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ABSTRACT

Recent years have seen significant interest in multimodal
frameworks for modeling learner engagement in educational
settings. Multimodal frameworks hold particular promise for
predicting visitor engagement in interactive science museum
exhibits. Multimodal models often utilize video data to capture
learner behavior, but video cameras are not always feasible, or even
desirable, to use in musecums. To address this issue while still
harnessing the predictive capacities of multimodal models, we
investigate adversarial discriminative domain adaptation for
generating modality-invariant representations of both unimodal and
multimodal data captured from museum visitors as they engage
with interactive science museum exhibits. This approach enables
the use of pre-trained multimodal visitor engagement models in
circumstances where multimodal instrumentation is not available.
We evaluate the visitor engagement models in terms of early
prediction performance using exhibit interaction and facial
expression data captured during visitor interactions with a science
museum exhibit for environmental sustainability. Through the use
of modality-invariant data representations generated by the
adversarial discriminative domain adaptation framework, we find
that pre-trained multimodal models achieve competitive predictive
performance on interaction-only data compared to models
evaluated using complete multimodal data. The multimodal
framework outperforms unimodal and non-adapted baseline
approaches during early intervals of exhibit interactions as well as
entire interaction sequences.
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1. INTRODUCTION

Visitor engagement is critical in museum learning [21].
Engagement defines how visitors experience museums, including
how they move between exhibits, form and express interests, and
acquire knowledge and understanding. Developing computational

models of museum visitor engagement holds significant promise
for identifying salient patterns of visitor behavior as well as
providing insight into how specific exhibits can be designed to
enhance engagement. For example, visitor analytics show potential
for enabling adaptive learning experiences tailored to the
preferences and tendencies of the visitors, leading to highly
engaged interactions with the exhibit. Visitor interactions with
museum exhibits are inherently multimodal. Visitor engagement
manifests through a variety of behaviors such as facial expression,
touch, eye gaze, and body posture. As such, multimodal learning
analytics can model museum visitor engagement by capturing and
analyzing visitor behavior from several different perspectives [2,
16]. Multimodal models of learner engagement have been shown to
be effective in a range of environments, including laboratory [8, 22]
and classroom settings [1, 6, 7]. More recently, multimodal
learning analytics have been the subject of growing attention in
informal education settings, such as museums [16, 20], but this line
of investigation is still in its nascent stages.

Given the multimodal nature of visitor interactions in museums, the
use of multichannel data provides important benefits for modeling
visitor engagement. In particular, multimodal models can be used
to predict visitor engagement early during a visitor’s interaction
with an exhibit [16]. This shows promise for enabling visitor-
adaptive technologies that provide adaptive support for fostering
engaged learning experiences with an exhibit or for notifying
museum educators to inform decisions about staffing the museum
floor. In predictive modeling, it is important that the multimodal
visitor engagement models be evaluated in terms of both predictive
accuracy and the minimum amount of time that the models require
to achieve robust predictive performance.

Multimodal modeling of visitor engagement in museums also poses
significant challenges. Interactions with exhibits are highly variable
due to the free-choice nature of museum learning [12, 25, 28].
Additionally, multimodal frameworks often utilize physical sensors
(e.g., video cameras, motion sensors, eye trackers), which introduce
questions about scalability, privacy, and mistracking. Intrusiveness
is also a concern, as suites of multimodal sensors may be
impractical in some settings, or they may adversely affect the
natural behavior of visitors [32].

Transfer learning presents itself as a natural solution to this issue,
as the various modalities in a multimodal modeling framework
share a common predictive task. In particular, recent years have
seen an increased emphasis on domain adaptation, a type of transfer
learning that investigates the predictive capacity of models that are
pre-trained on one domain (source domain) and are subsequently
reweighted to perform similarly on another domain with a different
distribution (target domain) across a single common task [39]. A



primary objective of domain adaptation is to obtain a domain-
invariant representation of the salient features extracted from the
two distinct data sources, where the shared feature space allows for
improved predictive performance on data points from the target
domain while still maintaining strong performance on data from the
source domain. Examples of recent domain adaptation research
include adapting across images extracted from different domains
[34, 42] or across modalities captured from different data channels
such as RGB-to-depth image translation [33, 42].

In this work, we investigate the use of domain adaptation as a
method of translating unimodal, interaction-based data to a
domain-invariant representation that can be used with predictive
models previously trained on multimodal data. We demonstrate the
effectiveness of a multimodal domain adaptation framework for
making early predictions of visitor dwell times at an interactive
museum exhibit. Our multimodal analytics framework is designed
to operate in museum settings where sensor-based data capture may
be restricted or otherwise impractical. We adopt an adversarial
approach to generating domain-invariant representations of
multimodal data (exhibit interactions and facial expression serving
as the source domain) and unimodal data (exhibit interactions
serving as the farget domain) that are encoded using stacked
denoising autoencoders. Empirical results of evaluations of the
framework suggests that the use of adversarial discriminative
domain adaptation allows for a unimodal target encoder to be
trained to share a latent feature space with a multimodal source
encoder [42]. The framework achieves higher performance than an
interaction-only baseline model in terms of early prediction and
visitor-level prediction of dwell time, a proxy indicator of visitor
behavioral engagement with an exhibit. Dwell time has been
frequently used to quantify visitor engagement in museum settings
[5, 23]. The framework offers the potential to accurately predict
visitor dwell time in museums, while also allowing for operation
with reduced availability of physical sensor data, or even when no
physical sensor data is available.

2. RELATED WORK

Visitor engagement is a critical aspect of learning in informal
learning environments, such as science centers and museums [21].
Engagement shapes how visitors proceed throughout a museum,
and interact with various exhibits [16]. There has been substantial
work on modeling engagement in formal learning environments
such as classrooms [19] and laboratories [8], and this focus has
expanded in recent years to informal learning environments. This
includes research efforts focused on analyzing engagement in
groups of visitors around interactive tabletop exhibits [5],
investigating the effectiveness of interventions for enhancing group
engagement at different diorama exhibits [23], and predicting
visitor dwell time [16]. However, devising computational models
of museum visitor engagement remains a relatively unexplored area
and presents distinctive challenges due to the free-choice nature of
visitor learning in museums, creating a need for data-rich
engagement modeling techniques.

