
Grounding Open-Domain Instructions to Automate Web Support Tasks
Nancy Xu

Computer Science Dept.
Stanford University
xnancy@stanford.edu

Sam Masling
Computer Science Dept.

Stanford University
smasling@stanford.edu

Michael Du
Computer Science Dept.

Stanford University
mdu7@stanford.edu

Giovanni Campagna
Computer Science Dept.

Stanford University
gcampagn@stanford.edu

Larry Heck
Viv Labs

Samsung Research
larry.heck@ieee.org

James Landay
Computer Science Dept.

Stanford University
landay@stanford.edu

Monica S Lam
Computer Science Dept.

Stanford University
lam@stanford.edu

Abstract

Grounding natural language instructions on
the web to perform previously unseen tasks
enables accessibility and automation. We in-
troduce a task and dataset to train AI agents
from open-domain, step-by-step instructions
originally written for people. We build RUSS
(Rapid Universal Support Service) to tackle
this problem. RUSS consists of two models:
First, a BERT-LSTM with pointers parses in-
structions to ThingTalk, a domain-specific lan-
guage we design for grounding natural lan-
guage on the web. Then, a grounding model
retrieves the unique IDs of any webpage ele-
ments requested in ThingTalk. RUSS may in-
teract with the user through a dialogue (e.g.
ask for an address) or execute a web operation
(e.g. click a button) inside the web runtime. To
augment training, we synthesize natural lan-
guage instructions mapped to ThingTalk. Our
dataset consists of 80 different customer ser-
vice problems from help websites, with a to-
tal of 741 step-by-step instructions and their
corresponding actions. RUSS achieves 76.7%
end-to-end accuracy predicting agent actions
from single instructions. It outperforms state-
of-the-art models that directly map instruc-
tions to actions without ThingTalk. Our user
study shows that RUSS is preferred by actual
users over web navigation.

1 Introduction

Grounding natural language is a key to building
robots and AI agents (Chen and Mooney, 2011)
that interact seamlessly with people. Besides
grounding tasks visually (Mirowski et al., 2018;
Venugopalan et al., 2015), future AI agents must
be able to ground language and execute actions on
the web.

We build a general-purpose, interactive agent to
master tasks from open-domain natural language
instructions on websites. We focus on the service
domain for tasks such as redeeming a gift card,

3
2
1.

.

.

 Then enter the user’s email in the text field
under email address or username

Ask the user for their email

Go to https://www.amazon.com/wishlist

3.
2.

1.

@retrieve (description = "email address or
username") => @retrieve (type = enum:input,
below = id) => @enter (dict_key = "email",
element_id = id)

@ask (dict_key = "email")

@goto (website =
"https://www.amazon.com/wishlist")

3.
2.

1.

@enter(dict_key = ”email”, element_id = 37)
@ask(dict_key = “email”)

@goto(website =
https://www.amazon.com/wishlist)

Semantic Parser

Grounding Model

Runtime

Step 2:

User Interaction --

“What is your email? “

Step 3:

Web Action --

(enter, “ann@gmail.com”)

Expert Instructions

ThingTalk Parses

Grounded Actions

Active Webpage User

W
eb

pa
ge

 p
er

in
st

ru
ct

io
n

param:email = “ann@gmail.com”

element 37

Figure 1: RUSS’s semantic parser maps natural lan-
guage instructions into ThingTalk (our DSL) and uses a
grounding model to resolve elements in ThingTalk for
grounded actions. The runtime executes the actions.

logging out of all your accounts, or resetting a
password.

Conversational agents capable of providing uni-
versal access to the web through a language inter-
face are an important step towards achieving infor-
mation equity. These agents empower those who
are visually impaired or situationally preoccupied
(e.g. driving) to obtain web-based knowledge and
services for which they would otherwise require a
laptop or mobile device for (Sarsenbayeva, 2018).
Already, virtual assistants and call centers demon-
strate a large number of scenarios where language
interfaces backed by web backends are required by

ar
X

iv
:2

10
3.

16
05

7v
2

 [c
s.C

L]
 4

 A
pr

 2
02

1

companies and users. However, unlike virtual as-
sistants, web agents like RUSS are universal, navi-
gating the Web, interacting with users, and bypass-
ing the need for domain-specific APIs.

On average over 60% of Americans have con-
tacted customer service in a month (Statista Re-
search Department, 2019). A call center manager
might instruct its agents to do the following to help
a customer through a password reset: “go to pass-
wordreset.com; ask the user for their desired new
password; click the reset button”. As the agent
performs the instructions on the web behind-the-
scenes, the user is read information or asked ques-
tions periodically over a conversational interface
(such as a phone).

