Fast Margin Maximization via Dual Acceleration

Ziwei Ji' Nathan Srebro?> Matus Telgarsky '

Abstract

We present and analyze a momentum-based gra-
dient method for training linear classifiers with
an exponentially-tailed loss (e.g., the exponential
or logistic loss), which maximizes the classifica-
tion margin on separable data at a rate of O(1/t?).
This contrasts with a rate of O(1/ log(t)) for stan-
dard gradient descent, and O(1/t) for normalized
gradient descent. This momentum-based method
is derived via the convex dual of the maximum-
margin problem, and specifically by applying Nes-
terov acceleration to this dual, which manages to
result in a simple and intuitive method in the pri-
mal. This dual view can also be used to derive a
stochastic variant, which performs adaptive non-
uniform sampling via the dual variables.

1. Introduction

First-order optimization methods, such as stochastic gra-
dient descent (SGD) and variants thereof, form the opti-
mization backbone of deep learning, where they can find
solutions with both low training error and low test error
(Neyshabur et al., 2014; Zhang et al., 2016). Motivated by
this observation of low test error, there has been extensive
work on the implicit bias of these methods: amongst those
predictors with low training error, which predictors do these
methods implicitly prefer?

For linear classifiers and linearly separable data, Soudry et al.
(2017) prove that gradient descent can not only minimize
the training error, but also maximize the margin. This could
help explain the good generalization of gradient descent,
since a larger margin could lead to better generalization
(Bartlett et al., 2017). However, gradient descent can only
maximize the margin at a slow O(1/log(t)) rate.

It turns out that the margin can be maximized much faster
by simply normalizing the gradient: letting 6; denote the

"Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Tllinois, USA *Toyota Technical In-
stitute of Chicago, Chicago, Illinois, USA. Correspondence to:
Ziwei Ji <ziweiji2 @illinois.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

0.05

0.00

(f

—0.05

—0.10

—0.15

margin

—0.20

—0.25

W~ Algl / eq(1.1)

=~ Normalized Gradient Descent
Gradient Descent

=>é= Batch Perceptron

—0.30
—0.35

—0.40 .
0 200 400 600 800 1000

gradient evaluations

Figure 1. Margin-maximization performance of the new
momentum-based method (cf. Algorithm 1 and eq. (1.1)), which
has a rate O(1/t%), compared with prior work discussed below.
All methods are first-order methods, and all but batch perceptron
use an exponentially-tailed smooth loss, whereas batch perceptron
applies gradient descent to the hard-margin problem directly. The
data here is linearly separable, specifically mnist digits 0 and 1.

step size and R the empirical risk with the exponential loss,
consider the normalized gradient step

VR(wt)
R(we)

Wi41 = W — 975

Using this normalized update, margins are maximized at a
O(1/+/t) rate with §; = 1/+/t (Nacson et al., 2018), and at
a O(1/t) rate with 6, = 1 (Ji & Telgarsky, 2019). A key
observation in proving such rates is that normalized gradi-
ent descent is equivalent to an entropy-regularized mirror
descent on a certain margin dual problem (cf. Section 3.1).

Contributions. In this work, we further exploit this dual-
ity relationship from prior work, and design a momentum-
based algorithm with iterates given by

VR(wt)> ’
R(w)
VR(wt)) .

gt =By (gtl +
(1.1)

Fast Margin Maximization via Dual Acceleration

Our main result is that these iterates, with a proper choice
of §; and B3, can maximize the margin at a rate of O(1/t?),
whereas prior work had a rate of O(1/t) at best. The key
idea is to reverse the primal-dual relationship mentioned
above: those works focus on primal normalized gradient
descent, and show that it is equivalent to dual mirror de-
scent, but here we start from the dual, and apply Nesterov
acceleration to make dual optimization faster, and then trans-
late the dual iterates into the momentum form in eq. (1.1).
Note that if our goal is just to accelerate dual optimization,
then it is natural to apply Nesterov’s method; however, here
our goal is to accelerate (primal) margin maximization — it
was unclear whether the momentum method changes the
implicit bias, and our margin analysis is very different from
the standard analysis of Nesterov’s method. The connection
between momentum in the primal and acceleration in the
dual also appears to be new, and we provide it as an auxiliary
contribution. We state the method in full in Algorithm 1,
and its analysis in Section 3.

Since our momentum-based iterates (cf. eq. (1.1)) are de-
signed via a primal-dual framework, they can be written
purely with dual variables, in which case they can be applied
in a kernel setting. However, calculating the full-batch gradi-
ent would require n?2 calls to the kernel, where n denotes the
number of training examples. To reduce this computational
burden, by further leveraging the dual perspective, we give
an adaptive sampling procedure which avoids the earlier use
of batch gradients and only needs n kernel calls per iteration.
We prove a O(1/+/t) margin rate for a momentum-free ver-
sion of this adaptive sampling method, but also provide
empirical support for an aggressive variant which uses our
batch momentum formulation verbatim with these efficient
stochastic updates. These results are presented in Section 4.

For sake of presentation, the preceding analyses and algo-
rithm definitions use the exponential loss, however they can
be extended to both binary and multiclass losses with expo-
nential tails. The multiclass extension is in fact a straight-
forward reduction to the binary case, and is used in most
figures throughout this work. We discuss these extensions
in Section 5.

As an illustrative application of these fast margin maximiza-
tion methods, we use them to study the evolution of the
kernel given by various stages of deep network training.
The main point of interest is that while these kernels do
seem to generally improve during training (in terms of both
margins and test errors), we provide an example where sim-
ply changing the random seed switches between preferring
the final kernel and the initial kernel. These empirical results
appear in Section 6.

We conclude with open problems in Section 7. Full proofs
and further experimental details are deferred to the appen-
dices.

1.1. Related Work

This work is closely related to others on the implicit bias,
most notably the original analysis for gradient descent on
linearly separable data (Soudry et al., 2017). The idea of
using normalized steps to achieve faster margin maximiza-
tion rates was first applied in the case of coordinate descent
(Telgarsky, 2013), where this normalization is closely asso-
ciated with the usual step sizes in boosting methods (Freund
& Schapire, 1997). Many other works have used these nor-
malized iterates, associated potential functions, and duality
concepts, both in the linear case (Gunasekar et al., 2018a; Ji
& Telgarsky, 2018), and in the nonlinear case (Gunasekar
et al., 2018b; Lyu & Li, 2019; Chizat & Bach, 2020; Ji &
Telgarsky, 2020).

There appear to be few analyses of momentum methods;
one example is the work of Ghadimi et al. (2015), which
shows a O(1/t) convergence rate for general convex prob-
lems over bounded domains, but can not be applied to the
exponentially-tailed loss setting here since the domain is
unbounded and the solutions are off at infinity. Connections
between momentum in the primal and Nesterov accelera-
tion in the dual seem to not have been made before, and
relatedly our use of momentum coefficient 3; = t/(¢t + 1)
is non-standard.

Further on the topic of acceleration, Tseng (2008) gave an
application to a smoothed version of the nonsmooth hard-
margin objective, with a rate of O(1/t) to a fixed suboptimal
margin. This analysis requires accelerated methods for
general geometries, which were analyzed by Tseng (2008)
and Allen-Zhu & Orecchia (2014). The original accelerated
method for Euclidean geometry is due to Nesterov (1983).
A simultaneous analysis of mirror descent and Nesterov
acceleration is given here in Appendix B.

The methods here, specifically Proposition 3.7, can ensure
a margin of 7/4 in 4,/In(n) /7 steps, where 7 denotes the
optimal margin and will be defined formally in Section 2.
Another primal-dual method for fast linear feasibility was
given by Hanashiro & Abernethy (2020); the method termi-
nates in O (In(n)/¥) steps with a positive margin, however
the analysis does not reveal how large this margin is.