Multimodal engagement modeling has shown significant promise
as an engagement modeling approach due to its capacity to provide
a data-rich multi-dimensional perspective on learner behavior [2].
In many cases, multimodal models lead to improved performance
compared to models that utilize a single modality [19, 22, 32, 49].
Multimodal models have often utilized several diverse data
channels when deployed in formal learning environments,
including facial expression, posture, eye gaze, dialogue, and
interaction trace data [40]. Facial expression data is commonly used
in multimodal learner models of student affect [7] and performance

[44]. Posture data has also been used for affect detection [22] as
well as predicting learners’ levels of engagement with Massive
Online Open Courses (MOOCs) [9]. Eye gaze data has been
combined with facial expression and head pose data to train models
for continuous emotion prediction [48], while dialogue data has
been utilized to predict dropout in online K-12 courses [26].
Finally, interaction trace logs and keystroke data have been used in
conjunction with facial expression data to detect confusion in
students engaging with an introductory computer science education
learning environment to provide adaptive feedback and support
dynamic adjustment of exercise difficulty levels [6]. While recent
work has investigated multimodal approaches to modeling visitor
engagement in museums [16], multimodal approaches to museum
visitor modeling poses significant challenges, as these frameworks
often necessitate physical, sensor-based data capture. This
introduces various ethical and logistical concerns and may be
impractical or prohibitive in certain informal learning
environments.

Computational methods such as transfer learning, and particularly
domain adaptation, provide a way to harness the predictive
capacities of multimodal learning analytics while allowing visitor
modeling frameworks to operationalize a reduced number of more
intrusive modalities. Domain adaptation and transfer learning have
shown significant potential in a variety of implementations, and
have been utilized within educational contexts for tasks such as
confusion detection in online forums for different online courses
[50] and automated essay scoring across different prompts [35].
Additionally, domain adaptation has been investigated within
multimodal contexts such as RGB and depth images [42], as well
as video and audio modalities [36]. To our knowledge, adversarial
domain adaptation has not been applied to unimodal and
multimodal data to model learner engagement in museums.

Recent domain adaptation work has focused primarily on an
unsupervised or semi-supervised variation of this problem, where
deep learning models trained on a labeled source dataset are
transferred to share latent representations alongside a target domain
that may contain little or no previously labeled data. The issue of
missing labels for the target domain data is addressed by obtaining
a domain-invariant representation through minimizing the distance
between the learned data representations between the two domains
[17, 41, 42]. While prior efforts accomplish this task through
statistical measures such as the Maximum Mean Discrepancy
(MMD) [43] or the deep Correlation Alignment (CORAL) [39],
other work has taken an adversarial approach, with the
simultaneous goals of learning a data representation that is
predictive of the source domain labels while also being
indistinguishable to a domain discrimination model [27, 42]. One
approach involves reversing the gradients of a domain
discrimination model to maximize the model’s loss and guide the
learning to explore a domain-invariant representation [17]. Other
approaches train a source encoder to reduce the source domain data
to a latent representation and use a domain discriminator to
adversarially train a target encoder to produce a latent
representation of the target domain data that is indistinguishable to
the discriminator [42]. The trained target encoder is subsequently
used to process unlabeled data from the target domain to be
classified by a model pre-trained on source data. Another approach
is the Co-GAN approach, which involves two Generative
Adversarial Networks (GANSs) that generate source and target data,
respectively [27]. The high layer parameters of the two GAN
models are tied together, allowing the generators of the models to
co-learn a shared latent representation while possibly sharing a
common input noise vector.



Early prediction is an important component of visitor modeling
because it can drive run-time adaptive support to enhance visitor
interest and engagement with interactive exhibits. A critical
objective in early prediction is to reach a certain accuracy threshold
in a timely manner. Early prediction has been investigated in the
context of formal learning environments, such as predicting
middle-grade learner engagement with a game-based learning
environment [47], evolving learning goals throughout students’
interaction trajectories [31], and student success in novice
programming tasks [29]. Early prediction has also been the subject
of prior work on museum learning, such as automatic detection of
visitors’ social behavioral patterns [13, 24] and multimodal
regression-based modeling of visitor engagement in science
museums [16].

The primary contributions of this work are as follows: (1) we
demonstrate improved predictive performance of multimodal
models of museum visitor dwell time using facial expression and
interaction data compared to interaction-only baselines, (2) we
evaluate the effectiveness of adversarial discriminative domain
adaptation as a means of enabling the use of previously-trained
multimodal models with unimodal data, and (3) we investigate the
performance of each visitor engagement model using convergence-
based early prediction metrics and standard predictive performance
measures. Domain adaptation has been relatively underexplored
with educational data, and this is especially true of data from
informal learning environments such as museums. Furthermore,
there has been limited work investigating domain adaptation in the
context of early prediction of learner engagement. Our work shows
that domain adaptation is effective at enhancing prediction of
visitor dwell time by harnessing the capacities of multimodal
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visitor modeling, which leads to higher predictive accuracy when
compared to unimodal models.

3. FUTURE WORLDS EXHIBIT

To investigate multimodal predictive models of museum visitor
engagement, we use data collected from visitor interactions with a
game-based museum exhibit, FUTURE WORLDS, which is designed
to introduce visitors to concepts about environmental sustainability
(Figure 1). FUTURE WORLDS runs on a multi-touch display,
enabling visitors to interact with the virtual environment through
touch and gestures on the screen. Visitors are faced with the
challenge of improving the conditions of the virtual environment’s
biosphere through a series of changes such as farming practices and
energy sources within the game. FUTURE WORLDS and its integrated
educational content are targeted towards learners ages 10-11.