Our approach, RUSS (Figure 1), trains an agent
that masters any web task specified from open-
domain instructions. To do so, we design a
domain-specific language (DSL) for grounding
on the web and implement it as a subset of
the ThingTalk programming language (Campagna
et al., 2019). Each natural language instruction
maps to one of six agent actions that interact with
users or operate on webpages. Actions that oper-
ate on the web are passed element IDs that are re-
trieved from high-level user language by ground-
ing its corresponding ThingTalk on the active web-
page. In the following, we use ThingTalk to refer
to our subset taylored to web operations, where
not ambiguous. We break down the problem into
two components: (1) a semantic parser that takes
single-step natural language instructions and maps
to ThingTalk statements using a BERT-LSTM
pointer network, and (2) a grounding model that
takes ThingTalk and retrieves an element ID on the
active webpage where needed.

The contributions of this work include:

1. Task: The new problem of building an inter-
active web agent capable of mastering tasks
from open-domain natural language instruc-
tions.

2. RUSS: A fully functioning agent that services
user support requests from natural language
instructions. RUSS consists of a semantic
parser, a grounding model, and a runtime. We
release RUSS as an open-source repository 1

3. ThingTalk: A typed DSL that grounds
natural language instructions on the web.
ThingTalk is designed to be an expressive

1https://github.com/xnancy/russ

target for natural language semantic parsing,
and amenable to training data synthesis.

4. RUSS Dataset: a) Evaluation: a collection
of 741 real-world step-by-step natural lan-
guage instructions (raw and annotated) from
the open web, and for each: its correspond-
ing webpage DOM, ground-truth ThingTalk,
and ground-truth actions; and b) Synthetic:
a synthetic dataset of 1.5M natural language
instructions mapped to ThingTalk.

5. Evaluation of RUSS: 76.7% accuracy on
our RUSS evaluation dataset. Our semantic
parser maps natural language instructions to
ThingTalk at 85% accuracy and our ground-
ing model achieves 75% accuracy in resolv-
ing web element descriptions. A user study
of RUSS shows preference of the natural lan-
guage interface over existing Web UIs.

2 Related Work

Grounding in the Visual and Physical Worlds
(Robotics). Grounding language in both the phys-
ical world (Chen and Mooney, 2011) and in im-
ages and videos ((Venugopalan et al., 2015), (Hen-
dricks et al., 2018)) through systems like visual
question-answering (Antol et al., 2015) have been
extensively explored. For example, Thomason
et al. (2016) describe the game “I Spy” where hu-
man and robot take turns describing one object
among several in a physical environment, requir-
ing grounding of natural language to the physical
world, and robot-human dialogues are explored in
(Thomason et al., 2019). Previous work has pro-
posed adaptive language interfaces for robots in
dyanmic settings such as (Liu et al., 2018), (Ito
et al., 2020; Liu et al., 2018), (Karamcheti et al.,
2020), and (Kim et al., 2020). Other work builds
physical world agents that operate through se-
quential actions (Chen and Mooney, 2011; Misra
et al., 2017; Mirowski et al., 2018).

Natural Language Digital Interfaces. An in-
telligent automated software assistant that collab-
orates with humans to complete tasks was first
introduced in (Allen et al., 2007). Since then,
identifying UI components from natural language
commands has been an important area of research
in grounding, with prior work investigating ap-
proaches to map natural language instructions to
mobile interfaces such as Android (Li et al., 2020)
and Adobe photo editing GUIs (Manuvinakurike
et al., 2018). Earlier work mapped natural lan-

Agent Action Description

@goto(url) Navigate to the given URL
@enter(element_id, dict_key) Find the closest match to the given dictionary key and enter its value in

the given input element
@click(element_id) Click on the given element
@read(element_id) Read the content of the given element to the user
@say(message) Read the given message to the user
@ask(dict_key) Ask the user for the value of a dictionary key

Grounding Function Description

@retrieve(descr, type, loc, above, below,
right_of, left_of) : element_id

Retrieves the elements matching the descriptors, returns an element_id.

Table 1: WebLang Agent Actions and a Grounding Function

guage commands to web elements on a TV screen
through a combination of lexical and gesture in-
tent (Heck et al., 2013). More recently, Pasu-
pat et al. (2018) attempted to map natural lan-
guage commands written by Amazon Mechanical
Turkers to web elements (without actions). Un-
like prior research, our work focuses on a new
domain of parsing natural language instructions
into executable actions on the web, where instead
of mapping directly to elements using a neural
model, we semantically parse natural language in-
structions to formal actions that support web nav-
igation as well as user interactivity.

Dialogue Agents for The Web. Other web-
based dialogue agents are developed through
single-use heuristics and more recently through
programming-by-demonstration (PBD) tools.
This approach allows users and developers to
author programs that operate on the web and
invoke those programs in natural language (Li
et al., 2017; Li and Riva, 2018; Fischer et al.,
2020; Sarmah et al., 2020). CoScripter (Leshed
et al., 2008) additionally allows the user to edit
the demonstration in natural language, and parses
a limited natural language into executable form.
While related in end goal, our work does not
require user demonstration and can operate using
existing real-world instructions. We note though
that the WebLang intermediate representation and
our grounding model can be used to improve the
robustness of PBD systems as well.

