LSSLs together, we use very standard
architectures for deep neural networks. In particular, we use residual connections and a layer
normalization (either pre-norm or post-norm) in the style of standard Transformer architectures.
Whether to use pre-norm or post-norm was chosen on a per-dataset basis, and depended on whether
the model overfit; recent results have shown that pre-norm architectures are more stable [15, 35], so
we used it on harder datasets with less overfitting. We note that we could have additionally inserted
MLP modules in between LSSL layers, in the style of Transformers [57], but did not experiment with
this.

Parameter count. The overall parameter count of an LSSL model is M ·H · (H +N).

We primarily used two model sizes in our experiments, which were chosen simply to produce round
numbers of parameters:

• LSSL small (≈ 200K parameters): 6 layers, H = 128, N = 128,M = 1.

• LSSL large (≈ 2M parameters): 4 layers, H = 256, N = 256,M = 4.

We did not search over additional sizes, but for some datasets reduced the model size for computational
reasons.

17

C LSSL Proofs

This section gives refinements of the statements in Section 3, additional results, and proofs of all
results.

Appendix C.1 has a more detailed (and self-contained) summary of basic methods in ODE approxi-
mation which will be used in the results and proofs.

Appendix C.2 give more general statements and proofs of Lemma 3.1 and Lemma 3.2 in Lemma C.1
and Theorem 4, respectively.

C.1 Approximations of ODEs

We consider the standard setting of a first-order initial value problem (IVP) ordinary differential
equation (ODE) for a continuous function f(t, x)

ẋ(t) = f(t, x(t))

x(t0) = x0
. (9)

This differential form has an equivalent integral form

x(t) = x0 +

∫︂ t

t0

f(s, x(s)) ds. (10)

Appendices C.1.1 and C.1.2 overview the Picard theorem and first-order numerical integration
methods, which apply to any IVP (9). Appendix C.1.3 then shows how to specialize it to linear
systems as in equation (1).

At a high level, the basic approximation methods considered here use the integral form (10) and
approximate the integral in the right-hand side by simple techniques.

C.1.1 Picard Iteration

The Picard-Lindelöf Theorem gives sufficient conditions for the existence and uniqueness of
solutions to an IVP. As part of the proof, it provides an iteration scheme to compute this solution.

Theorem 3 (Picard-Lindelöf). In the IVP (9), if there is an interval around t0 such that f is Lipschitz
in its second argument, then there is an open interval I ∋ t0 such that there exists a unique solution
x(t) to the IVP in I . Furthermore, the sequence of Picard iterates x(0), x(1), . . . defined by

x(0)(t) = x0

x(ℓ)(t) = x0 +

∫︂ t

t0

f(s, x(ℓ−1)(s)) ds

converges to x.

The Picard iteration can be viewed as approximating (10) by holding the previous estimate of the
solution x(ℓ−1) fixed inside the RHS integral.

C.1.2 Numerical Integration Methods

Many methods for numerical integration of ODEs exist, which calculate discrete-time approximations
of the solution. We discuss a few of the simplest methods, which are first-order methods with local
error O(h2) [6].

These methods start by discretizing (10) into the form

x(tk)− x(tk−1) =

∫︂ tk

tk−1

f(s, x(s)) ds. (11)

Here we assume a sequence of discrete times t0, t1, t2, . . . is fixed. For convenience, let xk denote
x(tk) and let ∆tk := tk − tk−1. The goal is now to approximate the integral in the RHS of (11).

18

Euler method. The Euler method approximates (11) by holding the left endpoint constant through-
out the integral (i.e., the “rectangle rule” with left endpoint), f(s, x(s)) ≈ f(tk−1, x(tk−1)). The
discrete-time update becomes

xk − xk−1 = (tk − tk−1)f(tk−1, x(tk−1))

= ∆tkf(tk−1, xk−1).
(12)

Backward Euler method. The backward Euler method approximates (11) by holding the right
endpoint constant throughout the integral (i.e., the “rectangle rule” with right endpoint), f(s, x(s)) ≈
f(tk, x(tk)). The discrete-time update becomes

xk − xk−1 = (tk − tk−1)f(tk, x(tk))

= ∆tkf(tk, xk).
(13)

C.1.3 Discretization of State-Space Models

In the case of a linear system, the IVP is specialized to the case

f(t, x(t)) = Ax(t) +Bu(t).

Note that here u is treated as a fixed external input, which is constant from the point of view of this
ODE in x. Let uk denote the average value in each discrete time interval,

uk =
1

∆tk

∫︂ tk

tk−1

u(s) ds.

The integral equation (11) can be specialized to this case, and more generally a convex combination
of the left and right endpoints can be taken to approximate the integral, weighing them by 1− α and
α respectively. Note that the case α = 0, 1 are specializations of the forward and backward Euler
method, and the case α = 1

2 is the classic “trapezoid rule” for numerical integration.

x(tk)− x(tk−1) =

∫︂ tk

tk−1

Ax(s) ds+

∫︂ tk

tk−1

Bu(s) ds

=

∫︂ tk

tk−1

Ax(s) ds+∆tkBuk

≈ ∆tk [(1− α)Axk−1 + αAxk] + ∆tkBuk.

Rearranging yields

(I − α∆tk ·A)xk = (I + (1− α)∆tk ·A)xk−1 +∆tk ·Buk

xk = (I − α∆tk ·A)−1(I + (1− α)∆tk ·A)xk−1 + (I − α∆tk ·A)−1∆tk ·Buk

This derives the generalized bilinear transform (GBT) [61]. The bilinear method is the case α =
1
2 of special significance, and was numerically found to be better than the forward and backward Euler
methods α = 0, 1 both in synthetic function approximation settings and in end-to-end experiments
[24, Figure 4].

C.2 RNNs are LSSLs: Proof of Results in Section 3.2

We provide more detailed statements of Lemmas 3.1 and 3.2 from Section 3.2. In summary, LSSLs
and popular families of RNN methods all approximate the same continuous-time dynamics

ẋ(t) = −x+ f(t, x(t)) (14)

by viewing them with a combination of two techniques.

We note that these results are about two of the most commonly used architecture modifications for
RNNs. First, the gating mechanism is ubiquitous in RNNs, and usually thought of as a heuristic
for smoothing optimization [28]. Second, many of the effective large-scale RNNs use linear (gated)
recurrences and deeper models, which is usually thought of as a heuristic for computational effi-
ciency [5]. Our results suggest that neither of these are heuristics after all, and arise from standard
ways to approximate ODEs.

To be more specific, we show that:

19

Table 6: A summary of the characteristics of popular RNN methods and their approximation mechanisms for
capturing the dynamics ẋ(t) = −x(t) + f(t, x(t)) (equation (14)). The LSSL entries are for the very specific
case with order N = 1 and A = −1, B = 1, C = 1, D = 0; LSSLs are more general.

Method RNN RNN LSSL LSSL
Variant Gated Gated, linear Discrete (4)+(5) Continuous (1)+(2)
Special cases LSTM [28], GRU [14] QRNN [5], SRU [33]

Deep? Single-layer Deep Deep Deep
Continuous? Discrete-time Discrete-time Discrete-time Continuous-time
Linear? Non-linear Linear Linear Linear

Approximation
Depth-wise - Picard iteration Picard iteration Picard iteration
Time-wise Backwards Euler GBT(α = 1) GBT(α = 1

2
) (i.e. Bilinear) -

• Non-linear RNNs discretize the dynamics (14) by applying backwards Euler discretiza-
tion to the linear term, which arises in the gating mechanism of RNNs (Appendix C.2.2,
Lemma C.1).

• A special case of LSSLs approximates the dynamics (14) (in continuous-time) by applying
Picard iteration to the non-linear term (Appendix C.2.3, Theorem 4).

• Deep linear RNNs approximate the dynamics (14) with both Picard iteration in the depth
direction to linearize the non-linear term, and discretization (gates) in the time direction to
discretize the equation (Appendix C.2.4, Corollary C.3).

A comparison is summarized in Table 6.

In the remainder of this section, we assume that there is an underlying function x(t) that satisfies
(14) on some interval for any initial condition, and that f is continuous and Lipschitz in its second
argument. Our goal is to show that several families of models approximate this in various ways.

C.2.1 Intuition / Proof Sketches

We sketch the idea of how LSSLs capture popular RNNs. More precisely, we will show how
approximating the dynamics (14) in various ways lead to types of RNNs and LSSLs.

The first step is to look at the simpler dynamics

ẋ(t) = −x(t) + u(t)

where there is some input u(t) that is independent of x. (In other words, in (14), the function f(t, x)
does not depend on the second argument.)

By directing applying the GBT discretization with α = 1, this leads to a gated recurrence
(Lemma 3.1).

The second step is that by applying the backwards Euler discretization more directly to (14), this
leads to a gated RNN where the input can depend on the state (Lemma C.1).

Alternatively, we can apply Picard iteration on (14), which says that the iteration

x(ℓ)(t) = x0 +

∫︂ t

t0

−x(ℓ−1)(s) ds+

∫︂ t

t0

f(s, x(ℓ−1)(s)) ds

converges to the solution x(t).

However, the first integral term is simple and can be tightened. We can instead try to apply Picard
iteration on only the second term, leaving the first integral in terms of x(ℓ). Intuitively this should
still converge to the right solution, since this is a weaker iteration; we’re only using the Picard
approximation on the second term.

x(ℓ)(t) = x0 +

∫︂ t

t0

−x(ℓ)(s) ds+

∫︂ t

t0

f(s, x(ℓ−1)(s)) ds

20

Differentiating, this equation is the ODE

ẋ(ℓ)(t) = −x(ℓ)(t) + f(t, x(ℓ−1)(t))

This implies that alternating point-wise functions with a simple linear ODE ẋ(ℓ)(t) = −x(ℓ)(t) +
u(ℓ)(t) also captures the dynamics (14). But this is essentially what an LSSL is.

To move to discrete-time, this continuous-time layer can be discretized with gates as in Lemma 3.1,
leading to deep linear RNNs such as the QRNN, or with the bilinear discretization, leading to the
discrete-time LSSL. We note again that in the discrete-time LSSL, A and B play the role of the gates
σ, 1− σ.