Visitors can tap or swipe on the screen to perform certain actions
such as reading about a particular aspect of the virtual environment
and its impact on sustainability or modifying an in-game element
and observing the broader consequences of this decision on the
environment. Upon making a change to the virtual environment, the
visitor is given immediate feedback regarding the positive or
negative impact of the gameplay action. A visitor can “win” by
making the correct decisions to certain in-game elements that
maximize the environmental sustainability of the virtual
environment. Afterwards, the visitor is presented with the option to
restart the game or continue interacting with the virtual
environment in its completed state. Additionally, a visitor is able to
leave the FUTURE WORLDS exhibit having not completed the game
beforehand. Prior work with FUTURE WORLDS found that visitors
improved their understanding of environmental sustainability
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Figure 1. Gameplay of the FUTURE WORLDS interactive exhibit, including (A) 3D virtual environment, (B) selecting an element to
modify, (C) viewing information about the selected element, and (D) correctly solving the in-game problem.



concepts, while also demonstrating high levels of engagement
throughout their interactions with the exhibit [37].

4. MULTIMODAL DATA COLLECTION

To track visitor engagement and behavior with FUTURE WORLDS,
the exhibit was instrumented with several sensors to collect the
real-time behavior of visitors’ interactions with the exhibit, as
shown in Figure 2. We first describe the visitor population for study
participants and then introduce the two modalities used for the
domain adaptation approach (facial expression, exhibit interaction
trace logs), and the features extracted from each input data channel.

Exhibit Interaction Logs

'\ .

Figure 2. Visitor interacting with FUTURE WORLDS.

4.1 Study Participants and Procedure

We conducted a study of visitor interactions with the FUTURE
WORLDS exhibit at the North Carolina Museum of Natural Sciences
in Raleigh, North Carolina. The data were collected over a series of
three sessions with different school groups of visitors aged 10-11
(M=10.4, SD=0.57). The school groups came from different socio-
cultural backgrounds (e.g., race/ethnicity), and each school served
student populations where 70% of the students are from low-
income families. In total, 116 visitors interacted with FUTURE
WOoRLDS. There were 47 female and 55 male participants, with 14
participants who did not provide data on their gender. The visitors
were 32.4% Hispanic or Latino, 21.6% African American, 11.8%
American Indian, 8% Asian, 7.5% mixed race, 3% Caucasian, and
15.7% preferred not to respond. Before interacting with the exhibit,
visitors were asked to complete a series of surveys and
questionnaires, including a demographic survey, sustainability
content knowledge assessment, and the Fascination in Science
scale [11]. Afterward, visitors interacted with the exhibit until they
wanted to stop or after approximately 12 minutes had elapsed
(M=5.8, SD=2.4, Min=1.8, Max=11.8). Visitor dwell times were
captured by the game’s internal logging functionalities. Once
visitors finished their interaction with the exhibit, they were asked
to complete a sustainability content knowledge assessment,
engagement survey, and a short debrief interview. Several visitors
were missing one or multiple data channels (e.g., facial
mistracking), requiring the removal of their data from the final
dataset for analysis. The final dataset that was used for the
predictive models in this paper consisted of multimodal data from
79 visitors.

During the data collections, the visitors’ body movement, eye gaze,
facial expression, and interaction data from the exhibit were
captured. For this study, we focus exclusively on the exhibit
interaction data and the facial expression data. We selected the
exhibit interaction data due to its unintrusive nature and its relative
ease of data capture, as the trace data is captured in the background

with the exhibit software and does not require any physical sensors
or calibration. We selected facial expression data because of its
predictive utility in previous work on unimodal and multimodal
models of learner engagement [14, 15].

4.1.1 Facial Expression

Facial expression is an important indicator of learner emotion, and
it has been widely used in previous studies on modeling learner
engagement [46]. In this work, visitor facial expression was
captured using video data from an externally mounted Logitech
C920 USB webcam. In real time, the video data was processed by
OpenFace, an open-source facial behavior analysis toolkit to detect
facial landmarks, estimate head pose, recognize facial action units
(AUs), and estimate eye gaze [3]. The OpenFace software
automatically detects and analyzes 17 distinct AUs for each
visitor’s face captured within the camera’s field of view.

4.1.2 Interaction Trace Logs

FUTURE WORLDS includes built-in logging functionalities to
capture fine-grained logs of visitor interactions with the exhibit.
The interaction trace logs consist of sequential records (at the
millisecond level) of physical interactions with the multi-touch
display (e.g., taps, swipes, and gestures), as well as specific in-
game learning events (e.g., altering the virtual environment and
accessing an embedded informational resources). The interaction
trace logs are used to investigate how visitors interacted with the
exhibit and progressed through the game.

4.2 Multimodal Features

Using both visitors’ facial expression and exhibit interaction
behavior, we distilled two sets of features to serve as predictors of
visitor dwell time. Many of the extracted features for each modality
were chosen based on their predictive performance in prior work
on multimodal learning analytics [16].

4.2.1 Facial Expression

Using the processed AU data from OpenFace, we calculated the
duration that each AU was exhibited throughout the visitor’s
interaction with FUTURE WORLDS. We first standardized each
visitor’s observed AU intensity values and then calculated the
duration of each AU during time intervals where consecutive AU
intensity values were at least one standard deviation greater than
the mean of that particular visitor-specific AU feature. This
filtering process ensured that only spikes relative to the specific
visitor’s AU values contributed towards the calculation of the total
duration. To further filter the AU durations, we only recorded the
duration if the AU was present for longer than 0.5 consecutive
seconds. This avoided possible micro-expressions that could add
noise to the overall data channel [38]. We performed this filtering
process for all 17 AUs tracked by OpenFace. In addition, we
generated the standard deviation and maximum AU values across
the visitor’s interactions up to the current timestamp. In total, we
extracted and distilled 51 facial expression-related features.

4.2.2 Exhibit Trace Logs

We distilled eight features from the exhibit interaction data: (1) the
total number of times a visitor tapped the FUTURE WORLDS multi-
touch display, (2) the total number of times a visitor tapped
informational tiles about environmental sustainability concepts, (3)
the total duration of time an informational tile was open, (4) the
total duration spent with labeled sustainability images displayed
onscreen, (5) the total duration of time that a visitor spent directly
interacting with the 3D simulated environment in FUTURE WORLDS,
(6) the total number of times a visitor swiped the interface to
explore alternative options for modifying the simulated



environment, (7) the total number of times the simulated
environment was modified, and (8) a binary feature that indicated
whether a visitor had successfully solved the current environmental
problem scenario in FUTURE WORLDS.