3 Task and Model

Given a set of natural language instructions S =
(i1, . . . , in) and a starting web page, our task is
to construct an agent that follows the instructions
through a series of action A = (a1, . . . , an). Ac-
tions include web navigation and end-user inter-

action in order to obtain necessary information.
Surveying online customer service tasks, 6 action
operations were identified as necessary for agents:
open a URL page, enter text, click on buttons, say
something to the user, read the results to the user,
and ask user for some information. Details are de-
scribed in Table 1, where elements on a web page
are assumed to be given unique element IDs.

RUSS is trained to execute tasks by grounding
natural language instructions on the web. The
modular design of RUSS, with separate semantic
parser and grounding model, is motivated by the
high cost of training data acquisition, and the abil-
ity to improve each component independently.

We first describe ThingTalk, then the three com-
ponents of Russ: the semantic parser model, the
grounding model, and the runtime.

3.1 ThingTalk

ThingTalk is designed to be (1) robust to open-
domain natural language, (2) a suitable target for
semantic parsing from natural language, and (3)
trainable with only synthetic data.

The primitives in ThingTalk include all the
agent actions and a grounding function @retrieve
(Table 1). The latter is informed by the descrip-
tions in the instructions we found in the wild. The
input features accepted by @retrieve are:

• descr: textual description of the element
• type: type of element (button, input box,

paragraph, header, etc.)
• loc: absolute position of the element on the

page
• above/below/...: position of the element rela-

tive to another; above, below, right, and left.

To support element descriptions involving mul-
tiple features or other elements, ThingTalk is com-

[CLS] Enter username in input field “
Natural Language Web Instruction

Attention

BERT

LSTM

{“@click”: 0.03, “@enter”: 0.08, “description”: 0.06, “color”: 0.01, …}

γ

Embedding

@retrieve (

Feed Forward

ThingTalk

Pool

Pointer
Switch

description = username

Figure 2: The RUSS semantic parser, using the BERT-
LSTM architecture

positional in design. A ThingTalk program is a se-
quence of statements with syntax [r ⇒]∗ a, where
r is the retrieve operation and a is an agent action.
@retrieve returns an element_id that is passed to
@click (to click on the element), @read (to read
the text in the element to the user), or @enter
(to enter text in the element). For agent actions
that require an element id, we call the sequence
of @retrieve functions used to obtain the final el-
ement id used in the agent action the query. See
Figure 1 for sample ThingTalk parses from natu-
ral language instructions. The orange ThingTalk
parse demonstrates a query with 2 @retrieve func-
tions.

3.2 Semantic Parser Model

To translate natural language instructions into
ThingTalk, we use the previously proposed BERT-
LSTM model (Xu et al., 2020). BERT-LSTM
is an encoder-decoder network that uses a pre-
trained BERT encoder (Devlin et al., 2019) and
LSTM (Hochreiter and Schmidhuber, 1997) de-
coder with a pointer-generator (See et al., 2017;
Paulus et al., 2018). The architecture is shown
in Fig. 2. The model is trained to encode natu-
ral language utterances and produce the ThingTalk
code token-by-token. The pointer network in
the decoder allows the model to predict out-of-
vocabulary words by copying from the input ut-
terances.

We preprocess the natural language by per-
forming entity extraction, where entity strings
are mapped to placeholder tokens (URL, LOC,
TYPE), and the strings are substituted back into
the ThingTalk code after parsing with the place-
holder tokens. This resolves errors related to long
URLs being broken into tokens that are not al-
ways copied to ThingTalk together and helps dis-
ambiguate important input features. For example:
"Click the button on the top of the amazon.com

Instruction: “Enter the user’s order number in the text
field that says order number”

DOM:
element_id: 1, type = "body"

element_id: 2, type = "h1", text = "Your Orders"
element_id: 3, type = "form"

. . .
element_id: 48, type = "label", text = "order number"
element_id: 49, type = "input"

. . .
ThingTalk:

@retrieve(description = “order number”, type = input)
⇒ @enter(text = order_number, element = id)

Action: @enter(text = order_number, element = 49)

Figure 3: Representation of an instruction in RUSS

page" maps to "Click the TYPE on the LOC of
the URL page". We use a simple set of heuristics
to identify the entity strings for each placeholder
token, such as the presence of a ’www.’, ’.com’,
’http’ substring to indicate a URL entity.

3.3 Grounding Model

The webpage is modeled using the Document Ob-
ject Model (DOM), which is a hierarchical repre-
sentation of all elements in the page. Our DOM
representation records element features such as the
following for each element:

• inner text content of the element
• HTML id, tag, class
• hidden state (True/False if element is visible

on the webpage)
• height/width of the element
• left/right/top/bottom coords of the element
• list of child elements in the DOM.