C.2.2 Capturing gates through discretization

Lemma C.1. Consider an RNN of the form

xk = (1− σ(zk))xk−1 + σ(zk)f(k, xk−1), (15)

where f(k, x) is an arbitrary function that is Lipschitz in its second argument (e.g., it may depend on
an external input uk).

Then equation (15) is a discretization of the dynamics (14) with step sizes ∆tk = exp(zk), i.e.
xk ≈ x(tk) where tk =

∑︁k
i=1 ∆ti.

Proof. Apply the backwards Euler discretization (13) to equation (14) to get

xk − xk−1 = ∆tk [−xk + f(tk, xk)]

(1 + ∆tk)xk = xk−1 +∆tkf(tk, xk)

xk =
1

1 +∆tk
xk−1 +

∆tk
1 + ∆tk

f(tk, xk).

Note that ∆tk
1+∆tk

= ezk
1+ezk = 1

1+e−zk
and 1

1+∆tk
= 1− ∆tk

1+∆tk
, thus

xk = (1− σ(zk))xk−1 + σ(zk)f(k, xk−1).

Here we are denoting f(k, x) = f(tk, x) to be a discrete-time version of f evaluatable at the given
timesteps tk.

Note that a potential external input function u(t) or sequence uk is captured through the abstraction
f(t, x). For example, a basic RNN could define f(k, x) = f(tk, x) = tanh(Wx+ Uuk).

C.2.3 Capturing non-linearities through Picard iteration

The main result of this section is Theorem 4 showing that LSSLs can approximate the same dynamics
as the RNNs in the previous section. This follows from a technical lemma.
Lemma C.2. Let f(t, x) be any function that satisfies the conditions of the Picard-Lindelöf Theorem
(Theorem 3).

Define a sequence of functions x(ℓ) by alternating the (point-wise) function f with solving an ODE

x(0)(t) = x0

u(ℓ)(t) = f(t, x(ℓ−1)(t))

ẋ(ℓ)(t) = Ax(ℓ)(t) + u(ℓ)(t).

Then x(ℓ) converges to a solution x(ℓ)(t) → x(t) of the IVP

ẋ(t) = Ax(t) + f(t, x(t))

x(t0) = x0.

Theorem 4. A (continuous-time) deep LSSL with order N = 1 and A = −1, B = 1, C = 1, D = 0
approximates the non-linear dynamics (14).

21

Proof. Applying the definition of an LSSL (equations (1)+(2)) with these parameters results in a
layer mapping u(t) ↦→ y(t) where y is defined implicitly through the ODE

ẏ(t) = −y(t) + u(t).

This can be seen since the choice of C,D implies y(t) = x(t) and the choice of A,B gives the above
equation.

Consider the deep LSSL defined by alternating this LSSL with position-wise (in time) non-linear
functions

u(ℓ)(t) = f(t, y(ℓ−1)(t))

ẏ(ℓ)(t) = −y(ℓ)(t) + u(ℓ)(t).

But this is exactly a special case of Lemma C.2, so that we know y(ℓ)(t) → y(t) such that y(t)
satisfies

ẏ(t) = −y(t) + f(t, y(t))

as desired.

Proof of Lemma C.2. Let

z(t) = e−Atx(t)

(and z0 = z(t0) = x(t0) = x0). Note that

ż(t) = e−At [ẋ(t)−Ax(t)]

= e−Atf(t, x(t))

= e−Atf(t, eAtz(t)).

Since f satisfies the conditions of the Picard Theorem (i.e., is continuous in the first argument and
Lipschitz in the second), so does the function g where g(t, x) := e−Atf(t, eAtx) for some interval
around the initial time.

By Theorem 3, the iterates z(ℓ) defined by

z(ℓ)(t) = z0 +

∫︂ t

t0

e−Asf(s, eAsz(ℓ−1)(s)) ds (16)

converges to z.

Define x(ℓ)(t) = eAtz(ℓ)(t). Differentiate (16) to get

ż(ℓ)(t) = e−Atf(t, eAtz(ℓ−1)(t))

= e−Atf(t, x(ℓ−1)(t))

= e−Atu(ℓ)(t).

But

ż(ℓ)(t) = e−At
[︂
ẋ(ℓ)(t)−Ax(ℓ)(t)

]︂
,

so

ẋ(ℓ)(t) = Ax(ℓ)(t) + u(ℓ)(t).

Since z(ℓ) → z and x(ℓ)(t) = eAtz(ℓ)(t) and x(t) = eAtz(t), we have x(ℓ) → x.

C.2.4 Capturing Deep, Linear, Gated RNNs

We finally note that several types of RNNs exist which were originally motivated by approximating
linearizing gated RNNs for speed. Although these were treated as a heuristic for efficiency reasons,
they are explained by combining our two main technical results.

22

Lemma C.1 shows that a single-layer, discrete-time, non-linear RNN approximates the dynamics (14)
through discretization, which arises in the gating mechanism.

Theorem 4 shows that a deep, continuous-time, linear RNN approximates (14) through Picard
iteration, where the non-linearity is moved to the depth direction.

Combining these two results leads to Corollary C.3, which says that a deep, discrete-time, linear
RNN can also approximate the same dynamics (14).
Corollary C.3. Consider a deep, linear RNN of the form

x
(ℓ)
k = (1− σ(zk))x

(ℓ)
k−1 + σ(zk)u

(ℓ)
k

u
(ℓ)
k = f(k, x

(ℓ−1)
k).

This is a discretization of the dynamics (14) with step sizes ∆tk = exp(zk), i.e. xk ≈ x(tk) where
tk =

∑︁k
i=1 ∆ti.

Proof. By Lemma C.1, the first equation is a discretization of the continuous-time equation

ẋ(ℓ)(t) = −x(ℓ)(t) + u(ℓ)(t)

where

u(ℓ)(t) = f(t, x(ℓ−1)(t))

uses the continuous-time version f of f . But by Lemma C.2, this is an approximation of the dynamics
(14) using Picard iteration.

Notable examples of this type of model include the Quasi-RNN or QRNN [5] and the Simple
Recurrent Unit (SRU) [33], which are among the most effective models in practice. We remark that
these are the closest models to the LSSL and suggest that their efficacy is a consequence of the results
of this section, which shows that they are not heuristics.

We note that there are many more RNN variants that use a combination of these gating and lineariza-
tion techniques that were not mentioned in this section, and can be explained similarly.

D LSSL Proofs and Algorithms

This section proves the results in Section 4.1, and is organized as follows:

• Appendix D.1 gives a self-contained synopsis of the HiPPO framework [24].
• Appendix D.2 proves Theorem 1, which shows that the hippo operators for any measure

lead to a simple linear ODE of the form of equation (1).
• Appendix D.3 proves Corollary 4.1, including a formal definition of quasiseparable matrices

(i.e., how LSSL matrices are defined) in Definition 4.

Notation This section is technically involved and we adopt notation to simplify reasoning about the
shapes of objects. In particular, we use bold capitals (e.g. A) to denote matrices and bold lowercase
(e.g. b) to denote vectors. For example, equation (1) becomes ẋ = Ax+ bu. These conventions are
adopted throughout Appendices D and E.

D.1 Preliminaries: HiPPO Framework and Recurrence Width

This section summarizes technical preliminaries taken directly from prior work. We include this
section so that this work is self-contained and uses consistent notation, which may deviate from prior
work. For example, we use modified notation from Gu et al. [24] in order to follow conventions in
control theory (e.g., we denote input by u and state by x as in (1)).

Appendix D.1.1 formally defines the HiPPO operator mathematically as in [24, Section 2.2], and
Appendix D.1.2 overviews the steps to derive the HiPPO operator as in [24, Appendix C]. Ap-
pendix D.1.3 defines the class of Low Recurrence Width (LRW) matrices, which is the class of
matrices that our generalization of the HiPPO results (Theorem 1) uses.

23

D.1.1 Definition of HiPPO Operator

Definition 1 ([24], Definition 1). Given a time-varying measure µ(t) supported on (−∞, t], an
N-dimensional subspace G of polynomials, and a continuous function u : R≥0 → R, HiPPO defines
a projection operator projt and a coefficient extraction operator coeft at every time t, with the
following properties:

1. projt takes a function u restricted up to time t, u≤t := u(x)|x≤t, and maps it to a polynomial
g(t) ∈ G, that minimizes the approximation error ∥u≤t − g(t)∥L2(µ(t)).

2. coeft : G → RN maps the polynomial g(t) to the coefficients c(t) ∈ RN of the basis of
orthogonal polynomials defined with respect to the measure µ(t).

The composition coeft ◦ projt is called hippo, which is an operator mapping a function u : R≥0 → R
to the optimal projection coefficients c : R≥0 → RN (i.e (hippo(u))(t) = coeft(projt(f)).

D.1.2 HiPPO Framework for Deriving the HiPPO Operator

The main ingredients of HiPPO consists of an approximation measure and an orthogonal polynomial
basis. We recall how they are defined in [24] (we note that compared to Gu et al. [24], our notation has
changed from input f(t) coefficients (state) c(t) to input u(t) and coefficients (state) x(t), following
conventions in controls).

Approximation Measures At every t, the approximation quality is defined with respect to a
measure µ(t) supported on (−∞, t]. We assume that the measures µ(t) have densities ω(t, Y) :=
dµ(t)

dY . Note that this implies that integrating with respect to dµ(t) is the same as integrating with
respect to ω(t, Y) dY .

Orthogonal Polynomial basis Let {P (t)
n }n∈N denote a sequence of orthogonal polynomials with

respect to some time-varying measure µ(t). Let p(t)n be the normalized version of of orthogonal P (t)
n ,

and define

pn(t, Y) = p(t)n (Y).

In particular, the above implies that∫︂ t

−∞
p(t)n (Y) · p(t)m (Y)ω(t, Y) dY = δm,n.

In the general framework, HiPPO does not require an orthogonal polynomial basis as the selected
basis. The choice of basis is generalized by tilting with χ.