5. DOMAIN ADAPTATION

In this work, we present an unsupervised, adversarial
discriminative domain adaptation approach that enables the use of
multimodal visitor engagement models in settings where only
unimodal data streams are available. In unsupervised domain
adaptation, two datasets are extracted from two separate domains:
(1) a source domain (s), from which data samples X; and associated
labels Y; are drawn, and (2) a target domain (#), which contains
unlabeled data samples X;. It is also assumed that there exists a
classifier C; that has been previously trained on the source data X;
and source labels Y, by learning a latent mapping M. The primary
objective of the unsupervised domain adaptation approach is to
learn a latent mapping M, so that M,(X;) can be correctly classified
by C; despite the absence of any associated labels for X,.

The purpose of adversarial training within the domain adaptation
framework is to learn a domain-invariant data representation that
minimizes the distance between M/(X;) and M(X;). This is
accomplished through a separate binary discriminator, D, that is
trained to distinguish between latent representations of the source
domain and the target domain. The discriminator is optimized
according to a standard cross-entropy loss function (Equation 1):

LDISC (XSJ Xt! Msv Mt)
= _ExS~XS[10gD(Ms(Xs))] (1)
— By,  x, [log (1 - D(M.(x))))]

Adversarial domain adaptation focuses on two primary objectives
implemented within a minmax framework: the discriminator
attempts to accurately classify a latent data representation as either
from the source domain or the target domain, while a target encoder
attempts to learn a mapping M,(X;) that deceives the discriminator,
thus finding a latent representation that is domain-invariant but
retains enough salient characteristics to provide predictive value to
a source classifier C;. To implement an adversarial loss function
within the framework, a common practice is to simply invert the
loss term when training the target encoder. This essentially reverses
the gradients for the target encoder but can consequently lead to
premature convergence and vanishing gradients [17]. A more stable
training method is to invert the labels used to train the target
encoder. This creates two distinct convergence objectives for the
two elements of the adversarial framework [42]. The discriminator
loss term remains the same as stated in Equation 1 above, while the
loss term for the target encoder becomes:

Lrap (X5, X, D) = _Ext~xf[IOgD(Mt(Xt))] @)

This process is analogous to the process utilized by generative
adversarial networks (GANs) [18]. A GAN attempts to emulate a
fixed data distribution by adversarially training a discriminator to
distinguish between “fake” data, which was produced by a
generator that aims to generate data that is synthetic but realistic
looking using a random noise vector, and “real” data that is
extracted from the prior fixed data distribution. While GANs have
been utilized in domain adaptation tasks [27], they are typically
effective when the source and target domains are relatively similar.
GANs have shown convergence issues in scenarios involving a
high degree of domain shift [42]. As our work involves a domain
shift from a multimodal source domain to a unimodal target
domain, we opt to utilize a non-generative approach for this work
and focus exclusively on discriminative adversarial methods. It is

assumed that a pre-existing distribution of multimodal data (i.e.,
interaction trace logs + facial expression) is available to train the
source encoder and the source classifier, while the target
distribution consists of unlabeled unimodal data (i.e., interaction
trace logs). This is intended to simulate scenarios where visitor
engagement models have been previously trained on multimodal
data but are deployed in situations where only interaction trace log
data is available to generate new predictions of visitor engagement.

While much prior work in adversarial domain adaptation involves
source and target domains of similar or identical dimensionality
(e.g., image-to-image translation), the multimodal aspect of this
work presents a distinct challenge, as the multimodal data in the
source domain inherently contains more features than the unimodal
target domain. To enable the pre-trained multimodal classifier to
handle unimodal data as input, stacked denoising autoencoders [45]
are used to reduce the multimodal and unimodal feature vectors to
the same dimensionality. An autoencoder is an unsupervised
method of using feedforward neural networks to reduce an input
vector X to a latent data representation using an encoder that
contains a mapping function M. The autoencoder then attempts to
use a decoder that uses mapping function N to reconstruct M(X) to
its original input. The encoder and decoder components of the
autoencoder are both optimized by minimizing the reconstruction
loss between X and N(M(X)). A stacked autoencoder is a variation
in which each component contains multiple hidden layers of
autoencoders. A denoising autoencoder builds on the same concept
but corrupts the input vectors using random noise injection, which
allows effective model regularization [45]. In this work, we use a
corruption level of 0.25 on each feature in each input vector, where
a value is set to 0 when the input feature is corrupted. After input
vector X undergoes random noise injection to produce X°, the
denoising autoencoder attempts to reconstruct X from N(M(X")).
This allows the autoencoder to become more robust against random
noise within the input features while also preventing the
autoencoder from overfitting or simply learning the identity
function. Following the optimization of the autoencoder, the
decoder component is discarded while the encoder component is
retained for dimensionality reduction within our data processing
pipeline. A denoising autoencoder is shown in Figure 3.
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Figure 3. A denoising autoencoder.

Our adversarial domain adaptation process is shown in Figure 4.
Figure 4A illustrates the initial training of the classifier and the
source encoder. The features from the facial expression and
interaction modalities are concatenated together and then used to
train a stacked denoising autoencoder. Following this process, the
trained source encoder is then used to reduce the multimodal input
data to a latent representation that is then used to train a classifier.
The classifier receives the latent data as input and is trained to
predict the target variable, visitor dwell time. To enable the
adversarial training of the target encoder and discriminator (Figure
4B), the weights of the pre-trained source encoder are fixed, and
the target encoder weights are initialized using a pre-trained
autoencoder optimized on the unlabeled, interaction-only data. An
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Figure 4. Domain adaptation process, including (A) the
classifier and source encoder training, (B) adversarial training
of the target encoder and discriminator, and (C) evaluation of
the adapted target encoder on the classifier. Dashed lines
indicate fixed model weights.