An example is shown in Fig. 3.
RUSS’s grounding model grounds a ThingTalk

@retrieve function by mapping it to an element
ID. The input features in the @retrieve function
are mapped against scores derived from the el-
ement features in the DOM to identify the best
match.

The grounding model consists of the following
steps. It filters elements by their type and abso-
lute location. Next it handles relative position-
ing by identifying those elements with the right
relational context to, and not too far away from,
the given element’s coordinates. It passes the text
of the remaining candidates through a Sentence-
BERT (Reimers and Gurevych, 2019) neural net-
work and computes the cosine similarities of their
embeddings with the embedding of the input text

description. The elements with the highest score
are returned.

3.4 The Run-Time
To execute the grounded ThingTalk program,
RUSS starts a new automated Chrome session for
each task and uses Puppeteer to automate web ac-
tions in the browser. RUSS uses a Google Voice
API to implement actions involving user interac-
tions (@say, @ask, or @read). For @ask actions,
RUSS uses a preprogrammed dialogue to ask the
user for a dictionary key (such as “name”), verifies
the dictionary key is a valid string, and stores the
value given by the user in a user’s dictionary un-
der that key. In @enter actions, we retrieve infor-
mation to be entered by finding its closest match
among the user’s dictionary keys.

4 Datasets

This paper contributes two detasets, the RUSS

Evaluation Dataset with real-world instructions
and the RUSS Synthetic Dataset for training se-
mantic parsers.

4.1 RUSS Evaluation Dataset
The RUSS Evaluation Dataset consists of real-
world tasks from customer service help centers of
popular online companies. To make our task-open
domain, the online help centers we use span a di-
verse range of domains including music, email,
online retail, software applications, and more. For
each instruction in a task, the dataset includes:

• the English instruction in natural language
as it appears in the original website, and the
human-edited version of the instruction

• the DOM of the web page where the instruc-
tion can be executed, with the element fea-
tures associated with each element

• the ThingTalk code corresponding to the in-
struction

• the grounded action of the instruction

To collect the RUSS Evaluation dataset, we ac-
quire a list of “Top 100 visited websites” and lo-
cate tasks that offer line-by-line help instructions
from those. An author of the paper walked through
each task, performed the actions as instructed,
scraped the webpage in the browser, and annotated
the instruction with the corresponding ThingTalk
code. Steps found missing from the instructions
were inserted. If an instruction mapped to sev-
eral actions, the text was broken into individual

Figure 4: Lengths of instructions in the RUSS Evalua-
tion Dataset

Figure 5: Distribution of actions in the RUSS Evalu-
ation Dataset. @click, @enter, and @read require a
webpage element.

instructions. Note that the human worker did not
participate in the design of ThingTalk; they were
asked to write instructions as if they were teaching
another human step-by-step.

We collected a total of 80 tasks and 741 lines
of instructions from 22 different online help cen-
ters. The dataset is split into a dev set and a test
set, with 304 instructions from 30 tasks in the dev
set and 437 instructions from 50 tasks in the test
set. The RUSS Evaluation dataset is not used for
training. On average, instructions in RUSS con-
tain 9.6 tokens (Fig. 4), significantly longer than
the crowdsourced web instructions in PhraseNode
which average 4.1 tokens. The three most com-
mon actions in the dataset are “click”, “ask” and
“enter” (Fig. 5). 61.4% of the natural-language
instructions require retrieving an element from the
webpage (click, enter, read). Table 2 illustrates
different types of reasoning supported by the @re-
trieve descriptors and their frequency in the RUSS

Evaluation Dataset. Lastly, 76 of the 455 element
queries use two @retrieve functions, with the rest
all just using one, and 53.7%, 42.7%, and 3.6% of
the @retrieve functions have 1, 2, and 3 descrip-
tors, respectively (Fig. 6).

While the language has just 7 core actions, the
combinatorial space of possible actions and web
elements is much larger – on the order of 1000s

ThingTalk Includes: (@retrieve feature) Description Frequency
Type reasoning (type) Requires specific HTML type (e.g. button, checkbox) 29.0%
Input target (type = input) Requires target element is a text input 25.0%
Relational reasoning (below/above/left of...) References neighboring features of the element 10.3%
Spatial reasoning (location) References element location on the webpage 4.6%
No web element (No @retrieve) No element (operation is @ask / @goto / @say) 38.6%

Table 2: Subset of reasoning types (with the @retrieve input feature used to indicate it) supported by ThingTalk
and their frequency in the RUSS dataset. Some statements require multiple reasoning types.

Figure 6: # @retrieve functions in each RUSS instruc-
tion and # descriptors in each @retrieve.

of possible combinations per instruction. On aver-
age the DOMs of the webpages contain 689 web
elements each.

The total vocabulary size of the Evaluation
Dataset found in the wild is 684 words. We find
that at least one of the most frequent 300 words
in the Evaluation vocabulary is present in >50%
of the Evaluation Dataset instructions. There are
also many domain-specific words throughout the
instructions.