Tilted measure and basis For any scaling function χ(t, Y), the functions pn(t, Y)χ(t, Y) are
orthogonal with respect to the density ω

χ2 at every time t. Define ν(t) to be the normalized measure

with density proportional to ω
χ2 , with normalization constant ζ(t) =

∫︁ t

0
ω(t,Y)
χ(t,Y)2 dx.

We express the coefficients xn(t) calculated by the HiPPO framework as:

xn(t) =
1√︁
ζ(t)

∫︂ t

0

u(Y)pn(t, Y)
ω(t, Y)

χ(t, Y)
dY. (17)

To use this to derive ẋn(t), let h(t, Y) = u(Y)pn(t, Y)ω(t, Y). We see that

24

ẋn(t) =
d

dt

∫︂ t

0

u(Y)pn(t, Y)ω(t, Y)dY

=
d

dt

∫︂ t

0

h(t, Y)dY

=

∫︂ t

0

∂

∂t
h(t, Y)dY + h(t, t)

=

∫︂ t

0

u(Y)

(︃
∂

∂t
pn (t, Y)

)︃
ω (t, Y) dY +

∫︂ t

0

f(Y)pn (t, Y)

(︃
∂

∂t
ω (t, Y)

)︃
dY

+ u(t)pn(t, t)ω(t, t).

This allows ẋn(t) to be written as

ẋn(t) = u(t)pn(t, t)ω(t, t) +

∫︂ t

0

u(Y)

(︃
∂

∂t
pn (t, Y)

)︃
ω (t, Y) dY

+

∫︂ t

0

f(Y)pn (t, Y)

(︃
∂

∂t
ω (t, Y)

)︃
dY. (18)

Although Gu et al. [24] describe the framework in the full generality above and use χ as another
degree of freedom, in their concrete derivations they always fix χ = ω. Our general results also use
this setting. For the remainder of this section, we assume the “full tilting” case χ = ω. In particular,
this means that in Eq. (18), we essentially substitute ω above with 1 and divide each term by the
inverse square root of our normalization constant, ζ, to get the coefficient dynamics that we will use
in our arguments:

ẋn(t) =
1√︁
ζ(t)

u(t)pn(t, t) +
1√︁
ζ(t)

∫︂ t

0

u(Y)

(︃
∂

∂t
pn (t, Y)

)︃
dY (19)

Now, if we can show that each of the integrated terms in (18) are linear combinations of xn(t),
this would be the same as saying that ẋn(t) = A(t)x(t) + b(t)u(t) for some A(t). Therefore,
the incremental update operation would be bounded by the runtime of the matrix-vector operation
A(t)x(t).

D.1.3 Recurrence Width

Our final goal is to show that ẋn(t) = A(t)x(t) + b(t)u(t) for some A(t) with constant recurrence
width (see Definition 2). This will show Theorem 1, and also imply that the MVM A(t)x(t) can be
computed in Õ(N) time. To build this argument, we borrow the fact that OPs all have recurrence
width 2 and results regarding matrix-vector multiplication of matrices with constant recurrence width
along with their inverses.
Definition 2 ([17]). An N × N matrix A has recurrence width t if the polynomials ai(X) =∑︁N−1

j=0 A[i, j]Xj satisfy deg(ai) ≤ i for i < t, and

ai(X) =

t∑︂
j=1

gi,j(X)ai−j(X)

for i ≥ t, where the polynomials gi,j ∈ R[X] have degree at most j.
Theorem 5 ([17], Theorem 4.4). For any N × N matrix A with constant recurrence width, any
vector x ∈ Rn, Ax can be computed with Õ(N) operations over R.
Theorem 6 ([17], Theorem 7.1). For any N × N matrix A with constant recurrence width, any
vector x ∈ Rn, A−1x can be computed with Õ(N) operations over R.

For the rest of the note we’ll assume that any operation over R can be done in constant time.
It would be useful for us to define P ∈ RN×N such that the coefficients of the OP pi(X), i.e.
pi(X) =

∑︁N−1
j=0 P[i, j]Xj .

25

D.2 Proof of Theorem 1

This section proves Theorem 1, which is restated formally in Corollary D.4. Appendix D.2.1 proves
some results relating orthogonal polynomials to recurrence width (Appendix D.1.3). Appendix D.2.2
proves Corollary D.4. Appendices D.2.3 and D.2.4 provides examples showing how Corollary D.4
can be specialized to exactly recover the HiPPO-LegT, HiPPO-LagT, HiPPO-LegS methods [24].

D.2.1 Relating Orthogonal Polynomials and Recurrence Width

Next we introduce the following lemma, which will be useful in our arguments:

Lemma D.1. For any n, there exists ordered sets of coefficients αn = {αn,i}, βn = {βn,i},

(i) p′n(Z) =
∑︁n−1

i=0 αn,ipi(Z)

(ii) Zp′n(Z) =
∑︁n−1

i=0 βn,ipi(Z)

Proof. Follows from the fact that pi(z) for 0 ≤ i < N forms a basis and the observation of the
degrees of the polynomials on the LHS.

The following matrices will aid in showing verifying that matrix vector multiplication with a given
matrix A can be computed in O(Ñ) time.

Definition 3. D1,D2 ∈ RN×N are the matrices such that

p′i(Z) =

N−1∑︂
j=0

D1[i, j]Z
j , and Zp′i(Z) =

N−1∑︂
j=0

D2[i, j]Z
j .

Let S be the “right shift" matrix, i.e. for any matrix M, MS has the columns of M shifted to right by
one. Note that ST corresponds to the “left shift" matrix.

We now note that:

Lemma D.2. D1 = P·diag(0, 1, . . . , N−1)·ST and D2 = P·diag(0, 1, . . . , N−1). In particular,
D1z and D2z can be computed in Õ(N) time for any z ∈ RN .

Proof. Recall that P has the coefficients of the OP polynomials p0(Z), . . . , pN−1(Z) as its rows.
Then note that

p′n(Z) =

n−1∑︂
i=0

i ·P[n, i] · Zi−1. (20)

The claim on D1 = P · diag(0, 1, . . . , N − 1) · ST follows from the above. Recall that D has
recurrence width of 2. The claim on the runtime of computing D1z then follows from Theorem 5
and the fact that both diag(0, 1, . . . , N − 1) and ST is n-sparse.

From Eq. (20), it is easy to see that

Zp′n(Z) =

n−1∑︂
i=0

i ·P[n, i] · Zi.

The claim on the structure of D2 then follows from the above expression. The claim on runtime of
computing D2z follows from essentially the same argument as for D1z.

Finally, we make the following observation:

Lemma D.3. Let A′ and B′ be defined such that A′[n, i] = αn,i and B′[n, i] = βn,i. Then both A′

and B′ are both products of three matrices: two of which have recurrence width at most 2 and the
third is the inverse of a matrix that has recurrence width 2.

26

Proof. We note that since P expresses the orthogonal polynomials in standard basis, P−1

changes from OP basis to standard basis. This along with Lemma D.2 implies that A =
P ·

(︁
diag(0, 1, . . . , N − 1) · ST

)︁
· P−1. It is easy to check that diag(0, 1, . . . , N − 1) · ST has

recurrence width 1 and the claim on A′ follows since P has recurrence width 2. A similar argument
proves the claim on B′.

D.2.2 HiPPO for General Measures

Let θ : R≥0 ↦→ R≥0 be a function such that for all t, θ(t) ≤ t and θ(t) is differentiable.

In what follows, define

z =
2(Y − t)

θ(t)
+ 1.

We note that
dz

dY
=

2

θ(t)
. (21)

Further, note that:

dz

dt
=

d

dt

(︃
2(Y − t)

θ(t)
+ 1

)︃
= − 2

θ(t)
− 2(Y − t)θ′(t)

θ2(t)

= − 2

θ2(t)
(θ(t) + (Y − t)θ′(t)) .

From the definition of z, we see that Y − t = (z−1)θ(t)
2 . Then

dz

dt
= − 2

θ(t)

(︃
1 +

(︃
z − 1

2

)︃
θ′(t)

)︃
= − 2

θ(t)
− (z − 1)θ′(t)

θ(t)
. (22)

Additionally, given a measure ω on [-1,1] and OP family p0(Y), p1(Y), . . . such that for all i ̸= j,∫︂ 1

−1

pi(Y)pj(Y)ω(Y)dY = δi,j ,

define

ω(Y, t) =
2

θ(t)
ω(z) and pn(Y, t) = pn(z).

Then we can adjust (17) to:

xn(t) =

∫︂ t

t−θ(t)

u(Y)pn(z)
2

θ(t)
dY. (23)

The Leibniz integral rule states that

∂

∂t

∫︂ β(t)

α(t)

h(t, Y)dY =

∫︂ β(t)

α(t)

∂

∂t
h(t, Y)dY − α′(t)h(α(t), t) + β′(t)h(t, t).

If we let α(t) = t− θ(t) and β(t) = t, then applying the Leibniz rule to (23) we get:

27

ẋn(t) =

∫︂ t

t−θ(t)

u(Y)
∂

∂t

(︃
pn(z)

2

θ(t)

)︃
dY − (1− θ′(t))u(t− θ(t))pn(t− θ(t), t)

2

θ(t)

+ u(t)pn(t, t)
2

θ(t)

= −(1− θ′(t))u(t− θ(t))pn(−1)
2

θ(t)
+ u(t)pn(1)

2

θ(t)

+

∫︂ t

t−θ(t)

u(Y)
dz

dt
p′n(z)

2

θ(t)
dY − θ′(t)

θ(t)

∫︂ t

t−θ(t)

u(Y)pn(z)
2

θ(t)
dY.