alternative approach is to initialize the target encoder weights from
the source encoder. However, this can only be accomplished if the
feature vectors extracted from the source domain are the same
dimensions as the target domain. In our work, the multimodal
feature vectors from the source domain have a higher
dimensionality than the unimodal feature vectors from the target
domain, since we remove the facial expression modality from the
training data for the target encoder. The source and target encoders
are used to produce latent representations of the multimodal and
unimodal features, respectively. These representations are assigned
labels of either 1 if the sample originated from the source domain,
and 0 if the sample originated from the target domain. The
data/label pairs are then used to train a feedforward network serving
as the discriminator model. The discriminator is trained to
distinguish between latent data from the source domain and from
the target domain, while the target encoder is simultaneously
trained to produce latent data from the target domain that
consistently deceives the discriminator. To evaluate the target
encoder (Figure 4C), unimodal data is passed through the encoder,
and the resulting encoded data is then forward propagated through
the trained classifier shown in Figure 4A. This procedure provides
a way to evaluate the predictive performance of a multimodal
classifier on unimodal data. It is important to note that some amount
of multimodal data must be present prior to deploying our
adversarial approach in order to train the multimodal classifier as
well as the multimodal autoencoder.

6. METHODOLOGY

In multimodal models of learner engagement, some modalities that
are highly predictive of engagement can also be impractical or
undesirable in certain educational settings, such as sensors that
require a cumbersome calibration process or expensive specialized
equipment. Modalities that involve the capture of video data can
raise concerns about privacy. However, eliminating physical
sensors and exclusive reliance on sensor-free modalities may result
in decreased performance on some tasks and settings. We propose
a solution to this issue that (1) allows the predictive capacities of
multimodal models to be retained, and (2) allows for the reduction
in use of physical sensors. This work operates under the assumption
that multimodal data is available in at least some capacity to

facilitate the training of multimodal models prior to adversarial
domain adaptation. As a result, the ideal setting for the proposed
framework is after an initial multimodal data collection has taken
place, enabling pre-trained multimodal models to be deployed.
Below we describe the methods used to preprocess the multimodal
and unimodal data, the feature selection process utilized to select
the data used in the prediction and adversarial tasks, and the
approach to training and validation of the visitor engagement
models. Finally, we present the early prediction convergence
metrics used to evaluate the final classification models and the
domain encoders.

6.1 Data Preprocessing

6.1.1 Temporal Feature Engineering

To facilitate early prediction of visitor engagement, sequential
representations were produced from the features engineered from
the two modalities as described in Section 4.2. To accomplish this,
feature vectors were engineered for every subsequent 10-second
interval in a single visitor’s interaction session with the exhibit. For
each feature, the average or sum of all values from =0 to =10n
seconds was calculated, where n is the number of 10-second
intervals that have elapsed for that feature vector. For example, if a
visitor engaged with the exhibit for one minute, then #=6, and the
feature vectors are generated across time intervals of 10, 20, 30, 40,
50, and 60 seconds from the beginning of their session. This allows
each feature vector to be a representation of a visitor’s behavior
over their entire interaction with an exhibit up to that point.
Additionally, this approach solves the issue of the temporal
alignment of the separate data channels caused by differing
sampling rates of the facial expression modality and the interaction-
based modality. As a result, the early prediction models are able to
make predictions at a consistent frequency across every visitor’s
exhibit interaction trajectory (i.e., every 10 second). To ensure that
the additive nature of the features does not contribute to artificially
inflated model performance, each feature is scaled by the elapsed
time up to the current timestamp. After this process is complete,
2,279 data samples were generated for 79 visitors.

6.1.2 Visitor Dwell Time

The beginning of a visitor’s dwell time takes place after a
calibration process with the eye gaze sensor is completed, and prior
to when they are presented with an on-screen information dialogue
box explaining the problem to be solved. The visitor’s session can
end one of three ways: (1) the visitor opts to end their session prior
to completing the problem-solving task in FUTURE WORLDS, (2) the
visitor solves the problem and chooses to end their session, or (3)
the visitor solves the problem, opts to continue interacting with the
virtual environment, and later chooses to end their session. Each
visitor’s dwell time was captured in total seconds (M=268.83,
SD=137.48, Min=77.11, Max=657.48) and was recorded by the
FUTURE WORLDS exhibit’s built-in logging functionalities. For the
purpose of this work, the dwell time prediction task was converted
to a classification problem by splitting dwell time into three tertile
groups and assigning approximately one-third of the visitors to
each group. We use this classification approach instead of
regression analysis due to the relatively low number of visitors in
the dataset and to accommodate the use of early prediction
convergence metrics. The visitors in the dataset were assigned to
one of three possible groups according to their dwell time d: low (d
<=193.54, N=26), low (193.54 <d <=318.82, N=27), and high (d
> 318.82, N=26). We take this approach as a way to prevent a
significant class imbalance while still retaining a higher level of
granularity than a median split. The distribution of visitor dwell
times, including the ternary groups, is shown in Figure 5.
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6.2 Feature Selection

Because of the large number of features in the multimodal data (51
facial expression features and 8 exhibit interaction features), we
implemented forward feature selection to eliminate features with
little or no predictive value and to reduce potential noise. Forward
feature selection iterates through a list of features in a greedy
manner, training a model on a single feature and continuing to add
features if their inclusion increases the performance of the model
on the target variable. This process continues until a predetermined
number of features are selected or until all available features have
been evaluated. This process has a few shortcomings. Due to the
greedy nature of the algorithm, the features that are evaluated first
have a higher chance of being selected. For example, the first
feature that is evaluated is always retained, regardless of its true
contribution to the predictive performance of the model. One
approach to mitigating this issue is to perform forward feature
selection for every possible combination of features, but this is
often prohibitive as the number of combinations increases
exponentially as the number of features increases, which imposes
significant computational requirements. To mitigate the issue of
bias in greedy feature selection while avoiding an exhaustive search
across all feature combinations, we perform forward feature
selection across a randomized ordering of all available features. We
used a support vector machine (SVM) as the predictive model for
each feature combination due to its effectiveness in high-
dimensional spaces and relatively small computational overhead.
This process was repeated for 100 separate iterations and
randomizations to ensure that each feature had an equal probability
of being placed at a specific point within each feature ordering.
Following this process, the features were sorted according to the
frequency that each feature was selected across all 100 iterations.
To compensate for the difference in the number of features for each
data channel, we performed forward feature selection on the facial
expression modality and selected the ten most frequently selected
features.