4.2 Synthetic Dataset

Labeling large numbers of instructions in
ThingTalk for training is time consuming and
demands expertise. To address this, we use a
typed template-based synthesis method to gener-
ate our training data. We write templates for each
ThingTalk primitive and common combinations
thereof. We also scrape a large dataset of naturally
occurring DOM element text, webpage URLs,
and phrases that are likely to be variable names
to use for each parameter. The synthesizer com-
positionally expands the templates and sample
values from the scraped dataset to construct
a large training set of instructions mapped to
ThingTalk automatically. We generate hundreds
of different types of natural language templates
which are combined to create a Synthetic Dataset
with 1.5M training samples. This composition
method creates roughly 840 distinct templates. To
promote generalizability of our model, the total
vocabulary size of the Synthetic corpus is large
compared to the evaluation vocabulary size at

Model Accuracy (test)

RUSS (1.5M training parses) 87.0%
Ablations Accuracy (dev)

RUSS (1.5M training parses) 88.2%
− entity extraction 77.6%
− 1M training parses, entity extraction 70.0%

Table 3: Evaluation of Semantic Parsing Model
(trained on 1.5M parses) on RUSS Evaluation test set.
Ablations are performed on the dev set. “−” in Ab-
lations subtracts a feature from the RUSS model, the
second ablation is trained on 500k training parses.

9305 words.
An example of a simple template is:

“At the loc of the page,
@click the button that says descr”

which is mapped to the ThingTalk:

@retrieve(descr = descr, loc = loc) −→
@click(element = id)

5 Evaluation

RUSS achieves 76.7% overall accuracy on the
Evaluation Dataset, even though all of RUSS, in-
cluding the semantic parser is trained with only
synthetic data.

We perform 3 experiments to evaluate the in-
dividual components and the system as a whole:
1) Accuracy evaluation of RUSS’s Parsing Model
with ablation studies. 2) Accuracy evaluation
and baseline comparisons of RUSS’s Grounding
Model. 3) User study evaluating RUSS’s ability
to master 5 tasks on-the-job. We test usability and
efficacy of RUSS compared with existing customer
service help websites.

5.1 Semantic Parsing Accuracy

Our first experiment evaluates the accuracy of our
semantic parser on the RUSS Evaluation dataset.
We measure Exact Match Accuracy: a parse is
considered correct only if it matches the gold an-
notation token by token.

Model Grounding Acc (test)

RUSS 63.6%
End-to-End Baseline 51.1%
PhraseNode 46.5%

Table 4: RUSS outperforms state-of-the-art PhraseNode
in the grounding subtask on the RUSS Evaluation test
set.

The results are shown in Table 3. The parser ob-
tains 87.0% accuracy on the test set. Despite using
no real-world training data, the semantic parser
achieves high accuracy on the challenging evalu-
ation set. It achieves an accuracy of 81.4% for
instructions involving web elements, and 94.6%
for the rest. This suggests the semantic parser can
handle both types of instructions with high accu-
racy, especially instructions that parse to user in-
teractions (no web element).

We perform an ablation study on the RUSS Eval-
uation dev set as seen in Table 3. RUSS achieves
88.2% accuracy on the dev set. The entity extrac-
tion technique where string entities are replaced
with placeholders during training, as discussed in
Section 3.2, contributes 10.6% improvement in ac-
curacy. Training without this pre-processing step
and with only 500K parses will reduce the accu-
racy further by 7.6%. This suggests that it is im-
portant to have a large synthetic training data set.

5.2 Grounding Evaluation

With an effective semantic parser to ThingTalk,
we next measure the grounding accuracy: the per-
cent of correctly identified element_ids from the
252 natural language commands referring to web
elements in the RUSS test set. As shown in Table
4, RUSS achieves an accuracy of 63.6%. 81.4%
of the instructions are parsed correctly, and 77.9%
of the correct parses are grounded accurately. Had
the semantic parser been correct 100% of the time,
the Grounding Model would achieve an accuracy
of 73.0%. The semantic parser is more likely to
correctly parse simple instructions such as "click
sign in", which are also generally easier for the
Grounding Model, explaining the delta between
77.9% and 73.0%.

We create an End-to-end Baseline model to
compare against the 2-step approach of RUSS.
Here, we represent web elements using RUSS’s
feature elements as before. However, we do not
parse the natural language sentences into their in-
put features in RUSS, but is left intact as input to

Reasoning RUSS PhraseNode

Type 67.8% 61.5%
Input 75.6% 60.4%
Relational 70.0% 53.5%
Spatial 36.7% 30.3%

Table 5: Grounding Accuracy Comparison of RUSS and
PhraseNode by Reasoning type on the RUSS Evaluation
test set.

Sentence-Bert to compute its embedding. Like
Section 4.3, the element sharing the closest em-
bedding with the input sentence is returned. This
end-to-end baseline model performs with 12.6%
less accuracy than RUSS, illustrating the benefits
of using a semantic parser.