From (22), it follows that

ẋn(t) = −2(1− θ′(t))u(t− θ(t))pn(−1)

θ(t)
+

2 · u(t)pn(1)
θ(t)

− 2

θ(t)

∫︂ t

t−θ(t)

u(Y)p′n(z)
2

θ(t)
dY−

θ′(t)

θ(t)

∫︂ t

t−θ(t)

u(Y)(z − 1)p′n(z)
2

θ(t)
dY − θ′(t)

θ(t)

∫︂ t

t−θ(t)

u(Y)pn(z)
2

θ(t)
dY. (24)

Because deg (p′n(z)) ≤ n− 1 and deg ((z − 1)p′n(z)) ≤ n, they can be written as a linear combina-
tion of {p′i}i≤n. Let us define {αn,j}, {βn,j} such that

p′n(z) =

n−1∑︂
j=0

αn,jpj(z) and (z − 1)p′n(z) =

n∑︂
j=0

βn,jpj(z). (25)

Then by using (25) in (24), we get:

ẋn(t) = −2(1− θ′(t))u(t+ θ(t))pn(−1)

θ(t)
+

2 · u(t)pn(1)
θ(t)

− 2

θ(t)

n−1∑︂
j=0

αn,j

∫︂ t

t−θ(t)

u(Y)pj(z)
2

θ(t)
dY

− θ′(t)

θ(t)

n∑︂
j=0

βn,j

∫︂ t

t−θ(t)

u(Y)pj(z)
2

θ(t)
dY − θ′(t)

θ(t)

∫︂ t

t−θ(t)

u(Y)pn(z)
2

θ(t)
dY

= −2(1− θ′(t))u(t+ θ(t))pn(−1)

θ(t)
+

2 · u(t)pn(1)
θ(t)

− 2

θ(t)

n−1∑︂
j=0

αn,jxj(t)−
θ′(t)

θ(t)

n∑︂
j=0

βn,jxj(t)−
θ′(t)

θ(t)
xn(t).

Thus, in vector form we get
Theorem 7.

ẋn(t) = − 1

θ(t)
A1(t)x(t)−

2

θ(t)
(1− θ′(t))u(t− θ(t))

⎡⎢⎢⎣
...

pn(−1)
...

⎤⎥⎥⎦+
2

θ(t)
u(t)

⎡⎢⎢⎣
...

pn(1)
...

⎤⎥⎥⎦

where A1(t)[n, k] =

⎧⎨⎩
2αn,k + θ′(t)βn,k if k < n

θ′(t)βn,n + θ′(t) if k = n

0 otherwise
for αn,k,βn,k as defined in (25).

Corollary D.4. The matrix A1 in Theorem 7 can be re-written as
A1 = 2 ·A′ + θ′(t) ·B′ + θ′(t) · I. (26)

In particular, both A′ and B′ both products of three matrices: two of which have recurrence width at
most 2 and the third is the inverse of a matrix that has recurrence width 2.

28

Proof. Eq. (26) follows from Theorem 7 and defining A′ and B′ to contain the αn,k and βn,k

coefficients.

D.2.3 Translated HiPPO (Sliding Windows)

The case when θ(t) = θ for all t represents a constant-size sliding window, which Gu et al. [24]
denote as the “Translated HiPPO” case with instantiations such as HiPPO-LegT (Translated Legendre)
and HiPPO-LagT (Translated Laguerre).

We now state a corollary of Theorem 7 for the case of θ(t) = θ for all t.

Corollary D.5. Let θ(t) = θ for all t. Then

ẋn(t) = −1

θ
A1x(t)−

2

θ
u(t− θ)

⎡⎢⎢⎣
...

pn(−1)
...

⎤⎥⎥⎦+
2

θ
u(t)

⎡⎢⎢⎣
...

pn(1)
...

⎤⎥⎥⎦ .

where A1[n, j] =

{︃
2αn,k if k < n

0 otherwise
.

Next, we use the approximation

u(x) ≈
N−1∑︂
k=0

xk(t)pk(z).

to handle the u(t− θ) term in Corollary D.5.

Corollary D.6. Let θ(t) = θ for all t. Then

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
u(t)

⎡⎢⎢⎣
...

pn(1)
...

⎤⎥⎥⎦
where A = A1 + 2A2 for A1 as defined in Corollary D.5 and A2[n, k] = pn(−1)pk(−1).

Proof. To approximate u(t− θ), we note that when Y = t− θ, z = −1. Then

u(t− θ) ≈
N−1∑︂
k=0

xk(t)pk(−1).

Then by Corollary D.5,

ẋn(t) ≈ −1

θ
A1x(t)−

2

θ

(︄
N−1∑︂
k=0

xk(t)pk(−1)

)︄⎡⎢⎢⎣
...

pn(−1)
...

⎤⎥⎥⎦+
2

θ
u(t)

⎡⎢⎢⎣
...

pn(−1)
...

⎤⎥⎥⎦ . (27)

Let us define a matrix, A2 ∈ RN×N matrix such that A2[n, k] = pn(−1)pk(−1). Then the claim
follows.

We now show that the special case of Corollary D.6 for Legendre matches the results from [24].

29

Corollary D.7. Let pn(z) =
(︁
2n+1

2

)︁1/2
Pn(z) where Pn(z) are the Legendre polynomials. Then

ẋn(t) ≈
1

θ
Ax(t) +

2

θ
bu(t)

where

A[n, k] = (2n+ 1)
1
2 (2k + 1)

1
2

{︃
1 if k ≤ n

(−1)n−k if k ≥ n
,

and b[n] =
(︁
2n+1

2

)︁ 1
2 .

Proof. From Corollary D.6,

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
u(t)

⎡⎢⎢⎣
...

pn(1)
...

⎤⎥⎥⎦
where A = A1 + 2A2 for A1 as defined in Corollary D.5 and A2[n, k] = pn(−1)pk(−1).

It is known from (7.21.1) and in [53] that

pn(−1) =

(︃
2n+ 1

2

)︃ 1
2

Pn(−1) and Pn(−1) = (−1)n. (28)

Further,

pn(1) =

(︃
2n+ 1

2

)︃ 1
2

Pn(1) and Pn(1) = 1. (29)

Then b[n] =
(︁
2n+1

2

)︁ 1
2 follows from Corollary D.6 and (29).

From the following recurrence relations [1, Chapter 12]:

(2n+ 1)Pn(z) = P ′
n+1(z) + P ′

n−1(z)

implies that

P ′
n+1(z) = (2n+ 1)Pn(z) + (2n+ 1)Pn−2(z) + · · ·+,

which in turn implies

P ′
n = (2n− 1)Pn−1(z) + (2n− 5)Pn−3(z) +

Then

p′n(z) =

(︃
2n+ 1

2

)︃ 1
2

· P ′
n(z)

=

(︃
2n+ 1

2

)︃ 1
2

(︄
(2n− 1)

(︃
2

2n− 1

)︃ 1
2

Pn−1(z) + (2n− 5)

(︃
2

2n− 5

)︃ 1
2

Pn−3(z) + . . .

)︄
= (2n+ 1)

1
2

(︂
(2n− 1)

1
2 Pn−1(z) + (2n− 5)

1
2 Pn−3(z) + . . .

)︂
.

Thus, we have

αn,k =

{︃
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n and n− k is odd,

0 is otherwise.
,

30

Recalling that A1[n, k] = 2αn,k.

We note that from (28), A2[n, k] =
(︁
2n+1

2

)︁ 1
2
(︁
2k+1

2

)︁ 1
2 (−1)n(−1)k = (2n+1)

1
2 (2k+1)

1
2

2 (−1)n−k.

Recalling A = A1 + 2A2, we get:

A[n, k] = (2n+ 1)
1
2 (2k + 1)

1
2

⎧⎨⎩
2 + (−1)n−k if k < n and n− k is odd
0 + (−1)n−k if k < n and n− k is even
(−1)n−k if k ≥ n

.

Note that the above is the same as:

A[n, k] = (2n+ 1)
1
2 (2k + 1)

1
2

{︃
1 if k ≤ n

(−1)n−k if k ≥ n
,

which completes our claim.

D.2.4 Scaled HiPPO: Recovering HiPPO-LegS

We now use Theorem 7 to recover the HiPPO-LegS instantiation for the “Scaled Legendre” measure,
the main method from Gu et al. [24].

Corollary D.8. Let pn(z) =
(︁
2n+1

2

)︁1/2
Pn(z) where Pn(z) are the Legendre polynomials and let

δ(t) = t for all t. Then

ẋn(t) =
1

t
Ax(t) +

2

t
bu(t)

where

A[n, k] =

⎧⎪⎨⎪⎩
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n

n+ 1 if k = n

0 if k > n

,

and b[n] =
(︁
2n+1

2

)︁ 1
2 .

Proof. Let θ(t) = t. By Theorem 7 and noting that θ(t) = 1, we get:

ẋn(t) = −1

t
A1x(t) +

2

t
u(t)

⎡⎢⎢⎣
...

pn(1)
...

⎤⎥⎥⎦
where

A1(t)[n, k] =

⎧⎨⎩
2αn,k + βn,k if k < n

βn,n + 1 if k = n

0 otherwise
(30)

for αn,k,βn,k as defined in (25).

Using the same arguments as in the proof of Corollary D.7, b[n] =
(︁
2n+1

2

)︁ 1
2 follows from Corollary

D.6 and (29). Also using similar arguments as the proof of Corollary D.7, we have

αn,k =

{︃
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n and n− k is odd,

0 is otherwise.
.

From (8) in [24], we know that

(z + 1)P ′
n(z) = nPn(z) + (2n+ 1)Pn−1(z) + (2n− 3)Pn−2(z) +

31

Including the normalization constant (2n+1)
1
2 , we note that (z−1)p′n(z) = (z+1)p′n(z)−2p′n(z).

Then we get

(z + 1)p′n(z) = npn(z)− (2n+ 1)
1
2 (2n− 1)

1
2 pn−1(z) + (2n+ 1)

1
2 (2n− 3)

1
2 pn−2(z)−

In other words,

βn,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(2n+ 1)

1
2 (2k + 1)

1
2 if k < n and n− k is odd,

(2n+ 1)
1
2 (2k + 1)

1
2 if k < n and n− k is even

n if n = k

0 otherwise.

.

Recalling that the definition for A1 from (30), we get:

A[n, k] =

⎧⎪⎨⎪⎩
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n

n+ 1 if k = n

0 if k > n

,

which completes our claim.