It should be noted that because we selected the ten most frequent
features from the facial expression modality, and the interaction-
based modality contained only 8 total features, each feature from
the latter modality was included in the data modeling process. (We
perform forward feature selection on the interaction-based features
for analysis purposes only.) Because certain features such as AU
durations and tile durations increase monotonically throughout a

Table 1. Most frequent features from forward feature
selection (interaction)

Feature Frequency
Proportional Tile Duration 0.637
Proportional Open Tile Count 0.561
Proportional Info Duration 0.557
Proportional Info Taps 0.554
Proportional Taps 0.511
Proportional Swipe Tiles Count 0416
Proportional Modify Tile Count 0.341
Beat Game 0.272

Table 2. Most frequent features from forward feature
selection (facial expression)

Feature Frequency
AUO5 Max 0317
AU10 Max 0.276
Proportional AU10 Duration 0.257
AUO02 Max 0.237
Proportional AUO1 Duration 0.227
AU26 Std 0.218
AU25 Max 0214
Proportional AU17 Duration 0.208
Proportional AU45 Duration 0.206
Proportional AU26 Duration 0.196

visitor’s exhibit interaction trajectory and can lead to indirect data
leakage with regard to the target variable (dwell time at the exhibit),
the features were scaled by the total elapsed time up to the current
timestamp, so these features were converted to proportional
representations of the elapsed time at each time interval.

This feature selection process took place within each cross-
validation fold, and as a result, each fold produced a different
combination of selected features. We calculated the frequency of
the features across all cross-validation folds and present these in
Table 1 and Table 2.

Based on the results in Table 1, features related to general
interactions (proportional number of times any tile was opened,
proportion of time any tile was open) were the most predictive
interaction-based features. The features related to opening and
viewing embedded graphical and textual science materials were
also frequently selected features. The features representing the
frequency a visitor modified the in-game virtual environment were
less frequently selected as predictive features, as was the binary
indicator of whether the visitor correctly solved the problem at that
particular timestamp.

The most predictive features from the facial expression modality
were primarily maximum values and proportional durations of
certain AUs. AUOS (upper lid raiser) and AU10 (upper lip raiser)
were the most predictive facial action units, followed by AUO02
(outer brow raiser) and AUO1 (inner brow raiser). AU25 (lips part)
and AU26 (jaw drop) were moderately predictive, followed by
AU17 (chin raise) and AU45 (blinking). Multiple representations



of AU10 and AU26 were frequently selected during the feature
selection process as well. It is notable that the overall frequency of
the facial expression features is significantly lower than many
interaction-based features. This is likely a result of the large number
of facial expression features compared to the interaction-based
features.

6.3 Model Evaluation

The models were evaluated using 10-fold cross-validation, with the
splits for each fold occurring at the visitor level to ensure that a
visitor’s data was contained only within a single training,
validation, or test set. The dataset was standardized within each
cross-validation fold by dividing each feature by subtracting the
feature’s mean and dividing by the feature’s standard deviation, as
determined by the training data. This rescales the data to have a
standard deviation of 1 (unit variance) while centering the mean to
be 0. Following this process, class imbalances within the training
data were resolved using Synthetic Minority Oversampling
Technique (SMOTE) [10]. SMOTE is a common upsampling
approach that resolves class imbalances through a randomized K-
nearest neighbor approach, which brings the class balance to a
uniform distribution while avoiding duplication of any data points.
The upsampled, standardized training data is then used for forward
feature selection as described in Section 6.2.

After feature selection, a classifier model was trained on the
multimodal data and the visitor dwell time labels in each cross-
validation fold to provide a comparison point for the domain-
adapted models. The tertile labels for the target variable were
encoded as one-hot vectors for each model output. We evaluated
five different models: SVM, logistic regression, naive Bayes,
random forest, and a feedforward neural network. We performed
hyperparameter tuning using a 3-fold nested cross-validation
within the training set for each outer cross-validation fold. The
hyperparameters that were varied for each model included the
regularization parameter and kernel (SVM), regularization
parameter (logistic regression), number of estimators (random
forest), and number of layers and nodes (feedforward neural
network). Additionally, the architecture of the autoencoder used to
train the source encoder was evaluated during the hyperparameter
tuning phase. The autoencoder was a feedforward neural network,
and the hyperparameter values that were evaluated were the number
of layers and nodes in the hidden layers within the encoder and
decoder, as well as the number of latent dimensions. The
feedforward neural network achieved the optimal performance as
the classifier for visitor dwell time, using two hidden layers with 64
nodes each. The source encoder contained three hidden layers with
64, 32, and 16 nodes, respectively, with a latent output of 10.
Additionally, all feedforward neural network models used a
learning rate of 0.001, a dropout rate of 0.5 in the last hidden layer,
and sigmoid activation functions. The loss function used for each
model was categorical cross-entropy. Early stopping was
implemented for each model using the validation data during the
nested cross-validation to protect against overfitting. As a baseline,
we follow the same process previously described, except using only
the interaction modality. We evaluate both a unimodal and
multimodal baseline in order to demonstrate the improved
performance of the multimodal model of visitor dwell time as
compared to the unimodal model, and to show the improved
performance using the domain adaptation framework in situations
where only unimodal data is available.

After the optimal classifier and source encoder for adversarial
domain adaptation were trained for each cross-validation fold, the
models’ weights were fixed to evaluate the classifier performance

on interaction-only data and to encode the multimodal data within
the adversarial framework, respectively. The adversarial
framework used a target encoder that is a feedforward neural
network whose architecture and weights were pre-determined using
the interaction-only baseline model. Although the source encoder
and target encoder weights were not tied together as is common in
other adversarial domain adaptation work [27], there was an
imposed restriction that the latent dimensions be the same for both
domains due to the fixed input size of the discriminator. The
discriminator in the adversarial framework was a feedforward
neural network with two layers of 64 nodes each. The learning rate
of both the discriminator and the target encoder was 0.001, with a
dropout rate of 0.05 in the last hidden layer and hyperbolic tangent
activation functions. The loss functions for the discriminator and
target encoder were based on binary cross-entropy as shown in
Equations 1 and 2, respectively. The adversarial domain adaptation
took place within each cross-validation fold to prevent data leakage
from the test set.