To compare our grounding model with state-of-
the-art results, we also replicate the best perform-
ing embedding model from (Pasupat et al., 2018),
which we reference as PhraseNode. The webpage
features used as inputs in PhraseNode are a sub-
set of our representation. PhraseNode achieves an
accuracy of 46.5%, which is 4.6% worse than our
Baseline and 17.2% lower than RUSS. We show
that the combination of a high-performance se-
mantic parser and a well-tuned grounding model
can outperform the best end-to-end neural models
for grounding on the web.

5.3 Analysis

The entire one-time process for training RUSS

takes approximately 7 hours on an NVIDIA Tesla
V100. RUSS can perform a new task on-the-job
by running the instructions through the semantic
parser in less than 1 minute.

We analyze how well RUSS and PhraseNode
perform for sentences in the Evaluation Set requir-
ing different types of reasoning (Table 5). Russ
outperforms the state-of-the-art PhraseNode (Pa-
supat et al., 2018) for all the reasoning types.
It performs well on grounding tasks that involve
type, input, and relational reasoning. Evaluation
of the spatial reasoning instructions revealed that
many referenced image features (e.g. “click the
hamburger menu icon”), which is not supported
by RUSS. The results show that ThingTalk is sim-
ple enough to be generated by a neural language
model, while comprehensive enough to express
the wide range of open-domain natural language
instructions for web tasks.

Unlike end-to-end models that struggle with
long, complex instructions, we find that RUSS ben-

1 Redeem Amazon Gift Card
2 Get Pinterest Ad Account Number
3 Log out of all Spotify accounts
4 Create new Walmart account
5 Send Google feedback

Table 6: Tasks in RUSS User Study

efits from added reasoning in instructions that con-
strains the potential set of element candidates (e.g.
“the element must be an input”). Webpages com-
monly have thousands of elements and the proba-
bility of matching the right element increases with
constraints.

Of the 741 instructions in the RUSS dataset, 6
contain attributes that are not well expressed in
ThingTalk. For example, “select the user’s birth
month in the month drop down” is not parsed cor-
rectly because ThingTalk does not have a notion of
selecting an element in a menu. This feature will
be added in the future.

Another source of errors lies in how webpages
are constructed. Important attributes needed for
grounding can be hidden behind classes. For ex-
ample, an element may be labeled as “Click here”,
but the text is not present in the DOM text at-
tribute and instead obscured behind a site-specific
class name such as "next-page-button". Ground-
ing techniques on visual data can be helpful in re-
solving this class of problems.

5.4 User Study

The goal of our user study is to evaluate the end-
to-end feasibility of RUSS on open-domain in-
structions from real customer service websites,
and evaluate how users respond to RUSS. This is
a small-scale study with promising early results,
but can benefit from further user studies on larger
populations.

We recruited 12 participants who were asked to
complete 5 customer-support tasks (Table 6), cho-
sen from popular websites: Amazon, Spotify, pin-
terest, Google, and Walmart, with both RUSS and
the browser. For all tasks, users were given a fake
persona (a set of credentials such as email, pass-
word, gift card code, etc) to use when interacting
with the agent. The study was approved by our
IRB and participants were compensated.

The participants in our study ranged from ages
21 to 68 years old, with an average age of 36 years
old, a 50/50 male/female ratio, and varied tech-
nical sophistication. To reduce learning effects,

Figure 7: Average number of user interactions via ut-
terance or click (left); average time taken to complete
tasks in seconds (left)

we used Latin Square Balancing (Bradley, 1958)
to ensure that both the web and RUSS trials of
each site were performed first half the time. We
record users’ time to perform each task, number
of turns (in RUSS) or clicks (on the web) required
to achieve each task, and gave each participant an
exit survey containing qualitative assessments.

Participants were able to complete 85% of the
tasks on their own on the web and 98% of tasks
with the help of RUSS. Those who did not fin-
ish their task either gave up or failed to complete
the task within 5 minutes. The time it took users
to accomplish each task was similar for the Web
and RUSS (Fig. 7), though RUSS was significantly
faster for Task 2, a more complex task users said
they were unfamiliar with. This seems to indicate
that RUSS is more favorable for unfamiliar, com-
plex tasks.

After trying the 5 tasks, 69% of users re-
ported they prefer RUSS over navigating online
help pages. Reasons cited include ease of use, ef-
ficiency, and speed, even though the times of com-
pletion were similar. Participants were generally
pleased with their RUSS experience, and only one
person said that they were unlikely to use RUSS

again (Fig. 8). However, many users did report
that they wished RUSS was as visually stimulating
as the browser. Other users noted that they felt
more familiar and comfortable with the browser.