Various figures throughout this work include experiments
with the batch perceptron, which simply applies (su-
per)gradient ascent to the explicit hard-margin maximization
problem (Cotter et al., 2012). Despite this simplicity, the
method is hard to beat, and surpasses prior implicit margin
maximizers in experiments (cf. Figure 1). Interestingly, an-
other standard method with strong guarantees fared less well
in experiments (Clarkson et al., 2012), and is thus omitted
from the figures.

Fast Margin Maximization via Dual Acceleration

2. Notation

The dataset is denoted by {(z;,v;)}",, where z; € R?
and y; € {—1,+1}. Without loss of generality, we assume
[|z:|l2 < 1. Moreover, let z; := —y;x;, and collect these
vectors into a matrix Z € R™**4¢ whose i-th row is 2,

o
We consider linear classifiers. The margin of a nonzero
linear classifier w € R? is defined as

ming<j<, ¥i(w, ;) —maxi<i<n (W, 2;)

Y(w) = =)
[[wll [[wll2

with (0) := 0. The maximum margin is

Y = max w).
7 Hszﬁl’)/()

If 4 > 0, then the dataset is linearly separable; in this case,
the maximum-margin classifier is defined as

@ := argmaxy(w) = arg max y(w).
lw]l2<1 lwl]l2=1

If ¥ = 0, the dataset is linearly nonseparable.

Our algorithms are based on the empirical risk, defined as

n

Zf ((w, z;)) -

i=1

1
R(w) := -
For presentation, we mostly focus on the exponential loss
¢(z) := e*, but our analysis can be extended to other
exponentially-tailed losses such as the logistic loss £(z) :=
In(1 + e*) and various multiclass losses; these extensions
are discussed in Section 5.

The following potential function ¢ : R” — R will be
central to our analysis: given a strictly increasing loss ¢ :
R — R with lim,_,_ ¢(z) = 0 and lim,_, ¢(z) = oo,
for £ € R™, let

(& =0 Do) | Q.1
i=1

thus (Zw) = (' (nR(w)). For the exponential
loss, 1 is the In-sum-exp function, meaning ¥(Zw) =
In (31, exp({w, 2;))). This ¢ is crucial in our analysis
since (i) it induces the dual variable, which motivates our
algorithms (cf. Section 3.1); (ii) it gives a smoothed approx-
imation of margin, which helps in the margin analysis (cf.
Section 3.3). Here we note another useful property of :
the gradient of ¥)(Zw) with respect to w is Z T Vi)(Zw),
which is a normalized version of VR (w):

iy O ((w, 2:) 2 _ VR(w)

v (Y(Zw)) 0 (Y(Zw)) /0
(2.2)

ZTVY(Zw) =

¥~ Algl / eq(L.1)

== Normalized Gradient Descent
Gradient Descent

0.4 =>é= Batch Perceptron

i

0 200 400 600 800 1000
gradient evaluations

0.5

test error
o
W
[[]

<
o

-

Figure 2. Here the various margin-maximization methods from
Figure 1 are run on non-separable data, specifically mnist digits
3 and 5; as such, test error and not margin are reported. The
methods based on exponential loss still perform well; by contrast,
the batch perceptron suffers, and perhaps requires additional effort
to tune a regularization parameter.

Algorithm 1

Input: data matrix Z € R™*9, step size (6;)5,
momentum factor (53;)52 .
Initialize: wo = g_; = (0,...,0) € R4,
qo = (%,,%) e A,.
fort=0,1,2,...do
gt < Bi(gi—1+ Z " qu).
Wey1 < w — Oy (gt + ZTQt)-
qe1 < exp(Zwis1), and gi1 € Ay,
end for

For the exponential loss, Vi(Zw) € A, is just the soft-
max mapping over Zw, where A,, denotes the probability
simplex. Moreover,

VR(w)

ZTVp(Zw) = Rlw)

(2.3)

3. Analysis of Algorithm 1

A formal version of our batch momentum method is pre-
sented in Algorithm 1. It uses the exponential loss, and is
equivalent to eq. (1.1) since by eq. (2.3),

Z'q = Z"Vp(Zw,) = Rwn)

Here are our main convergence results.

Theorem 3.1. Let w; and g; be given by Algorithm 1 with
0; =1and By = t/(t + 1).

Fast Margin Maximization via Dual Acceleration

1. Ifthe dataset is separable, then for all t > 1,

_ 4(1+1n(n)) (L+2n(t+1)
V(Wt)ZW— (_)(5)
F(t+1)
2. For any dataset, separable or nonseparable, it holds
forallt > 1 that
81n(n)

g3 ce

Algell3
12 (t+1)2 '

2

Our main result is in the separable case, where Algorithm 1
can maximize the margin at a O(1/t?) rate; by contrast,
as mentioned in the introduction, all prior methods have
a O(1/t) rate at best. On the other hand, for any dataset,
our algorithm can find an interval of length O(1/t?) which
includes 42, in particular certifying non-existence of predic-
tors with margin larger than any value in this interval. More-
over, as shown in Figure 2, Algorithm 1 can also achieve
good test accuracy even in the nonseparable case; it is an
interesting open problem to build a theory for this phe-
nomenon.

The rest of this section sketches the proof of Theorem 3.1,
with full details deferred to the appendices. In Section 3.1,
we first consider gradient descent without momentum (i.e.,
B¢ = 0), which motivates consideration of a dual problem.
Then in Section 3.2, we apply Nesterov acceleration (Nes-
terov, 2004; Tseng, 2008; Allen-Zhu & Orecchia, 2014)
to this dual problem, and further derive the corresponding
primal method in Algorithm 1, and also prove the second
part of Theorem 3.1. Finally, we give a proof sketch of the
margin rate in Section 3.3.

3.1. Motivation from Gradient Descent

We start by giving an alternate presentation and discussion
of certain observations from the prior work of Ji & Telgarsky
(2019), which in turn motivates Algorithm 1.

Consider gradient descent w1 := w¢ —1n; VR (w;). Define
the dual variable by ¢;: := Vi (Zw); for the exponential
loss, it is given by q; o« exp(Zwy), ¢; € A,,. Note that

Wi41 = Wt — ntVR(wt)
VR(U)t)

= W¢ — ?’]tR(’LUt)W

=w; — 0,7 " gy,
where we let 6; = 1, R (w;). Moreover,
Qi1 X exp (Zwyq1) = exp (Zwt — 9tZZth)
X q; © exp (—GtZZth)
=q ©exp (=0, Vo)),

where ¢(q) :=||Z Tqu /2 and © denotes coordinate-wise
product. In other words, the update from g; to ¢;41 is a
mirror descent / dual averaging update with the entropy
regularizer on the dual objective ¢.

This dual objective || Z7¢||3/2 is related to the usual hard-
margin dual objective, and is evocative of the SVM dual
problem; this connection is made explicit in Appendix A.
Even without deriving this duality formally, it makes sense
that ¢; tries to minimize ¢, since ¢ encodes extensive struc-
tural information of the problem: for instance, if the dataset
is not separable, then mingea, ¢(g) = 0 (cf. Lemma A.1).
With a proper step size, we can ensure

|VR(w)|;

(qr) = 2R (wy)?

— 0, R(w) is nonincreasing,
and it follows that || VR (w;) H2 — 0. If the dataset is sepa-
rable, then mingen,, ¢(q) = 7%/2 (cf. Lemma A.1), and

for ¢ € argmin ¢(q),
q€EA,

Z'q =71,

where « is the unique maximum-margin predictor, as defined
in Section 2. As ¢, minimizes ¢, the vector Z ' g, becomes
biased towards @, by which we can also show w; /||w¢||2 —
@. Ji & Telgarsky (2019) use this idea to show a O(1/t)
margin maximization rate for primal gradient descent.