D.3 Proof of Corollary 4.1: HiPPO for Classical Orthogonal Polynomials

This section proves Corollary 4.1, showing that the HiPPO matrices for measures corresponding to
classical families of orthogonal polynomials [11] are quasiseparable. We define quasi-separability
in Appendix D.3.1. Theorem 8 proves the claimed result for Jacobi polynomials and Lemma D.11
proves the claimed result for Laguerre polynomials.

We note that there is a third family of classical OPs, the Hermite polynomials [11], which have a
two-sided infinite measure. However, since HiPPO is about continuous-time memorization of a
function’s history, it requires a one-sided measure and therefore the Hermite polynomials are not
appropriate.

D.3.1 Quasiseparable Matrices

Definition 4 (from [19]). A matrix R ∈ RN×N is (p, q)-quasiseparable if

• Every matrix contained strictly above the diagonal has rank at most p.

• Every matrix contained strictly below the diagonal has rank at most q.

A (q, q)-quasiseparable matrix is called q-quasiseparable.

We are interested in showing the A matrices for a broad class of OPs in Corollary D.6 are O(1)-
quasiseperable. We now state some properties of q-quasiseparable matrices:
Lemma D.9. Let Q be q-quasiseparable. Then:

(i) For any q′-quasiseparable matrix Q′ ∈ RN×N , Q±Q′ is (q + q′)-quasiseparable.

(ii) For any E ∈ RN×N , E is r-quasiseparable where r = rank(E).

(iii) For any two diagonal matrices D1, D2 ∈ RN×N , D1QD2 is q-quasiseparable.

Proof. We argue each point separately:

(i) Any submatrix contained strictly below or above the diagonal in Q has rank ≤ q and its
corresponding submatrix in Q′ also has rank ≤ q′. This implies that the corresponding
submatrix in Q±Q′ has rank ≤ q + q′. Therefore Q±Q′ is (q + q′)-quasiseparable.

(ii) Let the r = rank(E). Thus any submatrix in E has rank ≤ r. Then E is r-quasiseparable.

32

(iii) Multiplication by diagonal matrices only scales the rows and columns, leaving the rank of
each submatrix unchanged.

D.3.2 Jacobi Polynomials

The Jacobi polynomial of degree n with parameters α, β > −1 will be denoted Jα,β
n (z). The Jacobi

polynomials are orthogonal with respect to measure ω(z) = (1 − z)α(1 + z)β . In particular, it is
known from (eq. (4.3.3) from [53]) that

∫︂ 1

−1

Jα,β
n (z) Jα,β

m (z)ω(z)dz =
2α+β+1

2n+ α+ β + 1
· Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
δn,m,

where Γ(·) is the gamma function. Let

λα,β
n =

(︃
2α+β+1

2n+ α+ β + 1
· Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!

)︃ 1
2

be our normalization constant. We note that the normalized Jacobi polynomials

pα,βn (z) =
Jα,β
n (z)

λα,β
n

(31)

form an orthonormal OP family.

We now discuss some useful properties of Jacobi polynomials. It is known that ([50], eq. (3.100)):

Jα,β
n (z) =

1

n+ α+ β

[︁
(n+ β)Jα,β−1

n (z) + (n+ α)Jα−1,β
n (z)

]︁
. (32)

From (4.21.7) in [53], it is known that the derivative of Jα,β
n (z) is proportional to Jα+1,β+1

n−1 (z):

∂

∂z
Jα,β
n (z) =

1

2
(n+ α+ β + 1)Jα+1,β+1

n−1 (z) . (33)

From (32) and (33), it follows that

∂

∂z
Jα,β
n (z) =

1

2
·
(︂
(n+ β)Jα+1,β

n−1 (z) + (n+ α)Jα,β+1
n−1 (z)

)︂
. (34)

Additionally, the Jacobi polynomials Jα+1,β
n−1 (z) and Jα,β+1

n−1 (z) can be written as sums of Jα,β
n−1 (z)

polynomials. In particular from [50] (3.112) and (3.115),

Jα+1,β
n−1 (z) =

Γ(n+ β)

Γ(n+ α+ β + 1)
·
n−1∑︂
k=0

(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
Jα,β
k (z) , (35)

and

Jα,β+1
n−1 (z) =

Γ(n+ α)

Γ(n+ α+ β + 1)
·
n−1∑︂
k=0

(−1)n−k−1 (2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + α+ 1)
Jα,β
k (z) .

(36)

Using (35) and (36) in (34) allows us to write ∂
∂zJ

α,β
n (z) as a sum of

{︂
Jα,β
k (z)

}︂
k≤n

as follows:

33

∂

∂z
Jα,β
n (z) =

n+ β

2

(︄
Γ(n+ β)

Γ(n+ α+ β + 1)

n−1∑︂
k=0

(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
Jα,β
k (z)

)︄

− n+ α

2

(︄
Γ(n+ α)

Γ(n+ α+ β + 1)

n−1∑︂
k=0

(−1)n−k (2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + α+ 1)
Jα,β
k (z)

)︄
.

(37)

We use these properties to write ∂
∂zp

α,β
n (z) as a sum of

{︂
pα,βk (z)

}︂
k≤n

:

Corollary D.10. Let pα,βn (z) and λα,β
n be as defined in (31).

Then
∂

∂z
λα,β
n pα,βn (z) =

(n+ β)

2
·(︄

Γ(n+ β)

Γ(n+ α+ β + 1)

n−1∑︂
k=0

(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
λα,β
k pα,βk (z)

)︄

− (n+ α)

2
·(︄

Γ(n+ α)

Γ(n+ α+ β + 1)

n−1∑︂
k=0

(−1)n−k (2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
λα,β
k pα,βk (z)

)︄

Proof. Recall that Jα,β
n (z) = λα,β

n pα,βn . Then the claim follows from (37).

D.3.3 HiPPO for Jacobi Polynomials

Theorem 8. Let pα,βn (z) be defined as in (31) and ω(z) = (1− z)α(1 + z)β . Then

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
bu(t)

where A is 3-quasiseperable.

Proof. From Corollary D.6,

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
u(t)

⎡⎢⎢⎣
...

pα,βn (1)
...

⎤⎥⎥⎦
where A = A1 + 2A2 for A1 as defined in Corollary D.5 and A2[n, k] = pα,βn (−1)pα,βn (−1).

From Corollary D.10, we observe that

A1[n, k] = 2 ·

⎧⎪⎪⎨⎪⎪⎩
(n+β)

2 λα,β
n

· Γ(n+β)
Γ(n+α+β+1) ·

(︂
(2k+α+β+1)Γ(k+α+β+1)

Γ(k+β+1) λα,β
k

)︂
−

(n+α)

2 λα,β
n

· Γ(n+α)
Γ(n+α+β+1) ·

(︂
(−1)n−k (2k+α+β+1)Γ(k+α+β+1)

Γ(k+α+1) λα,β
k

)︂
if k < n

0 otherwise

.

(38)

Then we note that,
A1 = D11Q1D12 −D21Q1D22, (39)

34

where D11,D12,D21,D22 are the diagonal matrices such that

D11[n, n] =
1

λα,β
n

· Γ(n+ β + 1)

Γ(n+ α+ β + 1)
,

D12[k, k] =
(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
λα,β
k ,

D21[n, n] = (−1)n · (1

λα,β
n

· Γ(n+ α+ 1)

Γ(n+ α+ β + 1)

D22[k, k] = (−1)k · (2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + α+ 1)
λα,β
k ,

and

Q1[n, k] =

{︃
1 if k < n

0 otherwise.
.

(39) makes use of the fact that (−1)n+k = (−1)n−k along with the definitions above.

Any submatrix of Q1 below the diagonal contains all 1s, and submatrix of Q1 above the diagonal
contains all 0s. Then any submatrix above or below the diagonal has rank 1. Therefore Q1 is 1-
quasiseparable. Since Q1 is 1-quasiseparable and D11,D12,D21,D22 are all diagonal matrices, part
(iii) of Lemma D.9 implies that the matrices D11Q1D12 and D21Q1D22 are both 1-quasiseparable.
Therefore part (i) of Lemma D.9 implies that A1 is 2-quasiseparable.

From (4.1.1) and (4.1.4) in [53], it is known that

pα,βn (1) =
1

λα,β
n

(︃
n+ α

n

)︃
and pα,βn (1) =

(−1)n

λα,β
n

(︃
n+ β

n

)︃
where (︃

z

n

)︃
=

{︄
Γ(z+1)

Γ(n+1)Γ(z−n+1) if n ≥ 0

0 if n < 0
.

Then A2 can be written D3Q2D4 where D3,D4 are the diagonal matrices such that

D3[n, n] =
(−1)n

λα,β
n

(︃
n+ β

n

)︃
, D4[k, k] =

(−1)k

λα,β
k

(︃
k + β

k

)︃
,

where Q2[n, k] = 1 for all 0 ≤ n, k < N . Q2 has rank 1, and D3,D4 are diagonal matrices. Hence
by part (ii) and (iii) Lemma D.9, A2 is 1-quasiseparable.

Since A1 is 2-quasiseparable and A2 is 1-quasiseparable, part (i) of Lemma D.9 implies that
A = A1 + 2A2 is 3-quasiseparable and the claim follows.

D.3.4 HiPPO-LagT

The Laguerre polynomial of degree n with parameters α > −1 will be denoted Lα
n (z). The Laguerre

polynomials are orthogonal with respect to measure zαe−z . In particular, from (5.1.1) in [53] we
know that ∫︂ ∞

−1

Lα
n (z)Lα

m (z) zαe−zdz =
Γ(n+ α+ 1)!

Γ(n+ 1)
δn,m.

Let λn =
(︂

Γ(n+1)
Γ(n+α+1)

)︂ 1
2

be our normalization constant. We note that the normalized Laguerre
polynomials

pn (z) = λnL
α
n(t− Y) (40)

35

form an orthonormal OP family with respect to measure ω = (t− Y)αe−(t−Y)
1(−∞,t) for a fixed α

and tilting χ = (t− Y)α exp
(︂
− 1−β

2 (t− Y)
)︂
1(−∞,t) for a fixed β.