As a final discussion, it is worth noting that
while the user study results are extremely promis-
ing, this is a small scale study. RUSS’s runtime
needs stronger error handling for out-of-context
conversation. Currently, RUSS gives the user 3
tries to return an expected response before termi-
nating. RUSS also times out if a webpage takes
more than >60 seconds to load in Puppeteer. We
saw instances of both of these situations in the
RUSS user study in the few cases the user failed
to complete a task.

Figure 8: Qualitative results from user studies. On a
scale 1-5 for satisfaction, 1 = not satisfied at all and 5
= exceeded expectations. For likelihood, 1 = will never
use again and 5 = will definitely use again.

6 Conclusion

RUSS demonstrates how a semantic parser and
grounding model can be used to perform unseen
web tasks from natural language instructions. By
achieving 76.7% accuracy on the RUSS Evalua-
tion Dataset, we show how a modular semantic
parsing approach can outperform end-to-end neu-
ral models on this task, and demonstrate how hu-
mans interact with RUSS-like systems in the user
study. Like many datasets in NLP, we believe ex-
tensive research is still required to go from RUSS’s
76.6% overall accuracy on the Evaluation Dataset
to 100%. As seen in Table 4, prior models like
PhraseNode achieve only 46.5% grounding accu-
racy, which points to additional work necessary in
grounding natural language on the web.

The RUSS Evaluation dataset introduces a set of
real instructions for grounding language to exe-
cutable actions on the web to evaluate future re-
search in this direction, including training seman-
tic parsers to new targets using real-world instruc-
tions and neural models for grounding formal lan-
guage representations on the web. Our work pro-
vides the task, technical foundation, and user re-
search for developing open-domain web agents
like RUSS.

7 Ethical Considerations

The user study conducted in this paper was sub-
mitted to the Institutional Review Board and re-

ceived IRB Exempt status. All participants were
read an IRB consent form prior to the user study,
which detailed the study details. No deception was
involved in the study: all participants knew they
were evaluating an AI agent in the conversation
portion of the user study and were not led to be-
lieve otherwise. They study took about 20 min-
utes. All participants were compensated with $10.

The webpages scraped for the RUSS dataset
are all public domain webpages. No individual
personal identifying information was used to ob-
tain the webpages. On websites that required
accounts to access pages, we created fake user
accounts with non-identifying usernames / pass-
words / emails to navigate the websites in order to
limit any privacy risks that may be involved.

In the future, we see web agents like RUSS help-
ing improve accessibility by helping individuals
who are visually impaired, less technologically
advance, or otherwise preoccupied receive equi-
table access to information. Before systems like
RUSS are put to practice at scale, the authors be-
lieve more research must be done in understanding
user behavior with web agents to safeguard against
downstream consequences of system errors and to
better understand how information can be effec-
tively delivered by AI agents that operate in po-
tentially high-stakes transactions such as health or
finance. Our user study is the first step in this di-
rection.

8 Acknowledgments

We thank Silei Xu for helpful discussions on
constructing the Synthetic dataset, and Richard
Socher for feedback and review of the final pub-
lication.

This work is supported in part by the National
Science Foundation under Grant No. 1900638 and
the Alfred P. Sloan Foundation under Grant No.
G-2020-13938.

Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those
of the authors and do not necessarily reflect the
views, policies, or endorsements of outside orga-
nizations.

References

James Allen, Nathanael Chambers, George Ferguson,
Lucian Galescu, Hyuckchul Jung, Mary Swift, and
William Taysom. 2007. Plow: A collaborative task

learning agent. In 2007 AAAI Conference on Artifi-
cial Intelligence (AAAI), pages 1514–1519. AAAI.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

James V. Bradley. 1958. Complete counterbalancing of
immediate sequential effects in a latin square design.
pages 525–528.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S. Lam. 2019. Genie:
A generator of natural language semantic parsers for
virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019,
pages 394–410, New York, NY, USA. ACM.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence (AAAI-
2011), pages 859–865.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Michael H Fischer, Giovanni Campagna, Euirim Choi,
and Monica S Lam. 2020. Multi-modal end-user
programming of web-based virtual assistant skills.
arXiv preprint arXiv:2008.13510.

Larry Heck, Dilek Hakkani-Tür, Madhu Chinthakunta,
Gokhan Tur, Rukmini Iyer, Partha Parthasarathy,
Lisa Stifelman, Elizabeth Shriberg, and Ashley Fi-
dler. 2013. Multi-modal conversational search and
browse. In First Workshop on Speech, Language
and Audio in Multimedia.

Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell,
and Zeynep Akata. 2018. Grounding visual explana-
tions. In European Conference on Computer Vision,
pages 269–286. Springer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Nobuhiro Ito, Yuya Suzuki, and Akiko Aizawa. 2020.
From natural language instructions to complex pro-
cesses: Issues in chaining trigger action rules. arXiv
preprint arXiv:2001.02462.

Siddharth Karamcheti, Dorsa Sadigh, and Percy
Liang. 2020. Learning adaptive language in-
terfaces through decomposition. arXiv preprint
arXiv:2010.05190.