To evaluate the predictive performance of the domain-adapted
representations of the target data, the trained target encoder was
used to encode the interaction-only data from the held-out test set
within each cross-validation fold, and the encoded data was passed
to the classifier model trained with the source data. The predictive
performance of the classifier on this data was used to confirm that
the use of multimodal data to train the classifier induces higher
performance than if the facial expression data was removed from
the dataset entirely. As an additional baseline, the target encoder
trained on the interaction-only modality was used to pass the
encoded data directly to the multimodal classifier without the
domain adaptation procedure, following the source-only baseline
approach of Tzeng et al. [42]. This illustrates that any improvement
due to our method can be attributed to the adjusted weights through
the adversarial adaptation process instead of just compressing the
latent representation of the target domain data to the source
domain’s dimensionality. This specific baseline is called farget-
only.

6.4 Early Prediction

To quantify the models’ ability to accurately predict a visitor’s
dwell time early and consistently, we utilize two metrics:
standardized convergence point [30] and convergence rate [4]. The
standardized convergence point calculates an average point of
model convergence to the correct labels, while a particular visitor’s
sequence not converged to a correct prediction is penalized. This
metric extends the conventional convergence point metric to
account for sequences that are ultimately predicted incorrectly and
fail to converge by instituting a penalty term [4]. In this instance,
standardized convergence point is greater than one. In cases of
convergence, a sequence’s standardized convergence point falls
within the range [0, 1]. Equation 3 displays the formula used to
calculate the standardized convergence point across all sequences,
where m is the number of sequences, and #; is the number of data
points in the i visitor’s sequence. The value of k; is the number of
data points after which the model makes consistently accurate
predictions, otherwise k; equals n;+p;, where p; is the penalty term
for the i sequence [30]. (p; is set to 1 for all sequences in this work
following the original work.) A lower standardized convergence
point indicates that the model’s predictive accuracy tends to
converge earlier in a visitor’s interaction with the exhibit,
indicating better early prediction performance.

i)
n;

Standardized convergence point = Z
m
i=1

3)



The second metric that we use to quantify a model’s early
prediction performance is the convergence rate. Convergence rate
is the percentage of observed sequences in which the final
prediction is accurate. Any sequence that contains an accurate
dwell time prediction at the last data point is considered to have
converged. Therefore, a higher convergence rate is indicative of
better performance.

7. RESULTS AND DISCUSSION

The results for the unimodal and multimodal models as well as the
unimodal latent representations (i.e., target-only encoding) and
domain-adapted representations are shown in terms of early
prediction and visitor-level predictive performance in Table 3. To
measure visitor-level performance, a single point estimate of the
predictive performance for each individual visitor is obtained by
averaging across the predictions for all data points. The results for
Table 3 are shown in terms of standardized convergence point
(SCP) and convergence rate (CR) for early prediction, and area
under curve (AUC), Cohen’s Kappa, accuracy, and F1 score for
visitor-level performance. Although AUC is commonly used for
binary classification problems, we use this metric for a multi-class
approach using a “one vs. rest” method which treats the correct
class as the “positive” group and combines all other classes as a
single “negative” group. The total AUC for a single model is
calculated by using the unweighted mean of the AUC values across
all three groups.

Based on the results in Table 3, the adversarial domain adaptation
allows the multimodal classifier to outperform all baselines in
terms of early prediction and across all sequences for each visitor.
As expected, the complete multimodal model achieved the highest
performance, achieving an AUC value of 0.660, while also
outperforming the other models in all other evaluation metrics. The
model achieved a standardized convergence point of 64.58%,
indicating that the model achieved and maintained its optimal
predictive performance approximately 64% into a visitor’s total
dwell time at the exhibit, while converging to the correct
predictions more often than other baseline approaches. The
interaction-only modality produced noticeably lower performance,
achieving a convergence point of 75.95%, while also reaching a
0.574 AUC across all sequences. The adversarial domain
adaptation allowed the classifier to achieve higher performance on
the interaction-only data, with an early prediction performance of
67.42% and a visitor-level AUC of 0.585, similar to the full
multimodal model while also outperforming the interaction-only
baseline across all evaluation metrics.

The classifier’s performance on the latent unimodal data (without
domain adaptation) was notably poor, achieving an AUC that was
slightly worse than random chance (0.500). This result is not
surprising, as we are evaluating the model’s performance using
latent representations from a domain that has not been used to train
the model beforehand. Although similar baseline approaches can

achieve moderate performance in instances where the source and
target domains are relatively similar, other work that investigates
cross-modality adaptation or adaptation across dissimilar domains
achieves much lower performance for this specific baseline [42].

While the adversarial domain adaptation proved more effective
than the interaction-only and latent unimodal data baselines, the
performance of our framework did not achieve the same
performance as a framework that contained the full multimodal
data. This could be attributed to the significant difference between
the interaction and facial expression domains. The majority of the
interaction-based modality is comprised of discrete, monotonically
increasing features, which inherently are not as data-rich as the
features from the facial expression modality. Because there are
multiple features for each AU, this modality provides multifaceted
perspectives on multiple AUs, leading to a relatively high number
of continuous features. Adapting between two data channels with
such a discrepancy in dimensionality may be a contributing factor
to the framework’s performance. Second, the relatively small
number of visitors in the dataset may also be a contributing factor,
as the performance of the models could be at risk for overfitting the
classifier, source encoder, or target encoder. Contributing to this
potential issue is the loss induced in the domain adaptation process.
The size of the dataset may prevent the adversarial framework from
reaching optimal convergence. Third, because there is no restriction
regarding how long the visitors could remain at the exhibit, the
target variable has a relatively wide range of values, approximately
from one minute to more than ten minutes. Although this issue is
addressed through the use of a tertile split, additional data could
provide further evidence of behavioral patterns that are able to
induce higher performance with more granular target variables.