We use the following result from [24]:
Theorem 9. Let pn(z) be defined as in (40). Then

ẋn(t) = −Ax(t) + bu(t)

where

A[n, k] =

⎧⎨⎩
1+β
2 if k = n

1 if k < n

0 otherwise
,

b[n] = λn

(︃
n+ α

n

)︃
,

We now show that A as defined in Theorem 9 is 1-quasiseperable.
Lemma D.11. Let A be defined as in Theorem 9. Then A is 1-quasiseperable.

Proof. From Theorem 9, we know that

A[n, k] =

⎧⎨⎩
1+β
2 if k = n

1 if k < n

0 otherwise
,

b[n] = λn

(︃
n+ α

n

)︃
.

Below the diagonal, all entries A[n, k] = 1. Then any submatrix below the diagonal has rank 1.
Similarly, above the diagonal, all entries A[n, k] = 0. Then any submatrix above the diagonal also
has rank 1. Then by Definition 4, the claim follows.

E LSSL Algorithms

• Appendix E.1 proves Theorem 2, providing an algorithm to compute the Krylov function
efficiently for LSSLs.

• Appendix E.2 shows a further simplification of Corollary 4.1, presenting an even simpler
class of structured matrices that we use in our implementation of LSSL.

• Appendix E.3 provides technical details of the implementation of LSSL, in particular for
computing the MVM black box (multiplication by A) and for computing gradients during
backpropagation.

E.1 Proof of Theorem 2

This section addresses the computational aspects of the LSSL. In particular, we prove Theorem 2
for the computational speed of computing the Krylov function (7) for quasiseparable matrices A, by
providing a concrete algorithm in Appendix E.1.1.

We restate the Krylov function (7) here for convenience. Recall that L is the length of the input
sequence and N is the order of the LSSL internate state, e.g. A ∈ RN×N .

KL(A,B,C) =
(︁
CAiB

)︁
i∈[L]

∈ RL = (CB,CAB, . . . , CAL−1B)

Remark E.1. We call (7) the Krylov function following the notation of [17], since it can be written
K(A,B)TC where K(A,B) is the Krylov matrix defined in (8). Alternative naming suggestions are
welcome.

36

E.1.1 The Algorithm

We follow the similar problem of [17, Lemma 6.6] but track the dependence on L and the log factors
more precisely, and optimize it in the case of stronger structure than quasiseparability, which holds in
our setting (particularly Theorem 11).

The first step is to observe that the Krylov function KL(A,B,C) is actually the coefficient vector
of C(I −Ax)−1B (mod xL) as a polynomial in x. (Note that Ax means simply multiplying every
entry in A by a scalar variable x.) This follows from expanding the power series (I − Ax)−1 =
I +Ax+A2x2 + Thus we first compute C(I −Ax)−1B, which is a rational function of degree
at most N in the numerator and denominator (which can be seen by the standard adjoint formula for
the matrix inverse).

The second step is simply inverting the denominator of this rational function (mod xL) and multi-
plying by the numerator, both of which are operations that need L log(L) time by standard results for
polynomial arithmetic [51].

For the remainder of this section, we focus on computing the first part. We make two notational
changes: First, we transpose C to make it have the same shape as B. We consider the more general
setting where B and C have multiple columns; this can be viewed as handling a “batch” problem
with several queries for B,C at the same time.
Lemma E.2. Let A be a q-quasiseparable matrix. Then

CT (I−Ax)−1B where A ∈ RN×N B,C ∈ RN×k

is a k × k matrix of rational functions of degree at most N , which can be computed in O(q3 log4 N)
operations.

The main idea is that quasiseparable matrices are recursively “self-similar”, in that the principal
submatrices are also quasiseparable, which leads to a divide-and-conquer algorithm. In particular,

divide A =

[︃
A00 A01

A10 A11

]︃
into quadrants. Then by Definition 4, A00,A11 are both q-quasiseparable

and A01,A10 are rank q. Therefore the strategy is to view I − Ax as a low-rank perturbation of
smaller quasiseparable matrices and reduce the problem to a simpler one.
Proposition 10 (Binomial Inverse Theorem or Woodbury matrix identity [23, 60]). Over a commu-
tative ring R, let A ∈ RN×N and U,V ∈ RN×p. Suppose A and A+UVT are invertible. Then
Ip +VTA−1U ∈ Rp×p is invertible and

(A+UVT)−1 = A−1 −A−1U(Ip +VTA−1U)−1VTA−1

For our purposes, R will be the ring of rational functions over R.

Proof of Lemma E.2. Since A is q-quasiseparable, we can write A10 = ULV
T
L and A01 = UUV

T
U

where U·,V· ∈ FN×q . Notice that we can write I−Ax as

I−Ax =

[︃
I−A00x 0

0 I−A11x

]︃
+

[︃
0 UU

UL 0

]︃ [︃
VL 0
0 VU

]︃T
x.

Suppose we know the expansions of each of

M1 ∈ Rk×k = CT

[︃
I−A00x 0

0 I−A11x

]︃−1

B (41)

M2 ∈ Rk×2q = CT

[︃
I−A00x 0

0 I−A11x

]︃−1 [︃
0 UU

UL 0

]︃
(42)

M3 ∈ R2q×2q =

[︃
VL 0
0 VU

]︃T [︃
I−A00x 0

0 I−A11x

]︃−1 [︃
0 UU

UL 0

]︃
(43)

M4 ∈ R2q×k =

[︃
VL 0
0 VU

]︃T [︃
I−A00x 0

0 I−A11x

]︃−1

B. (44)

37

By Proposition 10, the desired answer is

CT (X −A)−1B = M1 −M2(I2q +M3)
−1M4.

Then the final result can be computed by inverting I2t+M3 (O(q3N log(N)) operations), multiplying
by M2,M4 (O((kq2 + k2q)N log(N)) operations), and subtracting from M1 (O(k2N log(N))
operations). This is a total of O((q3 + kq2 + k2q)N log(N)) operations. Note that when k =
O(q logN), this becomes O(q3N log3 N); we will use this in the analysis shortly.

To compute M1,M2,M3,M4, it suffices to compute the following:

CT
1 (I−A00x)

−1B0 CT
1 (I−A11x)

−1B1

CT
0 (I−A00x)

−1UU CT
1 (I−A11x)

−1UL

VT
L(I−A00x)

−1UU VT
U (I−A11x)

−1UL

VT
L(I−A00x)

−1B0 VT
U (I−A11x)

−1B1.

(45)

But to compute those, it suffices to compute the following (k + t)× (k + t) matrices:

[C0 VL]
T
(I−A00x)

−1 [B0 UU]

[C1 VU]
T
(I−A11x)

−1 [B1 UL]
(46)

Since A00 and A11 have the same form as A, this is two recursive calls of half the size. Notice that
the size of the other input (dimensions of B,C) is growing, but when the initial input is k = 1, it
never exceeds 1 + q logN (since they increase by q every time we go down a level). Earlier, we
noticed that when k = O(q logN), the reduction step has complexity O(q3N log3(N)) for any
recursive call. The recursion adds an additional logN multiplicative factor on top of this.

Corollary E.3. Suppose that A is semiseparable instead of quasiseparable, and suppose q is a small
constant. Then the cost of Lemma E.2 is O(N log2(N)) operations.

This follows from the fact that in the recursion (45) and (46), the U,V matrices do not have to be
appended if they already exist in B,C. For intuition, this happens in the case when A is tridiagonal,
so that U, V have the structure (1, 0, . . . , 0), or the case when the off-diagonal part of A is all 1 (such
as the HiPPO-LegT matrix). The matrices in Appendix D.3 and Appendix E.2 (Theorems 8, 9 and 11)
actually satisfy this stronger structure, so Corollary E.3 applies.

Combining everything, this proves Theorem 2 with the exact bound N log2(N)+L log(L) operations.
The memory claim follows similarly, and the depth of the algorithm is log2(N) + log(L) from the
divide-and-conquer recursions.

E.1.2 Summary of Computation Speed for LSSLs and other Mechanisms

We provide a summary of complexity requirements for various sequence model mechanisms, includ-
ing several versions of the LSSL. Note that these are over exact arithmetic as in Theorem 2.

First, the self-attention mechanism is another common sequence model that has an L2 dependence on
the length of the sequence, so it is not suitable for the very long sequences we consider here. (We do
note that there is an active line of work on reducing this complexity.)

Second, we include additional variants of the LSSL. In Table 7, LSSL-naive denotes learning A and
∆t for unstructured A; LSSL-fixed denotes not learning A,∆t (see Appendix B for details); LSSL
denotes the learning A and ∆t for the structured class A.

We include brief explanations of these complexities for the LSSL variants.

LSSL-naive

• Parameters: O(HN) in the matrices B,C and O(N2) in the matrix A.

• Training: O(HN3) to invert compute the matrix A for all H features. O(LHN2) to
compute the Krylov matrix C,CA, O(BL log(L)HN to multiply by B and convolve
with u.

38

Table 7: Complexity of various sequence models in terms of length (L), batch size (B), and hidden dimension
(H). Measures are parameter count, training computation, memory requirement, and inference computation for 1
sample and time-step.

Convolution RNN

Parameters LH2 H2

Training BLH2 + L log(L)(H2 +BH) BLH2

Memory BLH + LH2 BLH
Parallel Yes No
Inference LH2 H2

Attention LSSL-naive

Parameters H2 HN +N2

Training B(L2H + LH2) HN3 + LHN2 +BL log(L)HN
Memory B(L2 +HL) HN2 + LHN +BLH
Parallel Yes Yes
Inference L2H +H2L HN2

LSSL-fixed LSSL

Parameters HN HN
Training BL log(L)HN BH(N log2 N + L logL) +BL log(L)H
Memory LHN +BLH BHL
Parallel Yes Yes
Inference HN2 HN

• Memory: O(HN2) to store A. O(LHN) to store the Krylov matrix. O(BLH) to store the
inputs/outputs

• Inference: O(HN2) to for MVM by A.