The idea in this work is to reverse the above process: we can
start from the dual and aim to minimize ¢ more efficiently,
and then take the dual iterates (¢;);2, from this more effi-
cient minimization and use them to construct primal iterates
(wy)$2, satisfying Vy)(Zw) = ¢ It is reasonable to ex-
pect such w; to maximize the margin faster, and indeed we
show this is true in the following, by applying Nesterov
acceleration to the dual, thanks to the #; smoothness of ¢
(Ji & Telgarsky, 2019, Lemma 2.5).

3.2. Primal and Dual Updates

To optimize the dual objective ¢, we apply Nesterov’s
method with the ¢; geometry (Tseng, 2008; Allen-Zhu &
Orecchia, 2014). The following update uses the entropy
regularizer; more general updates are given in Appendix B.

Let Mo = qo ‘= (%, ,%) Fort > O, let)\t,Ht S (O, 1],
and

ve = (1= X))t + A,
0
Gi+1 X g © exp (—;ZZTVt) v Qi1 € Ay,
t

Pt = (1=) + MGy

If we just apply the usual mirror descent / dual averaging to
¢, then ¢ can be minimized at a O(1/t) rate (Ji & Telgarsky,
2019, Theorem 2.2). However, using the above accelerated
process, we can minimize ¢ at a O(1/t?) rate.

Fast Margin Maximization via Dual Acceleration

Lemma 3.2. Forallt > 0, let 0; = 1 and \y = 2/(t + 2).

Then for allt > 1 and q € argming e ¢(q),

41n(n)
(t+1)%

D) — 9(q) <

Next we construct corresponding primal variables (w;)2,,
such that V¢(Zw;) = ¢. (We do not try to make
Vi(Zwi) = vy or g, since only ¢; is constructed using a
mirror descent / dual averaging update.) Let wg := 0, and
fort > 0, let

0;

o T

W1 1= Wy — W Z ' V.
t

(3.3)

We can verify that ¢, is indeed the dual variable to w;, in
the sense that Vi)(Zw;) = ¢;: this is true by definition at
t = 0, since V¢)(Zwy) = V(0) = qo. For t > 0, we have

0
qt+1 X gt © exp (_;ZZTVt)
t

x exp(Zwy) © exp <itZZTl/t)
¢

= exp (Z <wt — f\iZﬂg)) = exp(Zwit1)-

In addition, we have the following characterization of w;
based on a momentum term, giving rise to the earlier
eq. (1.1).

Lemma 3.4. Forall \;,0; € (0,1, if \o = 1, then for all
t>0,

Wi = wy — b <gt + ZTQt) ;

where go := 0, and fort > 1,

,: Ae—1(1—Ag)

gt : N (gt—1 + ZTQt) .

Specifically, for \y = 2/(t + 2), it holds that

t

A—1(1=Ap) t j T
= d ZE I 7T,
e ty1 e o i+l G

and Z " iy = 2g;/t.

Consequently, with \; = 2/(¢t + 2), the primal iterate de-
fined by eq. (3.3) coincides with the iterate given by Algo-
rithm 1 with 8 = t/(t + 1).

Additionally, Lemmas 3.2 and 3.4 already prove the sec-
ond part of Theorem 3.1, since ¢(u;) = 4| g¢|/3/(2t?) by
Lemma 3.4, while ¢(¢) = 42/2 by Lemma A.1.

3.3. Margin Analysis

Now we consider the margin maximization result of The-
orem 3.1. The function ¢ will be important here, since it
gives a smoothed approximation of the margin: recall that
Y(Zw) is defined as

n
Y(Zw) =Y ((ziw))
i=1
Since / is increasing, we have

—p(Zw) < — (max l ((me»)

1<i<n

S (f (g@%w»)

=— 11;1?%(”(21, w).
As a result, to prove a lower bound on ~y(w;), we only need
to prove a lower bound on —¢)(Zw)/||w;||2, and it would
be enough if we have a lower bound on —%(Zw;) and an
upper bound on ||w¢||2.

Below is our lower bound on — for Algorithm 1. Its proof
is based on a much finer analysis of dual Nesterov, and uses
both primal and dual smoothness.

Lemma 3.5. Let 0; = 1 forallt > 0, and \g = 1, then for
allt > 1,

1 2
oty smy s g,
t—1
S NV 1—)\; 2
S (-5l
; 2 ()\j_l /\j 2

t—1 1 9
oSl
j=0 "1

Additionally, here are our bounds on ||w||2.
Lemma 3.6. Let 0; = 1 forallt > 0, then

t—1

-1 _ =1
4)\lj < lwell2 < ZTJ'HZTW)
=0 7=0

With Lemmas 3.5 and 3.6, we can prove Theorem 3.1. Here
we show a weaker result which gives 1/t? convergence to
7/2; its proof is also part of the full proof of Theorem 3.1,
but much simpler. The remaining proof of Theorem 3.1 is

deferred to Appendix C.

Proposition 3.7 (weaker version of Theorem 3.1). With
0, = 1land A\ = 2/(t + 2), we have

Fast Margin Maximization via Dual Acceleration

Proof. With A\, = 2/(t + 2), it holds that

1 1=X
- >0
2 2 =Y
A Aj
therefore
t—1 9
—p(Zuwe) > —(Zuwo) +Z 7y HZTVJH (3.8)
Then eq. (3.8) and Lemma 3.6 imply
t—1
W(Zwo) — Y(Zwy) _ 2oj— 02>\ ||ZTVJ||2 57 (3.9)
- 1)
[[wel2 SicoxlZTyll, 2

since HZTI/j H2 > # (cf. Lemma A.1). On the other hand,
Lemma 3.6 and \; = 2/(t + 2) imply

— 7 t+1
mmzz%z A+ 1)
=0

and thus
Z 1 41
¢(w0) _ Il(?’l) < - Il(?’l)2) (3.10)
Jwellz - Nlwell2 = H(E+1)
It then follows from eqs. (3.9) and (3.10) that
—(Zw) _ ¥ 41n(n)
wy) > ——— > L P
R o P R RS Ve
O

4. Analysis of Algorithm 2

Since Algorithm 1 is derived from dual Nesterov, it can
also be run completely in the dual, meaning primal iterates
and in particular the primal dimensionality never play a
role. However, this dual version would require calculating
ZZ 7 q;, which in the kernel setting requires n? kernel calls.
In Algorithm 2, we replace Z " ¢; with a single column z;,
of ZT, where i; is sampled from ¢; € A,,. This sampling
allows us to make only n kernel calls per iteration, rather
than n? as in Algorithm 1.

Unfortunately, we do not have a general theory for Algo-
rithm 2. Instead, as follows, we provide here an analysis
with momentum disabled, meaning 5; = 0, and a small
constant step size 6;.

Theorem 4.1. Given e > 0and 6 € (0,

N <[32 ln(n);fjln@/é)—‘ 7 L?;D ,

VIn(n)/t for 0 < j < t, then with probability

1), let

and 0; =
1-46,

Y(we) > —e.

Algorithm 2

Input: data matrix Z € R"*%, step size (6;)52,,
momentum factor (5;)52.
Initialize: wy = g_; = (0,...,
qo = (%7"'7 ,L) € Ap.
fort =0,1,2,...do

Sample ¢y ~ g.

gt < B (ge—1 + 2i,).

Wep1 — we — O (g¢ + 23,).

qry1 X exp(Zwiyr), and grq1 € A,
end for

0) € RY,

The proof of Theorem 4.1 is similar to the proof of The-
orem 3.1, but must additionally produce high-probability
bounds on —(Zw;) and ||w||2; details are deferred to
Appendix D.