Because timestamped interaction trace logs are the basis of one of
the modalities used in this work, the design of the museum exhibit
may play a role in the performance of the visitor models in terms
of early prediction. During the early stages of FUTURE WORLDS,
visitors are prompted to read an information dialog box explaining
the premise of the game and a summary of the problem to be solved
in the virtual environment. Because this event occurs at the
beginning of every visitor’s interaction sequence, it is likely that
more indicative behaviors that allow the classifier to differentiate
between groups occur at later stages of learner interactions with the
exhibit. This is a potential explanation behind the early prediction
performance of each model, as the standardized convergence point
occurs after 60% of the overall exhibit interactions across all
models.

To further investigate the impact that domain adaptation has on the
predictive performance of the multimodal classifier, confusion
matrices based on the target-only encoder and the adversarially-
trained encoder are shown in Figure 6 as is the confusion matrix for
the interaction-only classifier. The purpose of this analysis is to
determine if adversarial domain adaptation results in any changes
relative to the classifier’s sensitivity to certain dwell time groups.

Table 3. Visitor-level predictive performance (all sequences)

Early Prediction Visitor-Level Prediction
Encoding Classifier SCP CR AUC Kappa Accuracy  F1 Score
Interaction-Only Unimodal 75.95% 34.18% 0.574 0.085 0.392 0.355
Multimodal Multimodal  64.58% 48.10% 0.660 0.278 0.519 0.511
Target-Only Multimodal  73.79% 34.18% 0.499 0.015 0.342 0.338
Domain Adaptation | Multimodal 67.42% 43.04% 0.585 0.203 0.468 0.468
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Figure 6. Confusion matrices for classifiers using target-only, interaction-only, and domain adaptation-based representations.

Based on the confusion matrix for the target-only classifier (i.e., the
multimodal classifier evaluated on the interaction data without
domain adaptation), the classifier appears to primarily predict high
dwell times for a majority of visitors. The model also appears to
frequently predict visitors with medium dwell time as having low
dwell time. As this particular model performed similarly to a
random chance classifier, it is likely that the interaction-only data
representation was not easily identifiable to the classifier, leading
it to primarily predict a single class and not classify the lower two
groups accurately. The classifier that was trained and evaluated on
interaction-only encodings performed slightly better and appears to
become more accurate in cases of lower dwell time in visitors.
However, it is notable that the model still does not appear to
accurately predict instances of medium dwell time. This indicates
that the interaction-based modality contains salient features
indicative of noticeably low or high engagement but interactions
from visitors with medium dwell time are not easily distinguishable
to the model. Low dwell time may be characterized by a relatively
low number of taps or interactions in the virtual environment, while
high dwell time may be indicated by greater or more frequent
tapping or interactions with the virtual environment. Additionally,
visitors that have a higher dwell time are more likely to beat the
game or read a higher number of information dialogs. However,
this information may not be predictive enough with the ternary
split, causing the interaction model to overfit to the two extremes.

The multimodal classifier that processes the modality-invariant
data representations performs noticeably better for visitors with
medium dwell time and continues to maintain fairly accurate
performance on visitors with high dwell time. This may indicate
that facial expression captures physical cues that allow the model
to more easily distinguish between the medium group and the other
groups, and the domain adaptation allows these features to be
integrated into the interaction-only representations. By
implementing this approach across the two modalities, it appears
that the multimodal model retains its robustness to visitors with a
medium dwell time in particular, while being able to achieve this
performance using only features from the interaction data. This is
significant because it appears that the interaction-only model does
not appear to induce high performance on the medium dwell time
visitors, so it remains important to utilize the multimodal data
representations obtained through domain adaptation as pre-training
for accurately predicting the visitor dwell time.

8. CONCLUSION

Modeling visitor engagement is an important task in museum-based
learning. However, visitor engagement modeling presents
significant challenges, as visitors’ patterns of engagement with
museum exhibits can vary widely. Multimodal frameworks show
promise for the prediction of visitor engagement in museums
because they capture information about visitor behavior that cannot

otherwise be captured through interaction trace logs or similar
unimodal data channels. Although multimodal sensor systems give
rise to concerns about privacy, feasibility, and intrusiveness, the
complete removal of sensor data from visitor engagement models
may result in diminished predictive performance. To address this
issue, we have introduced an adversarial domain adaptation
approach to generating modality-invariant representations of
interaction data and facial expression data from visitor interactions
with the FUTURE WORLDS museum exhibit. The domain adaptation
approach enables multimodal models to be induced in a pre-
training phase while being deployed and evaluated with modality-
invariant representations obtained using interaction-based data
exclusively. We investigate the models’ ability to predict visitor
dwell time during the early stages of a visitor’s interaction with the
museum exhibit. Results indicate that the domain adaptation
approach to modeling visitor engagement achieves higher
performance than a visitor modeling approach using only a single
modality. The domain adaptation approach also outperforms the
unimodal baseline during early sequences of a visitor’s interaction
trajectory as well as across all sequences while demonstrating
competitive performance compared to classifiers utilizing
multimodal data.

There are several promising directions for future work. Alternative
techniques for modeling visitor engagement should be evaluated,
including sequential models like long short-term memory (LSTM)
networks, to improve models’ predictive accuracy and early
prediction. Alternative approaches to the adversarial learning
component of this framework include the use of generative models
such as GANs or variational autoencoders. Attaining reliable
training convergence continues to be a challenging problem within
adversarial learning and investigating solutions to this issue may
enhance the benefits of domain adaptation. The generalizability of
the domain adaptation framework should be evaluated using larger
and more diverse visitor populations on different exhibits and
museum settings. Additionally, the domain adaptation framework
should be evaluated using additional combinations of modalities
(e.g., posture, gaze, speech), and extended to include three or more
modalities simultaneously. Finally, this framework should be
evaluated at run-time by integrating visitor engagement models into
a museum exhibit to enable visitor-adaptive interventions to enrich
visitor engagement and enhance museum-based learning
experiences.
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