LSSL-fixed

• Parameters: O(HN) in the matrices C.

• Training: O(BL log(L)H) to convolve with u.

• Memory: O(LHN) to store the Krylov matrix (but cached, so no backprop). O(BLH) for
inputs/outputs.

• Inference: O(HN2) to for MVM by A.

LSSL

• Parameters: O(HN) for A,B,C,∆t.

• Training: BH · Õ(N + L) to compute Krylov, O(BL log(L)H) for the convolution.

• Memory: O(BHL) to store Krylov (and inputs/outputs).

• Inference: O(HN) to multiply xt[H,N] by A[H,N,N]

E.2 Further Simplification with Tridiagonal Matrices

The algorithm for Theorem 2 for general quasiseparable matrices is still difficult to implement in
practice, and we make a further simplification using a particular subclass of quasiseparable matrices.

Theorem 11. The class of N × N matrices SN = {P (D + T−1)Q} with diagonal D,P,Q and
tridiagonal T includes the original HiPPO-LegS, HiPPO-LegT, and HiPPO-LagT matrices [24].

Theorem 11 shows that a simple representation involving tridiagonal and diagonal matrices captures
all of the original HiPPO matrices. In particular, our LSSL implementation initializes A to be the
HiPPO-LegS matrix (Appendix B) and learns within the class defined by Theorem 11.

39

We note that the matrices in Theorem 11 are all 1-quasiseparable and in particular also contain
the HiPPO matrices for Gegenbauer and generalized Laguerre orthogonal polynomials derived
in Theorem 9. In fact, the notion of semiseparability, which is closely related to (and actually
is the predecessor of) quasiseparability, was originally motivated precisely to capture inverses of
tridiagonal matrices. Thus the structured class in Theorem 11 can be viewed as an approximation
of 3-quasiseparable matrices (Corollary 4.1) to 1-quasiseparable, which still contains many of the
HiPPO families of interest.

Proof. We simply show that each of these specific matrices can be represented in the proposed form.

HiPPO-LegT.

Let A denote the HiPPO-LegT transition matrix. Up to row/column scaling (i.e. left- and right-
multiplication by diagonal P and Q), we can write

Ank =

{︃
(−1)n−k if n ≤ k

1 if n ≥ k
.

The main observation is that

A−1 =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 0 0
−1 0 1 . . . 0 0 0
0 −1 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 1 0
0 0 0 . . . −1 0 1
0 0 0 . . . 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
HiPPO-LegS. The HiPPO-LegS matrix is

Ank = −

⎧⎨⎩
(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

.

This can be written as −PA′Q where P = Q = diag((2n+ 1)
1
2) and

A′
nk =

⎧⎨⎩
1 if n > k

0 if n < k

1− n
2n+1 if n = k

.

Finally, A′ = D + T−1 where D = −diag(n
2n+1) and T is the matrix with 1 on the main diagonal

and −1 on the subdiagonal.

HiPPO-LagT. The HiPPO-LagT matrix is

Ank = −

⎧⎨⎩
1 if n > k

0 if n < k
1
2 if n = k

.

This can be written as −P (D+T−1)Q where P = Q = I , D = − 1
2I , and T is the same tridiagonal

matrix as in the HiPPO-LegS case.

E.3 Implementation Details

In this section we provide several implementation details that are useful for implementing LSSLs in
practice.

Recall that one of the main primitives of LSSLs is the matrix-vector multiplication y = Ax (Sec-
tion 3.1, Appendix B), where A is the state matrix A discretized with step size ∆t using the bilinear

40

method (Appendix C.1.3). In Appendix E.3.1, we describe how this MVM can be performed with
simpler MVM primitives which we call the “forward difference” and “backward difference”.

However, if these MVM primitives are implemented in a specialized way for particular classes
of A matrices (i.e., not using atoms in a standard autograd framework), then we also need to
calculate several additional gradients by hand. Appendix E.3.2 shows that calculating gradients to
A,∆t, x during backpropagation can actually be reduced to those same forward/backward difference
primitives.

Finally, in the case when A is the structured class of matrices in Theorem 11, Appendix E.2 shows how
to efficiently calculate those primitives using a black-box tridiagonal solver. Our code2 implements
all the algorithms in this section, with bindings to the cuSPARSE library for efficient tridiagonal
solving on GPU.

E.3.1 Matrix-vector Multiplication by the Bilinear Discretization

Bilinear Discretization The discrete state-space system is given by (4) and (5), re-written here for
convenience

xt = Axt−1 +But

yt = Cxt +Dut

where A is a function of A, δt and A is a function of A,B, δt. In particular, we define A to be
the matrix discretized using the bilinear method (Appendix C.1.3), and the system can be written
explicitly:

xt =

(︃
I − ∆tA

2

)︃−1(︃(︃
I +

∆tA

2

)︃
xt−1 +∆tBut

)︃
yt = Cxt +Dut

Thus it suffices to compute the maps

F (A,∆t, x) := (I +∆tA)x

and

B(A,∆t, x) := (I +∆tA)−1x.

We will call these functions the forward difference and backward difference maps, respectively. (The
Euler and backward Euler discretizations (Appendix C.1.2) are also known as the “forward difference”
and “backward difference” methods, which in the case of linear systems reduces down to the maps F
and B.)

E.3.2 Gradients through the Forward/Backward Difference Primitives

In this section we will let y = F (A,∆t, x) or y = B(A,∆t, x) denote the computation of interest,
L(y) denote a generic loss function, and dx, dy, . . . denote gradients to x, y, . . . (e.g., dx = ∂L(y)

∂x).

Derivatives of backward difference. First we have the standard ∂L(y)
∂x = ∂L(y)

∂y
∂y
∂x = ∂L(y)

∂y (I +

∆tA)−1. This corresponds to matrix-vector multiplication by (I +∆A)−T . In other words, it can be
computed by the primitive B(AT ,∆t, dy).

Similarly, in order to compute ∂L(y)
∂∆t we require ∂y

∂∆t . We need the result ∂Y −1

∂x = −Y −1 ∂Y
∂x Y

−1for
an invertible matrix Y [41, equation (59)]. Then

∂y

∂∆t
=

∂(I +∆tA)−1

∂∆t
x

= −(I +∆tA)−1 ∂(I +∆tA)

∂∆t
(I +∆tA)−1x

= −(I +∆tA)−1A(I +∆tA)−1x

2Available at https://github.com/HazyResearch/state-spaces

41

https://github.com/HazyResearch/state-spaces

and

∂L(y)

∂∆t
=

∂L(y)

∂y

∂y

∂∆t

= −
[︃
∂L(y)

∂y
(I +∆tA)−1

]︃
A
[︁
(I +∆tA)−1x

]︁
We can summarize this as follows. Let y = B(A,∆t, x) = (I +∆tA)−1x and dy = ∂L(y)/∂y (as
a column vector). Then

y = B(A,∆t, x)

dx = B(AT ,∆t, dy)

d∆t = −dxTAy.

Derivatives of forward difference. The forward case is simpler. Let y = F (A,∆t, x) = (I +

∆tA)x. Then ∂y
∂x = I +∆tA and ∂y

∂∆t = Ax. Thus

y = F (A,∆t, x)

dx = (I +∆tA)T dy = F (AT ,∆t, dy)

d∆t = dyTAx.

E.3.3 Computing the Forward/Backward Difference for Tridiagonal Inverse Matrices

Theorem 11 uses the classes of matrices A = P (D + T−1)Q for diagonal D,P,Q and tridiagonal
T . We describe how the forward and backward difference MVMs can be performed efficiently for
this class of matrices by reducing to a black-box tridiagonal solver.

Forward difference. It is straightforward to compute

F (A,∆t, x) = (I +∆t · P (D + T−1)Q)x = x+∆t · PDQx+∆t · PT−1Qx

in terms of multiplication by diagonal matrices x ↦→ Dx and tridiagonal solving x ↦→ T−1x.

Backward difference. We will explicitly rewrite the inverse of the matrix G = I +∆t · P (D +
T−1)Q.

The core observation is to multiply G by a choice selection of matrices to cancel out the T−1 term:

TP−1GQ−1 = TP−1Q−1 +∆tTD +∆tI.

Rearranging yields

G−1 = Q−1(TP−1Q−1 +∆tTD +∆tI)−1TP−1.

Now note that the matrix in the middle is tridiagonal. Hence we have reduced MVM by G−1, i.e. the
backward difference problem, to a series of diagonal and tridiagonal MVMs (easy), and a tridiagonal
inverse MVM (a.k.a. a tridiagonal solve).

F Additional Experiments and Experiment Details

We provide additional experiments and ablations in Appendix F.1. Appendix F.2 describes our
training methodology in more detail for each dataset. The hyperparameters for all reported results are
in Table 11.

F.1 Additional Experiments

Missing Data on CharacterTrajectories. Table 8 has results for a setting considered in previous
work involving irregularly-sampled time series. LSSL is competitive with the best prior methods,
some of which were specialized to handle this setting.

42

Table 8: Test accuracies for irregularly sampled time series on the CharacterTrajectories dataset. p% denotes
percent of data that was randomly dropped.

Model 0% 30% 50% 70%

GRU-ODE [16] - 92.6 86.7 89.9
GRU-∆t [31] - 93.6 91.3 90.4
GRU-D [9] - 94.2 90.2 91.9
ODE-RNN [45] - 95.4 96.0 95.3
NCDE [31] - 98.7 98.8 98.6
CKCNN [44] 99.53 98.83 98.60 98.14
LSSL 99.30 98.83 98.83 98.37

Table 9: A and ∆t ablations on sCIFAR.

Learn ∆t Fixed ∆t

Learn A 82.70 80.34
Fixed A 80.61 80.18

Table 10: A and ∆t ablations on SC-Raw.

Learn ∆t Fixed ∆t

Learn A 96.07 95.20
Fixed A 91.59 90.51

A and ∆t ablations. Tables 9 and 10 show results on SpeechCommands-Raw and a smaller model
on sCIFAR, ablating that learning either the A or ∆t parameters provides a consistent performance
increase.