Although we do not have a convergence analysis for Algo-
rithm 2 with a nonzero momentum, it works well in prac-
tice, as verified on the full mnist data, shown in Figure 3.
Still with 5; = t/(t + 1), Algorithm 2 can slightly beat
the batch perceptron method, which is the fastest prior al-
gorithm in the hard-margin kernel SVM setting. (Other
classical methods, such as stochastic dual coordinate as-
cent (Shalev-Shwartz & Zhang, 2013), are focused on the
nonseparable soft-margin SVM setting.)

5. Other Exponentially-Tailed Losses

Here we discuss the extension to other exponentially-tailed
losses, such as the logistic loss in the case of binary classifi-
cation, and to multiclass losses.

5.1. Binary Classification

In previous sections, we focused on the exponential loss.
Our methods can also be applied to other strictly decreasing
losses, such as the logistic loss £(z) := In(1+¢€?), simply by
replacing Z " g; in Algorithm 1 with Z " V4)(Zw,), where
1) is still defined by eq. (2.1).

In the proof of Theorem 3.1, we only use two properties of
1: (i) ¢ is p-smooth with respect to the ¢, norm, and (ii)
V||, > 1. These two properties hold with p = 1 for the
exponential loss, and with p = n for the logistic loss (Ji
& Telgarsky, 2019, Lemma 5.3, Lemma D.1). Therefore
we can use the same analysis to prove a O(1/t?) margin
maximization rate for the logistic loss; details are given in
Appendix C.

However, the margin rate would additionally depend on p,
which is n for the logistic loss. Such a bad dependency on
n is probably due to the aggressive initial step size: from
eq. (2.2), we know that Vi)(Zwy) is just VR (w¢) normal-
ized by ¢ ((Zw)) /n. However, this quantity is at most

Fast Margin Maximization via Dual Acceleration

0.00 _‘
—0.02
e
€D —0.04
©
1S
—0.06
V- Alg2 (8, = Lﬁ 6, =1)
—0.08 - Alg2 (B, =0,0,=1)
“O- Alg2 (8 =0, 6, = 1/V1)
=>é= Batch Perceptron
—0.10
0 50000 100000 150000 200000
iterations
(a) Margins.
V- A2 (B = 5, 0, =1)
0.8 '.' Alg2 (31 =0,0; = 1)
O Alg2 (8, =0, 6, =1/\t)
=>é= Batch Perceptron
_ 06
o
)
i
L 04
0.2

0 50000

100000
iterations

(b) Test error.

150000 200000

Figure 3. Margin maximization performance of various methods
requiring O(n) kernel evaluations per iteration. The batch per-
ceptron is slightly beaten by Algorithm 2 using the momentum
and step size parameters from Algorithm 1, which is only pro-
vided here as a heuristic. By contrast, the theoretically-justified
parameters, as analyzed in Theorem 4.1, are slower than batch
perceptron. The data here is the full mnist data, with features
given by the initial kernel of a 2-homogeneous network of width
128 (cf. Appendix F).

1/n for the logistic loss, even at initialization. It is an inter-
esting open problem to find a better initial step size.

5.2. Multiclass Classification

Suppose now that inputs (z;))¥.; have multiclass labels
(¢;)N.,, meaning ¢; € {1,...,k}. The standard approach to
multiclass linear prediction associates a linear predictor u;
for each class j € {1,...,k}; collecting these as columns

of a matrix U € R4*¥, the multiclass prediction is

x> argmax ¢ Ue,,
ce{l,...,k}

and letting || U||r denote the Frobenius norm, the margin of
U and maximum margin are respectively

(U = min; ming, (ITUecj — xTUec)
e 1U][e ’
AYm (= ma; U
Tn = s, (),

with edge case v, (0) = 0 as before.

We now show how to reduce this case to the binary case
and allow the application of Algorithm 1 and its analysis in
Theorem 3.1. The standard construction of multiclass losses
uses exactly the differences of labels as in the preceding
definition of 7, (Zhang, 2005; Tewari & Bartlett, 2007);
that is, define a multiclass risk as

N
Rn(U) = %Z Zf (x;rUej - q:;rUeci) .

i=1 j#e;

To rewrite this in our notation as a prediction problem de-
fined by a single matrix Z, define n := N(k — 1), let
F : R¥* — R be any fixed flattening of a d x k ma-
trix into a vector of length dk, and let 7 : {1,..., N} X
{1,...,k =1} — {1,...,n} be any bijection between
the IV original examples and their n new fake counterparts
defined as follows: for each example ¢ and incorrect la-
bel j # ¢;, define z.(; j) = zi(e., — ;)T /V/2, and let
Z € R™* be the matrix where row 7 (i, j) is the flattening
F(2x(i,5)) s then, equivalently,

1

1 n
1 Rn(0) = ;g (F(U)TF(ZW,J‘))) :

In particular, it suffices to consider a flattened weight vector
w = F(U) € R%¥, and invoke the algorithm and analysis
from Section 3, with the preceding matrix Z.

Theorem 5.1. Let a multiclass problem {(x;,c;)}., be
given with maximum multiclass margin N, > 0. Then the
corresponding matrix Z as defined above has binary margin
5 1= Am/V2 > 0. Moreover, letting w; denote the output of
Algorithm 1 when run on this Z as in Theorem 3.1, meaning
exponential loss { and 8; = t/(t + 1) and 0; := 1, for
everyt > 1 the un-flattened output U; := F~*(w,) satisfies

4(1+1n(n)) (1+2In(t + 1))

Uy) > Am —
,-ym(t) Z Tm ’S/m(t+ 1)2

Due to proceeding by reduction, the guarantees of Section 4
also hold for an analogous multiclass version of Algorithm 2.

Fast Margin Maximization via Dual Acceleration

Indeed, Algorithm 2, with the aggressive (heuristic) param-
eters B, = t/(t+ 1) and 6; = 1 proved effective in practice,
and was used in the experiments of Figure 3, as well as the
upcoming Figure 4.

One issue that arises in these reduction-based implemen-
tations is avoiding explicitly writing down Z or even indi-
vidual rows of Z, which have dk elements. Instead, note
that sampling from ¢ as in Algorithm 2 now returns both an
example index ¢, as well as an incorrect label j # ¢;. From
here, updates to just the two columns of U corresponding to
7 and ¢; can be constructed.

6. Application: Deep Network Kernel
Evolution

As an application of these fast margin-maximization meth-
ods, we study the evolution of kernels encountered during
deep network training. Specifically, consider the cifarl0
dataset, which has 50,000 input images in 10 classes; a
standard deep network architecture for this problem is the
AlexNet (Krizhevsky et al., 2012), which has both convolu-
tional, dense linear, and various nonlinear layers.

Let v; denote the AlexNet parameters encountered at epoch ¢
of training on cifar10 with a standard stochastic gradient
method, and let A(x; v;) denote the prediction of AlexNet
on input x with these parameters v;. From here, we can
obtain a feature vector V,, A(z;v;), and use it to construct
a matrix Z to plug in to our methods; when ¢ = 0, this
corresponds to the Neural Tangent Kernel (NTK) (Jacot
etal., 2018; Li & Liang, 2018; Du et al., 2018), but here we
are also interested in later kernels, meaning ¢t > 0, each of
which are sometimes called an after kernel (Long, 2021),
and which in the homogeneous case are known to converge
to a single limiting kernel (Ji & Telgarsky, 2020). (To
handle multiclass output, we simply flatten the Jacobian;
as another technical point, we />-normalize the features to
further simplify training and the selection of step sizes.)

For any fixed ¢, we thus obtain a linear prediction problem
with rows of matrix Z given by the features V, A(x; v;)
(with additional care for class labels, as in the reductions
defined in Section 5.2), and can use Algorithm 2 to quickly
determine the maximum margin. Figure 4(a) presents an
experiment that is consistent with standard beliefs: as ¢
increases, the test error of the corresponding maximum-
margin (kernel) predictor decreases. In these experiments,
the AlexNet training is run until the features converge, and
the test error of the final maximum-margin kernel predictor
is identical to that of the final deep network.