Hyounghun Kim, Abhay Zala, Graham Burri, Hao
Tan, and Mohit Bansal. 2020. Arramon: A
joint navigation-assembly instruction interpretation
task in dynamic environments. arXiv preprint
arXiv:2011.07660.

Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. 2008. Coscripter: Automating & shar-
ing how-to knowledge in the enterprise. In Proceed-
ings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’08, page 1719–1728,
New York, NY, USA. Association for Computing
Machinery.

Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
2017. Sugilite: Creating multimodal smartphone
automation by demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Com-
puting Systems, CHI ’17, page 6038–6049, New
York, NY, USA. Association for Computing Ma-
chinery.

Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Build-
ing conversational bots from mobile apps. In Pro-
ceedings of the 16th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
MobiSys ’18, page 96–109, New York, NY, USA.
Association for Computing Machinery.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile ui action sequences. arXiv preprint
arXiv:2005.03776.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat,
Tianlin Shi, and Percy Liang. 2018. Reinforcement
learning on web interfaces using workflow-guided
exploration. In International Conference on Learn-
ing Representations.

Ramesh Manuvinakurike, Jacqueline Brixey, Trung
Bui, Walter Chang, Doo Soon Kim, Ron Artstein,
and Kallirroi Georgila. 2018. Edit me: A corpus
and a framework for understanding natural language
image editing. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Piotr Mirowski, Matt Grimes, Mateusz Malinowski,
Karl Moritz Hermann, Keith Anderson, Denis
Teplyashin, Karen Simonyan, Andrew Zisserman,
Raia Hadsell, et al. 2018. Learning to navigate in
cities without a map. In Advances in Neural Infor-
mation Processing Systems, pages 2419–2430.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. arXiv preprint
arXiv:1704.08795.

Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin
Guu, and Percy Liang. 2018. Mapping natural lan-
guage commands to web elements. In Proceed-
ings of the 2018 Conference on Empirical Methods

https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
http://www.cs.utexas.edu/users/ai-lab?chen:aaai11
http://www.cs.utexas.edu/users/ai-lab?chen:aaai11
http://www.cs.utexas.edu/users/ai-lab?chen:aaai11
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/3210240.3210339
https://www.aclweb.org/anthology/L18-1683
https://www.aclweb.org/anthology/L18-1683
https://www.aclweb.org/anthology/L18-1683
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540

in Natural Language Processing, pages 4970–4976,
Brussels, Belgium. Association for Computational
Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In ICLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3973–3983.

Ritam Jyoti Sarmah, Yunpeng Ding, Di Wang, Cheuk
Yin Phipson Lee, Toby Jia-Jun Li, and Xiang ’An-
thony’ Chen. 2020. Geno: A developer tool for au-
thoring multimodal interaction on existing web ap-
plications. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technol-
ogy, UIST ’20, page 1169–1181, New York, NY,
USA. Association for Computing Machinery.

Zhanna Sarsenbayeva. 2018. Situational impairments
during mobile interaction. In Proceedings of the
2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiq-
uitous Computing and Wearable Computers, pages
498–503.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Statista Research Department. 2019. Share of cus-
tomers in the united states who have contacted cus-
tomer service for any reason in the past month from
2015 to 2018.

Jesse Thomason, Aishwarya Padmakumar, Jivko
Sinapov, Nick Walker, Yuqian Jiang, Harel Yedid-
sion, Justin Hart, Peter Stone, and Raymond J
Mooney. 2019. Improving grounded natural lan-
guage understanding through human-robot dialog.
In 2019 International Conference on Robotics and
Automation (ICRA), pages 6934–6941. IEEE.

Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Pe-
ter Stone, and Raymond J Mooney. 2016. Learning
multi-modal grounded linguistic semantics by play-
ing "i spy". In IJCAI, pages 3477–3483.

Subhashini Venugopalan, Marcus Rohrbach, Jeff Don-
ahue, Raymond J. Mooney, Trevor Darrell, and Kate
Saenko. 2015. Sequence to sequence – video to text.
In Proceedings of the 2015 International Conference
on Computer Vision (ICCV-15), Santiago, Chile.

Silei Xu, Giovanni Campagna, Jian Li, and Monica S
Lam. 2020. Schema2QA: High-quality and low-
cost Q&A agents for the structured web. In Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management, pages
1685–1694.

https://doi.org/10.1145/3379337.3415848
https://doi.org/10.1145/3379337.3415848
https://doi.org/10.1145/3379337.3415848
https://www.statista.com/statistics/815526/customers-who-have-contacted-customer-service-in-the-past-month-us/
https://www.statista.com/statistics/815526/customers-who-have-contacted-customer-service-in-the-past-month-us/
https://www.statista.com/statistics/815526/customers-who-have-contacted-customer-service-in-the-past-month-us/
https://www.statista.com/statistics/815526/customers-who-have-contacted-customer-service-in-the-past-month-us/
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127518