Finally, Fig. 2 plots the ∆t values at the beginning and end of training on the SpeechCommands-Raw
dataset, confirming that training ∆t does noticeably change their values to better model the data. In
particular, the ∆t values spread over time to cover a larger range of timescales.

F.2 Methodology

We describe our training procedure on each dataset for our model and any relevant baselines.

General All models and datasets used the Adam optimizer with a LR decay scheduler that reduced
LR by 5x upon validation plateau for 10 or 20 epochs. We fixed the batch size to 50 for the
MNIST/CIFAR datasets and 32 for other datasets, reducing if necessary to fit in memory.

For all models, we chose the hyperparameters that achieved the highest validation accuracy/RMSE
(values in Table 11).

Error Bars We note that the results in Section 5 do not include standard deviations for formatting
reasons, since most of the baselines were best results reported in previous papers without error bars.
As Section 6 noted, the LSSL was actually quite stable in performance and not particularly sensitive
to hyperparameters. We note that for every result in Section 5, the LSSL with error bars was at least
one standard deviation above the baseline results.

F.2.1 Sequential and Permuted MNIST

The model architecture of LSSL(-f) was fixed to the small architecture with 200K parameters
(Appendix B). Following [44], we fixed the learning rate scheduler to decay on plateau by with a
factor of 0.2, and the number of epochs to 200. We searched hyperparameters over the product of the
following learning rate values: {0.001, 0.002, 0.004, 0.01}, and dropout values: {0.1, 0.2}.

43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

St
ar

t
Fin

al

Large Timescales

14000

16000

18000

20000

22000

24000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

St
ar

t
Fin

al
Small Timescales

500

600

700

800

Figure 2: We visualize the 32 largest and smallest ∆t values at the start and end of training for the first layer of
our state-of-the-art LSSL model on the Speech Commands Raw dataset. The plots visualize 1

∆t
, which can be

interpreted as the timescale at which they operate (Section 2). The plots confirm that LSSL does modify the dt
values in order to more appropriately model the speech data.

F.2.2 Sequential CIFAR

The model architecture of LSSL(-f) was fixed to the large architecture with 2M param-
eters (Appendix B). We searched over the product of the following learning rate values:
{0.001, 0.002, 0.004, 0.01, 0.02}, and dropout values: {0.2, 0.3, 0.4}.

F.2.3 BIDMC Healthcare

The BIDMC tasks aim at predicting three vital signs of a patient, respiratory rate (RR), heart rate
(HR), and oxygen saturation (SpO2), based on PPG and ECG signals. The clinical data is provided
by the Beth Israel Deaconess Medical Center. The PPG and ECG signals were sampled at 125Hz and
have a sequence length of 4000.

For this dataset, we fixed the small LSSL(-f) model (Appendix B). Following [47], we changed the
scheduler to a multistep scheduler that decays on fixed epochs, and trained for 500 epochs.

For our methods, we searched over the product of the following learning rate values:
{0.004, 0.01, 0.02}, and dropout values: {0.1, 0.2}.

Baseline parameters. For CKConv, we searched over ω0 ∈ [10, 50] following the guidelines of
Romero et al. [44] (best value ω0 = 20). Since we tuned the sensitive ω0, we fixed the learning rate
to 0.001 and dropout to 0.1 which was the default used in [44].

The transformer model we used was a vanilla transformer with a hidden dimension of 256, 8 attention
heads, 4 layers, and a feedforward dimension of 1024. We used a learning rate of 0.001 and a dropout
of 0. We tried a few variants, but no transformer model was effective at all.

44

F.2.4 CelebA

For these larger datasets, we reduced the size of the order N and did not tie it to H . These experiments
were computationally heavy and we did not do any tuning (i.e., Table 11 are the only runs). The
model size was picked to train in a reasonable amount of time, and the learning rate for the first
attribute was picked based on general best hyperparameters for other datasets, and then reduced for
subsequent experiments on the other attributes.

Baseline parameters. For ResNet-18, we used the standard implementation with a learning rate of
0.001.

F.2.5 Speech Commands

For Speech Commands, we use the same dataset and preprocessing code from Kidger et al. [31],
Romero et al. [44]. We consider the two settings from Kidger et al. [31]: SC-Raw uses very long
time-series raw speech signals of 16000 timesteps each, while SC-MFCC uses standard MFCC
features of 161 timesteps.

For our models trained over the raw data, we searched over the product of the following learn-
ing rate values: {0.002, 0.004, 0.01}, and dropout values: {0.1, 0.2}. For our models trained
over the MFCC features, we searched over the product of the following learning rate values:
{0.0001, 0.001, 0.002, 0.004, 0.01}, and dropout values: {0.1, 0.2, 0.3, 0.4}.

Baseline parameters. To get more results for the strongest baselines on very long sequences in the
literature, we ran the UniCORNN [47] baseline on both Raw and MFCC variants, and the Neural
Rough Differential Equations [37] baseline on the Raw variant.

For UniCORNN trained over the raw data, we searched over multiple hyperparameters. Specifically,
we searched over alpha: {0, 10, 20, 30, 40}, ∆t values: {0.00001, 0.0001, 0.001, 0.01}, and learning
rate values: {0.0001, 0.0004, 0.001, 0.004}. However, since the method was not able to generalize to
the validation set for any hyperparameter combination, we used the authors’ reported hyperparameters
for the Eigenworms dataset as it also contains very long sequences (≈ 18000). In particular, we used
a learning rate of 0.02, hidden dimension of 256, 3 layers with dt values [0.0000281, 0.0343, 0.0343],
dropout of 0.1, and alpha of 0.

For UniCORNN trained over the MFCC features, we used the authors’ reported hyperparameters for
the MNIST dataset (again due to similarly sized sequence lengths), and further tuned the learning
rate over the values: {0.0001, 0.001, 0.005, 0.01, 0.02}, ∆t values: {0.01, 0.1}, and alpha values:
{10, 20, 30}.

The best model used a learning rate of 0.02, hidden dimension of 256, 3 layers with dt values of 0.19,
dropout of 0.1, and alpha of 30.65.

For NRDE on SC-Raw, we used depth 2, step size 4, hidden dimension 32, and 3 layers. Our results
were better than unofficial numbers reported in correspondence with the authors, so we did not tune
further.

F.2.6 Convergence Speed (Table 5)

The convergence table compared against logs directly from the corresponding baseline’s SoTA models
[44, 47], which were either released publicly or found in direct correspondence with the authors. To
generate the wall clock numbers, we ran the baseline models on the same hardware as our models
and extrapolated to the target epoch.

F.3 Hyperparameters

Best hyperparameters for all datasets are reported in Table 11.

45

Table 11: The values of the best hyperparameters found for each dataset.

Dataset Hyperparameters
Learning Rate Dropout Batch Size Epochs Depth Hidden Size H Order N Channels M

sMNIST 0.004 0.2 50 200 6 128 128 1
pMNIST 0.001 0.2 50 200 6 128 128 1
sCIFAR 0.02 0.3 50 200 4 256 256 4
BIDMC-RR 0.004 0.1 32 500 6 128 128 1
BIDMC-HR 0.01 0.2 32 500 6 128 128 1
BIDMC-SpO2 0.01 0.1 32 500 6 128 128 1
SC Raw 0.01 0.2 16 50 4 256 128 2
SC MFCC 0.004 0.4 32 100 6 128 128 1
sCelebA-Att. 0.002 0.1 32 200 3 256 128 4
sCelebA-MSO 0.002 0.1 32 200 3 256 128 4
sCelebA-Smil. 0.01 0.1 32 200 3 256 128 4
sCelebA-WL 0.002 0.1 32 200 3 256 128 4

46

	Introduction
	Technical Background
	Linear State-Space Layers (LSSL)
	Different Views of the LSSL
	Expressivity of LSSLs
	Deep LSSLs

	Combining LSSLs with Continuous-time Memorization
	Incorporating Long Dependencies into LSSLs
	Theoretically Efficient Algorithms for the LSSL

	Empirical Evaluation
	Image and Time Series Benchmarks
	Speech and Image Classification for Very Long Time Series
	Advantages of Recurrent, Convolutional, and Continuous-time Models
	LSSL Ablations: Learning the Memory Dynamics and Timescale

	Discussion
	Related Work
	Model Details
	(M)LSSL Computation
	Initialization of A
	Initialization of dt
	Deep Neural Network Architecture

	LSSL Proofs
	Approximations of ODEs
	Picard Iteration
	Numerical Integration Methods
	Discretization of State-Space Models

	RNNs are LSSLs
	Intuition / Proof Sketches
	Capturing gates through discretization
	Capturing non-linearities through Picard iteration
	Capturing Deep, Linear, Gated RNNs

	LSSL Proofs and Algorithms
	Preliminaries: HiPPO Framework and Recurrence Width
	Definition of HiPPO Operator
	HiPPO Framework for Deriving the HiPPO Operator
	Recurrence Width

	Proof of Theorem 1
	Relating Orthogonal Polynomials and Recurrence Width
	HiPPO for General Measures
	Translated HiPPO (Sliding Windows)
	Scaled HiPPO: Recovering HiPPO-LegS

	Proof of Corollary 4.1: HiPPO for Classical Orthogonal Polynomials
	Quasiseparable Matrices
	Jacobi Polynomials
	HiPPO for Jacobi Polynomials
	HiPPO-LagT

	LSSL Algorithms
	Proof of Theorem 2
	The Algorithm
	Summary of Computation Speed for LSSLs and other Mechanisms

	Further Simplification with Tridiagonal Matrices
	Implementation Details
	Matrix-vector Multiplication by the Bilinear Discretization
	Gradients through the Forward/Backward Difference Primitives
	Computing the Forward/Backward Difference for Tridiagonal Inverse Matrices

	Additional Experiments and Experiment Details
	Additional Experiments
	Methodology
	Sequential and Permuted MNIST
	Sequential CIFAR
	BIDMC Healthcare
	CelebA
	Speech Commands
	Convergence Speed

	Hyperparameters