A more interesting example is given in Figure 4(b): a case
where feature learning does not help. All that differs be-
tween Figure 4(a) and Figure 4(b) is the choice of random
seed.

=W~ Alg2, epoch 0 kernel
== Alg2, epoch 400 kernel
—=

0.84
Alg2, epoch 800 kernel
Alg2, epoch 1200 kernel
0.83 , epoch 1600 kernel
0.82

test error

|
0.81

/\/\~ T DN — e

0.80
0.79
0 500 1000 1500 2000 2500 3000 3500 4000
iterations
(a) Random seed 100.
0.85
0.84
0.83
s
@ (.82
-
(%]
(]
]

0.81 =W— Alg2, epoch 0 kernel

== Alg2, epoch 400 kernel
Alg2, epoch 800 kernel

=>é= Alg2, epoch 1200 kernel
Alg2, epoch 1600 kernel

0 500 1000 1500 2000 2500 3000 3500 4000
iterations
(b) Random seed 13579.

Figure 4. Test error curves of kernel predictors trained with Al-
gorithm 2, using kernels from different epochs of standard deep
network training. Please see Section 6 and appendix F for details;
the short summary is that changing the random seed suffices to
change whether kernel features improve or not.

A key point is that the AlexNet in both experiments was
trained with only 128 training points (the testing set had the
usual 10,000 images, but test error is unsurprisingly large).
The idea is that the feature learning implicit in deep network
training can overfit with such small amounts of data.

Of course, 128 examples is not a standard deep learning
regime; these figures merely illustrate that feature learning
may fail, not that it always fails. It is an interesting open
question to study this phenomenon in realistic scenarios.

7. Concluding Remarks and Open Problems

In this work, we gave two new algorithms based on a dual
perspective of margin maximization and implicit bias: a

Fast Margin Maximization via Dual Acceleration

momentum-based method in Section 3 constructed via trans-
lating dual Nesterov acceleration iterates into the primal,
and an adaptive sampling method in Section 4 which aims
for greater per-iteration efficiency in the kernel case.

Turning first to Algorithm 1, its derivation exposes a con-
nection between Nesterov acceleration in the dual and mo-
mentum in the primal. Does this connection exist more
generally, namely in other optimization problems?

A second open problem is to formally analyze Algorithm 2
with momentum. As demonstrated empirically in Figure 3,
it can work well, whereas our analysis disables momentum.

On the empirical side, the small-scale experiments of Sec-
tion 6 scratched the surface of situations where feature learn-
ing can fail. Can this phenomenon be exhibited in more
realistic scenarios?

Acknowledgements

‘We thank the reviewers for their comments. ZJ and MT are
grateful for support from the NSF under grant IIS-1750051,
and from NVIDIA under a GPU grant.

References

Allen-Zhu, Z. and Orecchia, L. Linear coupling: An ulti-
mate unification of gradient and mirror descent. arXiv
preprint arXiv:1407.1537, 2014.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. In Ad-

vances in Neural Information Processing Systems, pp.
6240-6249, 2017.

Borwein, J. and Lewis, A. Convex Analysis and Nonlinear
Optimization. Springer Publishing Company, Incorpo-
rated, 2000.

Chizat, L. and Bach, F. Implicit bias of gradient descent for
wide two-layer neural networks trained with the logistic
loss. arXiv preprint arXiv:2002.04486, 2020.

Clarkson, K. L., Hazan, E., and Woodruff, D. P. Sublinear
optimization for machine learning. Journal of the ACM
(JACM), 59(5):1-49, 2012.

Cotter, A., Shalev-Shwartz, S., and Srebro, N. The kernel-
ized stochastic batch perceptron. In ICML, 2012.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
J. Comput. Syst. Sci., 55(1):119-139, 1997.

Ghadimi, E., Feyzmahdavian, H. R., and Johansson, M.
Global convergence of the heavy-ball method for con-
vex optimization. In 2015 European control conference
(ECC), pp. 310-315. IEEE, 2015.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. Charac-
terizing implicit bias in terms of optimization geometry.
arXiv preprint arXiv:1802.08246, 2018a.

Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. Im-
plicit bias of gradient descent on linear convolutional
networks. In Advances in Neural Information Processing
Systems, pp. 9461-9471, 2018b.

Hanashiro, R. and Abernethy, J. Linear separation via opti-
mism. arXiv preprint arXiv:2011.08797, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571-8580, 2018.

Ji, Z. and Telgarsky, M. Risk and parameter convergence of
logistic regression. arXiv preprint arXiv:1803.07300v2,
2018.

Ji, Z. and Telgarsky, M. Characterizing the implicit bias via
a primal-dual analysis. arXiv preprint arXiv:1906.04540,
2019.

Ji, Z. and Telgarsky, M. Directional convergence and align-
ment in deep learning. arXiv preprint arXiv:2006.06657,
2020.

Krizhevsky, A., Sutskever, 1., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing
Systems, pp. 8157-8166, 2018.

Long, P. M. Properties of the after kernel. 2021.

arXiv:2105.10585 [cs.LG].

Lyu, K. and Li, J. Gradient descent maximizes the mar-
gin of homogeneous neural networks. arXiv preprint
arXiv:1906.05890, 2019.

Nacson, M. S., Lee, J., Gunasekar, S., Srebro, N., and
Soudry, D. Convergence of gradient descent on separable
data. arXiv preprint arXiv:1803.01905, 2018.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate O(1/k?). Soviet Mathe-
matics Doklady, 27(2):372-376, 1983.

Fast Margin Maximization via Dual Acceleration

Nesterov, Y. Introductory Lectures on Convex Optimization:
A Basic Course. Kluwer Academic Publishers, 2004.

Neyshabur, B., Tomioka, R., and Srebro, N. In search of
the real inductive bias: On the role of implicit regulariza-

tion in deep learning. arXiv:1412.6614 [cs.LG],
2014.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordi-
nate ascent methods for regularized loss minimization.
Journal of Machine Learning Research, 14(2), 2013.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and trends in Machine
Learning, 4(2):107-194, 2011.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data. arXiv preprint arXiv:1710.10345, 2017.

Telgarsky, M. Margins, shrinkage, and boosting. In ICML,
2013.

Tewari, A. and Bartlett, P. L. On the consistency of multi-
class classification methods. JMLR, 8:1007-1025, 2007.

Tseng, P. On accelerated proximal gradient methods for
convex-concave optimization. http://www.mit.
edu/~dimitrib/PTseng/papers/apgm.pdf,
2008.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

Zhang, T. Statistical analysis of some multi-category large
margin classification methods. JMLR, 5:1225-1251,
2005.

http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

Fast Margin Maximization via Dual Acceleration

A. Margins in the Primal and in the Dual

For completeness, we explicitly derive the convex dual to the primal margin maximization problem, which is also explored
in prior work.

Lemma A.1. It holds that

¥:= max min (Zw); = min
Jw|l2<11<i<n geEA,,

ZTqH .
2

In the separable case, v > 0, and there exists a unique primal optimal solution u, such that for all dual optimal solution q, it
holds that —Z 7 q = 7.
Proof. Given a convex set C, let v denote the indicator function, i.e., tc(z) = 0if z € C, and 1o (x) = o if 2 & C. We

note the following convex conjugate pairs:

ta, () = sup (v.u) = s v,

(- 112)"(2) = o< (a)-

This gives the Fenchel strong duality (Borwein & Lewis, 2000, Theorem 3.3.5)
min (1127 glls + e, (@)) = max <1 (~w) — 1A (Zw)
= max{—max(Zw)i Hw|le < 1}
(]

= max{miin(Zw)i Hlwlle < 1}.

Moreover, for any optimal primal-dual pair (i, 7), we have Z g € 0 (LH,HZQ) (—1), meaning —Z " g and % have the same

direction. Since ||Z Tq H2 = 4, we have —Z "¢ = ~u. The uniqueness of @ is ensured by (Ji & Telgarsky, 2018, Lemma

O
B. A Unified Analysis of Normal and Accelerated Mirror Descent / Dual Averaging
Consider a convex function f, and a convex set C, such that f is defined and 1-smooth with respect to norm || - || on C.
Moreover, suppose w : C' — R is differentiable, closed, proper, and a-strongly convex with respect to the same norm || - ||.
We maintain three sequences g, i+, v¢: initialize ug = qo € C, and for ¢ > 0, let
ve o= (1 = M) + Aege,
. A
q¢41 = argmin (f(Qt) +{(Vf),a—a)+ 5Dw(Q7Qt)> ; (B.1)
qeC bt

per1 = (1= Ae)pe + Mg,
where A, 6, € (0,1], and Dy,(q,q') == w(q) — w(¢’) — (Vw(q'),q — ¢') denotes the Bregman distance.

The above update to ¢; resembles the mirror descent update. We can instead use a dual-averaging update, which does not
require differentiability of w: first note that since w is strongly convex, its convex conjugate w* is smooth (Shalev-Shwartz
etal., 2011, lemma 2.19), and thus defined and differentiable on the whole Euclidean space. For any initialization py, let
qo = Vw*(pp) and for ¢ > 0, let

ab
Dit1 = D¢ —)\—tVf(ut), and giy1 := VW' (Pet1)- (B.2)
t

Note that it is exactly the original update to ¢; if for all ¢ > 0 and ¢ € C, we define D,,(q, ¢:) = w(q) —w(qt) — (pt, ¢ — qs)-
Below we will analyze this dual-averaging-style update.

The following result is crucial to our analysis. When 6, = 1, it is basically (Tseng, 2008, eq. (24)), and choosing a proper \;
would give us acceleration; on the other hand, we further handle the case of A\, = 1, when it becomes the usual convergence
result for dual averaging.

Fast Margin Maximization via Dual Acceleration

Lemma B.3. If), 0, € (0,1] forallt > 0, thenforallt > 1 and q € C,

t—1
ﬁl(ﬂm>—ﬂ@)+§j<§1-%“§A”>(ﬂm>—ﬂm)<
t—1 j=1 \"J-1 J

(Dw(Qa (]0) - Dw(q7 qt))

QI

Oo(1 — o)

¥ (f(mo) — f(q)) -

To prove Lemma B.3, we first recall the following standard result on mirror descent.
Lemma B.4. Forallt > 0and q € C,

(Pt = Peg1,Gt+1 — @) = D@, @) — Dio(q, @e41) — Do (qes1,q¢)-
Proof. Note that

Dy(q,q1) = w(q) — w(aqr) — (Pesq — @)
Dy(q; gr41) = w(q) — w(qe+1) — (Pe+1,9 — Gi+1),
Dw(Qt+1, Qt) = W(Qt+1) - W(Qt) - <pt, qt4+1 — Qt>-

The proof is finished by direct calculation.
Now we are ready to prove Lemma B.3.

Proof of Lemma B.3. Foranyt > 0and g € C,

f) = flq) <(Vf(w), v —q)
[

= (Vfw)ve — ai) + (Vi) a — q)
_1 ;t)\t (VEWe), e —) +{(VF(e), a0 — @)
< 52 (1)~ F0) + (TS0 a).

Moreover,

<Vf(l/t), qt — Q> = <vf(Vt)7Qt - Qt+1> + <Vf(l/t), qt+1 — Q>

A
(VW) ae — @) + afgt@t — Pi41s Gir1 — Gt)

A
Dw(qt+17 qt) + 7t (Dw(qv qt) - Dw(Qa thrl)))

A
:<Vf(Vt)7Qt—Qt+1>—7t b,

a@t
where we use Lemma B.4 in the last step. Next by 1-smoothness of f and a-strong convexity of w, we have
1
Fpesr) =) <(VF(), g —) + §||Mt+1 — u?

)\2
=M (V) a1 — @) + ?t”(h-&-l —

)\2
<M <vf(Vt)7Qt+1 - Qt> + 272”%+1 — q|]?

)\2
<AV () g — ae) + aiétDW(QtH’),

and therefore

At
(VI(),q — qe1) — EDw(QtJrlv%) < /\% (f () = f(pag)) -

(B.5)

(B.6)

(B.7)

Fast Margin Maximization via Dual Acceleration

Then egs. (B.5) to (B.7) imply
fwe) = fla) <(Vf(w),ve —q)
1—A A
< (Flue) = F00) + - (F0) = Fluer)) + ~2 (Du(a:@) = Dus(d:041)) . (BS)
>\t)\t O[gt
and rearranging terms gives
1 1—-A A
= () = (@) = = (F(ue) = (@) < 7= (Do(g:0) = Deo(a, 4e1)) -
At At 040,5
Multiply both sides by 6/, we have
0 0:(1— A\ 1
/*% (f(pes1) — fa) — 75(/\t2t) (f(pe) = fa) < > (D (4, 4t) — Du(q, qe41)) - (B.9)
Taking the sum of eq. (B.9) from step 0 to ¢ — 1 finishes the proof. O
Next we invoke Lemma B.3 to get concrete rates. We further make the following constraint on \;: let
1 1
< forallt > 1. (B.10)

1
=1, and — — —
A2\)xf 1

Note that by this construction,

t t

1 1

— = —. B.11
T2y T2, (B.11)

j=1

IA
ow‘ =

Theorem B.12. With eq. (B.10) satisfied and 0; = 1, for all t > 1 and § € argmin, . f(q)

A A
(i) = (@) < == (De(@,90) = Duo(@:41)) < ——Do(, o0)-
In particular, if \y = 2/(t + 2), then
4D,
) = (@) <)

f(@) > 0. It then follows from Lemma B.3 and eq. (B.10) and Ao = 1

Proof. For q € argmin, ¢ f(q), we have f(u;)

that
o (F) ~ @) < -
t—1

(Dw((ja q0) — D, (4, Qt)) :

C. Omitted Proofs from Section 3
Here we prove the results in Section 3. We consider a slightly more general setting: recall () is defined as

00, and thus 1) is well-defined.

where £ is a strictly increasing loss £ : R — R with lim,_,_ ¢(z) = 0 and lim,_, o, £(2)
It follows directly that for any £ € R™, we have Vi (§) > 0, since
(&
(&) > 0. (C.1)

Vip(£)i = . <€ 1 (Z (Q)))

Fast Margin Maximization via Dual Acceleration

We assume 1) is p-smooth with respect to the ¢, norm; this is true for the exponential loss with p = 1, and true for the
logistic loss with p = n (Ji & Telgarsky, 2019, Lemma 5.3).

On the dual, we run eq. (B.1) with || - || = || - [[1, and f(q) = ¢(q) =||Z "¢ ’; /2, and w = 1*, and o = 1/p. It holds that ¢
is 1-smooth with respect to the /1 norm (Ji & Telgarsky, 2019, Lemma 2.5), and since 1 is p-smooth with respect to the £,
norm, we have 1* is (1/p)-strongly convex with respect to the ¢; norm (Shalev-Shwartz et al., 2011, lemma 2.19). On the
other hand, the primal iterate is updated as follows: let wq := 0, and for ¢ > 0, let

0+

Wiy1 = Wt — 7ZTV1;.
PAL
Note that if we let p; = Zwy, then
0, T
Ditl =Pt — —~ZZ vy,
- PAL

therefore by eq. (B.2), Vi) (Zw;) = Vi (pi) = ¢;-
We first prove the following general version of Lemma 3.2.

Lemma C.2. With 0, = 1 and \; = 2/(t + 2), forallt > 1 and q € argmin e ¢(q),

d(pe) — () < ?1)20

Proof. We just need to apply Theorem B.12. Specifically, for the exponential loss, p = 1, and D, is the KL divergence,
and moreover D+ (4, go) < In(n) since qq is the uniform distribution. O

Next we prove a general version of Lemma 3.4.
Lemma C.3. Forall M\, 0, € (0,1], if \o = 1, then forall t > 0,

0
Wit = Wy — ;t (90+27a). (C.4)
where go := 0 and forall t > 1,
A1 (1T =X
P N r=vary) (©5)
t
In addition, it holds for all t > 1 that
Z" = M <9t71 + ZTQt) . (C.6)

Specifically, for \y = 2/(t + 2), it holds that

t

A—1(1—Xy) t J T T 20
= d = E ——7 ' q; d Z = .
)\t n + 17 an gt n + 1 QJ7 an Ht 1

J=1

Proof. To prove eq. (C.4), we only need to show that g, defined by eq. (C.5) satisfies

wy — W 1
gt:tim—ZTQt:ZT (Vt_Qt>'

0:/p At
It holds at t = 0 by definition, since \y = 1 and vy = gy. Moreover,
1 1-A 1— XN
AL S AL A (Ve + Me(qe1 — @)

3 Yt+1l — Q41 =
At4+1 At+1

_le<1 >+At(1m1>

NVt a4t qt+1,
)\t+1 At)\t+1

Fast Margin Maximization via Dual Acceleration

which coincides with the recursive definition of g;.
For eq. (C.6), it is true by definition when ¢ = 1, since A\g = 1, and gy = 0, and by definition 1; = ¢;. For ¢t > 1, by
eq. (B.1) and the inductive hypothesis,
Z 1 = (1= 2)Z iy + MZ g
= (1= 2)M—1(ge-1 +Z7q) + MZ T qra
(1 —Ae)A—1
At

=N\ (gt + ZTQt+1) .

=X (ge—1+ ZTQt) +)\tZTQt+1

For A\; = 2/(t + 2), it can be verified directly that A\;(1 — A¢11)/Aev1 = (¢ + 1)/(¢ + 2). The explicit expression of g;
clearly holds when ¢ = 0; for t > 0,

t . t+1 .
t41 T t4+1 ioor t41 .

= Z)zi —7 Z

Gr+1 t+2(gt+ qt+1 t+2j:1t+1 Q+t+2 Qt+1 Zt—i—? q;-

For Z T i, we just need to invoke egs. (C.5) and (C.6) and note that \;/(1 — \;) = 2/t. O

Next we prove a general version of Lemma 3.5.
Lemma C.7. Let 0; = 1 forallt > 0, and \g = 1, then forall t > 1,

—p(Zw) > —P(Zwo) +

|2

1
2pN
t

~1

1 1 1—X T
S (5 e
;2p<)\j_1)\j

s 5
— Nz,
+ Z 2p\; H Vil
7=0

2

2

Proof. Note that by eq. (B.8),

(Vo(ve),vi —q) < ! ;t)\t (d(pe) — () +)\it (p(ve) — P(pe+1)) + pAe (D= (T, @) — Dy (T, e41))

11—
At

L) + ph (Do (@ @0) — Dy (@ a111))

= o) + N

() —

Moreover, (Ve (), 1) = HZTz/tHz = 2¢(v;), and thus

N\
At

1
—@(pes1) + pAe (Dy (@, q1) — Dy (G, qr41)) - (C.8)

o) — (Vo). 7) < 5

d(pe) —
Additionally, let p; = Zw;, we have

Dy (q,qt) — Dy (G, gr1) = ™ (@) — V™ (a¢) — (P, — qt) — V™ (@) + " (qe41) + (Pe41,T — Ge41)
= ;@) — V(@) = Pes1s @v1) + V" (Q41) — (Pt — Pit1, Q)
= ¥(pt) — Y(Pe+1) — (Pt — P41,)

1
= Y(Zwy) — Y(Zwigr) — R<V¢(Vt), q) (C.9)
Therefore eqgs. (C.8) and (C.9) imply
- A 1
Y(Zw) — Y(Zwigr) >)\2 P(pt+1) — p)\? — () + EWW)- (C.10)

Take the sum of eq. (C.10) from 0 to £ — 1 finishes the proof. O

Fast Margin Maximization via Dual Acceleration

Next we prove a general version of Lemma 3.6.
Lemma C.11. Let 6; = 1 for all t > 0, and suppose HV?b(Zwt)Hl > 1, then

t—1

t—1
1
—— <l <Y — 27w
j=0 P

= PA; 2

Proof. The upper bound follows immediately from the triangle inequality. For the lower bound, recall @ denotes the
maximum-margin classifier,

t

|
—-

1
lwellz > (we, u) = Y <_ZTVJ‘7@>
=0 PA;j
t—1
1
=Y (v, —Zu)
P2y
-1
>y
P
since v; > 0, and||1/j||1 > 1, and (—z;, u) > 4 for all 4. O

To prove Theorem 3.1, we need the following result which gives an alternative characterization of w; using ;.
Lemma C.12. Let 0, = 1, forallt > 1, we have

1 1 =1
w=—-Z"q—=2"q— Y ——Z i,
T T) Zﬂ)\ 7

j=0"""
and if \y = 2/(t + 2), then

1

27 % (e - 52 272 5 g2 - 2+ 1
2Tl +35 4 [— - HZ “H > —Hz ’“’“H — 2In(n) In(t + 1).
2002, 2 =2 A2 A2 71l =20\ i |
Proof. Note that by construction, %Vt = 1;:\‘ 1t + qt, and thus
t—1 t—1
1 1 1 11—\
we=--% 7" (}\y]):—ZZT(/\vjuj‘f'qj)
P iz J P iz J
1 1 133 1)
=——ZTq+-Z2Tq == 7" | —Pui+ g
p p P j
1 1 1< 1
:—*ZTQO"F*ZT%—*ZZT N Rt
p p P j
On the second claim, note that
1 HZT 2+§1 1 1= HZT H2> 1 72+§1 T 1=X)
u o Bv s will, = 7 el 7
2002, 2 H2p A3y A3 T2 = 2p22 =2 A2y A3

Fast Margin Maximization via Dual Acceleration

Additionally, Theorem B.12 implies

1 2)
2p); (“ZT“j+1“2 N 72) < AjDy+(4,90) < AjIn(n).

Therefore
1 H S § 11 1=X\[r |2
S (-l
2002, 2 =2 A3y A3 72
t—1
> 2& 7
j=0 PAj
t—1 -
1 H T 2 1 T 2
= A ﬂ'+1H - HZ N‘+1H -7
jE::OZij I 2 ;2,0)\]' J 2
=1y 5 t—1
T
= 217 MmHz_ln(n)ZA”
J= Jj=0
and note that
t—1 =1
A= — < 2In(t+1).
L") Zj+2 <2Inft+1)
7=0 7=0

Now we can prove Theorem 3.1. Note that here we need Lemma C.11, and particularly ||V¢(Z wy) || , = 1; this is true for
the exponential loss since Vi) € A,,, and it is also true for the logistic loss (Ji & Telgarsky, 2019, Lemma D.1).

Proof of Theorem 3.1. Lemmas C.7 and C.12 imply

1
Qp/\j

2
ZTl/jH2 —2In(n)In(t + 1).

t—1 t—1

1 2
Y(Zwo) — Y(Zwy) =Y mHZT/inHZ +y
=0 =0

Therefore

P(Zwo) = P(Zwi) — P(Zwo)

y(we) > -
[[we |2 [[wel]2
t—=1 1 T 2 t—1 1 T, 1%
S Zj:o 2%, ||Z l‘j+1||2 Zj:o 2pr; |Z Vj||2 B 2In(n)In(t + 1) _ ln(n)
=T b [P fwde T
t—1 1 2 t—1 1 2
B >0 2N ||ZT/‘J'+1||2 2i=0 A, |ZT’/J‘||2 _In(n) (1+2In(t+1)) C.13)
[[wel]2 [[wel]2 [[wel]2 '

By the triangle inequality and the alternative characterization of w; in Lemma C.12, we have

1 1
e < L7 +
p 2 p

t—1 1 2 t—1 1
el <,
2+;p/\jH Hj+1 27p+j§)p/\j i),

Fast Margin Maximization via Dual Acceleration

Therefore
2
v A osz 127 1l
[[wel|2 B] Op)\ H “j+1||2
2 2+ 320 127 i,
> (1= 2
2 Yo 127wl
ol 8 7 _ 4
=) (1_ 1(t+1)2> T2 (1)

where we use Z] 0% HZT‘[L]+1 ||2 > Z /\i > M. The remaining part of eq. (C.13) can be handled in the same

way as in the proof of Proposmon 3.7.

The second part of Theorem 3.1 is proved at the end of Section 3.2. O

D. Omitted Proofs from Section 4

Here we prove Theorem 4.1. We need the following two results. The first one gives a lower bound on —¢)(Zwy), which is
an approximation of the true unnormalized margin.

Lemma D.1. Under the conditions of Theorem 4.1, it holds with probability 1 — /2 that
t—1 9
L Zwy) > jz_joejHZqu]L ~ 2 — 310 (%) o),

Proof. Since 1, the In-sum-exp function, is 1-smooth with respect to the ¢, norm, we have
2
V(Zwig1) — Y(Zwe) < (g, Zwipr — Zwe) +||Z(wigr — wt)Hoo

= =00 (2T a1, 20) + 0312,

< —0b; <ZTQt7 Zit> + 07|z, ||§ < -6, <ZTQt, Zit> +07.

Therefore

Additionally,

’<ZTQ_WZTq] - Zij>’ S 2a
and Azuma’s inequality implies, with probability 1 — 4/2,
t—1

> 6 <ZT%‘7 ZTq; — Zi]»> <

=0

Fast Margin Maximization via Dual Acceleration

Consequently, letting 6, = /In(n)/t, with probability 1 — 9/2,

2
ZVa:ll —
q;)

-1
—(Zwy) = —(Zwo) + 305 ;
i=0 =0
t—1) 9
= ZﬂjHZquHQ —2In(n) —1/8In <5> In(n).
§=0

On the other hand, we give upper and lower bounds on ||w;||2, the normalization term.

Lemma D.2. Under the conditions of Theorem 4.1, it holds with probability 1 — 8/2 that

= 81n(n)
herlle < 3705274 + 252
=0

and it always holds that ||w¢||2 > 7/t In(n).

Proof. Define

Tt :ZQj (le A qj)
=0
Note that
2 2 T 2 T 2
E {||7“t|\2‘QO7-~-,Qt—2] =E [||7’t—1||2 +0; <7“t_172it_1 -7 Qt—1> +0j‘ Zip_, —Z %-1”2 90, - - - 7%—2}
2 2 T 2
L R [PR A P

< lre-13 + 467,
thus
E [[Irll3] < E [llres (3] + 463,

and E [||r,||3] < 462t = 41n(n). By Markov’s inequality, with probability 1 — 3/, it holds that ||r;||3 < 81n(n)/d. In this
case, we have

-1 t—1 8In(n) _ 81n(n)
o =[S0 | <[22 < Fo 27 B0
j=0 j=0 Jj=0

2 2

For the lower bound, just note that

t—1 t—1
lwella > (we, @) =D 0;(—2i,,m) > > 0,7 =3/tIn(n)
j=0 =0

Now we are ready to prove Theorem 4.1.

Fast Margin Maximization via Dual Acceleration

Proof of Theorem 4.1. First note the inequality v(w;) > —¥(Zw;)/||we||2. Then Lemmas D.1 and D.2 imply, with
probability 1 — 4,

—b(Zwy) Z;;é 9J’HZTQJ'H§ —2In(n) — 1/8In (2) In(n)

)2 T 2 Tl
S 612 ally 3y T 20 + /810 (3) In(n) + 3/
- will2 will2
>§j 0HZT%M+W/BMW> 21In(n +v%m m()+ﬁ¢§%@
S0 2Tg], + Hn(n) |
Since HZqu H2 > 7, it follows that
2y/In(n) + 1/8In (3) 3
Y(w) > 7 — i 5
Letting
t_Inm(<{32hmn)+64hm2ﬂDw {32})
’7262 ’ 662
finishes the proof. O

E. Reducing Multiclass to Binary Classification

Here we verify the reduction to the binary case.

Proof of Theorem 5.1. We first show a property than the first one given in the statement, namely that v(F(U)) = yn(U)/V/2
for any U € R?**; from this it follows directly that

Vm(U) Ym
= w) = ma F(U)) = ma e
7= ||w\|2<17() HU”éﬂ() I\Ul\él V2 V2

To this end, for any U € R4**, the case U = 0 follows directly since 7(F(0)) = 0 = 7,(0), and when U # 0 then
Y(F(U))= min e ZF(U)

i€ {1y}

min min¢(z '-,U>
i€{1,...,N}j7éCi< w(4,7)

1 T
= — min min(z;(e; —e€; 7U>
xﬂiie{Lqu}j¢ci< (ec: —€))

1
= — min min (:E Ue., — x;rUej)
V2 i€{l,...N} j#ci
m(U)
V2o
From here, the algorithmic guarantee is direct from Theorem 3.1, which can be applied due to the V/2 factor in the definition
of 2y (;,¢), which insures || F'(zx(;,c))|l2 < 1:

Y (Ue) = V2y(F(Ur))
41+ In(n))(1 4 2In(1 + 1))
2 V27— (t +1)?
4(1+ In(n))(1 + 21In(1 + 1))
Ym(t +1)2 '

)
—

Zﬁm_

Fast Margin Maximization via Dual Acceleration

Note that if the reduction included all £ classes and not k£ — 1, then the margin equivalence would fail, since there would be
aterm (z;(e., — e.,)",U) = (0,U) = 0, giving a margin of zero for any data.

F. Further Experimental Details

Figures 1 to 3 use the standard mnist data, which has 60,000 training data and 10,000 testing data across 10 classes, with
inputs in R784,

* Figure 1 restricts the data to digits 0 and 1, which leads to a separable problem. All methods are run with standard
parameters, meaning in particular that normalized and unnormalized gradient descent have step size 1, Algorithm 1 has
parameters matching Theorem 3.1, and batch perceptron is implemented exactly as in (Cotter et al., 2012).

* Figure 2 restricts the data to digits 3 and 5, which can be verified as nonseparable after inspecting the dual objective as
discussed in Section 3.

 Figure 3 uses multiclass versions of Algorithm 2 as detailed in Section 5.2, for instance avoiding writing down any
explicit vectors of dimension dk. The data is the full mnist, meaning all 10 classes, which are made into a linearly
separable problem by considering the NTK features given by a 2-homogeneous network, specifically a shallow network
with a single hidden layer of 128 ReLU nodes. This width is in fact more than adequate to produce reliable results;
experiments with narrower widths were similar.

Figure 4 used the standard cifar10 data, which has 50,000 training data and 10,000 testing data across 10 classes, with
inputs in R3072, but represented as 32 x 32 images with 3 color channels, a format convenient for convolutional layers. A
standard AlexNet was trained on this data (Krizhevsky et al., 2012), where the training procedure was an unembellished
mini-batch stochastic gradient descent.

