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Abstract

Interacting agent and particle systems are exten-
sively used to model complex phenomena in sci-
ence and engineering. We consider the problem
of learning interaction kernels in these dynam-
ical systems constrained to evolve on Rieman-
nian manifolds from given trajectory data. The
models we consider are based on interaction ker-
nels depending on pairwise Riemannian distances
between agents, with agents interacting locally
along the direction of the shortest geodesic con-
necting them. We show that our estimators con-
verge at a rate that is independent of the dimension
of the state space, and derive bounds on the trajec-
tory estimation error, on the manifold, between
the observed and estimated dynamics. We demon-
strate the performance of our estimator on two
classical first order interacting systems: Opinion
Dynamics and a Predator-Swarm system, with
each system constrained on two prototypical man-
ifolds, the 2-dimensional sphere and the Poincaré
disk model of hyperbolic space.

1. Introduction

29

Dynamical systems of interacting agents, where ‘“agents
may represent atoms, particles, neurons, cells, animals,
people, robots, planets, etc..., are an important modeling
tool in many disciplines, including Physics, Biology, Chem-
istry, Economics and Social Sciences. It is a fundamental
challenge to learn the governing equations of these sys-
tems. Often, agents are either associated with state variables
which belong to non-Euclidean spaces, e.g., phase variables
considered in various Kuramoto models (Kuramoto, 1975;
Strogatz, 2000), or constrained to move on non-Euclidean
spaces, for example (Ahn et al., 2020). This has motivated
a growing body of research considering interacting agent
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systems on various manifolds (Lee et al., 2018; Caponigro
et al., 2014; Sarlette & Sepulchre, 2008), including opinion
dynamics (Aydogdu et al., 2017), flocking models (Ahn
et al., 2020) and a classical aggregation model (C. Fetecau
& Zhang, 2019). Further recent approaches for interacting
agents on manifolds include (Yang et al., 2020; Soize &
Ghanem, 2020).

In this work, we offer a nonparametric and inverse-problem-
based learning approach to infer the governing structure of
interacting agent dynamics, in the form of X, = f(X,),
constrained on Riemannian manifolds, from observations of
trajectories. Our method is different from others introduced
to learn ODEs/PDEs from observations, that aim to infer f
directly, and would be cursed by the high-dimension of the
state space of X (Lu et al., 2019b). Instead, we exploit the
form of the function f, special to the class of interacting
agent systems under consideration, which is determined by
an interaction kernel function ¢ of one variable only, and
learn ¢, with minimal assumptions on ¢. By exploiting
invariance of the equations under permutation of the agents
as well as the radial symmetry of ¢, we are able to avoid
the curse of dimensionality. We also demonstrate how our
approach can perform transfer learning in section 5.

The research on inferring a suitable dynamical system of
interacting agents from observation data has been a long-
standing problem in science and engineering; see (Lukeman
et al., 2010; Katz et al., 2011; Cui et al., 2014; Tran & Ward,
2017) and references therein. Many recent approaches in
machine learning have been developed for inferring general
dynamical systems, including multistep methods (Keller &
Du, 2019), optimization (Wrébel et al., 2013), sparse re-
gression (Brunton et al., 2016; Rudy et al., 2017; Schaeffer
et al., 2013), Bayesian regression (Zhang & Lin, 2018), and
deep learning (Raissi et al., 2018; Rudy et al.,, 2019). In a
different direction, the generalization of traditional machine
learning algorithms in Euclidean settings to Riemannian
manifolds, and the development of new algorithms designed
to work on Riemannian manifolds, has been attracting in-
creased attention; for example in variational calculus (Soize
& Ghanem, 2020), reinforcement learning (Riccio et al.,
2018), deep learning (Chen et al., 2020) and theoretical CS
(Monte-Alto et al., 2020).

Let (M, g) be a connected, smooth, and geodesically-
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complete d-dimensional Riemannian manifold, with the
Riemannian distance denoted by d »(. Consider N interact-
ing agents, each represented by a state vector x;(t) € M.
Their dynamics is governed by the following first order
dynamical system, where ¢, the interaction kernel, is the
object of our inference: foreach: =1,..., N,
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and t € [0,T]. Here w(z1,22), for z1,z2 € M, is a
weight vector pointing in the tangent direction at z; to the
shortest geodesic from z; to zo. For this to make sense, we
restrict our attention to local interactions, e.g. by assuming
that ¢ is compactly supported in a sufficiently small interval
[0, R], so that length-minimizing geodesics exist uniquely.
We discuss the well-posedness of this model in greater detail
in section 2.1, where we emphasize that this model is derived
naturally as a gradient system with a special potential energy
depending on pairwise Riemannian distances.

With (M, g) known to us, our observations consist of
{x (), 2" (t) oy with 0 =t < -+ <ty =T,
L being the number of observations made in time, M being
the number of trajectories, and each (z(0))¥, € MY
is drawn i.i.d from a probability measure zo(M?). We
construct an estimator $ .M, of ¢, close to ¢ in an appro-
priate L? sense, and generating a system in the form (1)
with trajectories close to those of the original system (with
the same initial condition); it is defined as

QSL,JW,’H = arg min EL.,M,M (QD)
pEH
Here H is a function space containing suitable approxima-
tions to ¢ and €1, a1, 1 1S a least squares loss functional built
from the trajectory data, which takes into account the geom-
etry of (M, g). Having established a geometry-dependent
coercivity condition that ensures, among other things, the
recoverability of ¢, our theory shows that the convergence
rate (in M) of our estimator to the true interaction kernel is
independent of the dimension Nd of the observation data,
and is the same as the minimax rate for 1-dimensional non-

parametric regression:
} < (log M )
L2 (ﬁ%M) M

where the expectation is with respect to the initial condition
distributed as described above, ¢ is assumed to be 1-time
differentiable, p%’ A 18 a dynamics-adapted probability mea-
sure which captures the distribution of pairwise Riemannian
distances, and the implicit constant depends on M.
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We also establish bounds on trajectory predictions: let
X0,17, X |0, be trajectories evolved with the interaction

kernels ¢ 1, nr,24 and ¢ respectively, started at the same initial
condition, then:

2
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where dy; is a natural geometry-based distance on trajec-
tories. As M grows, the norm on the right hand side con-
verges at the rate above, yielding convergence of the trajec-
tories. We demonstrate the performance of our estimators
on an opinion dynamics and a predator-swarm model, each
constrained on two model manifolds: the two-dimensional
sphere S? and the Poincaré disk.

2. Model Equations

In this section we introduce the governing equations which
we use to model interacting agents constrained on Rieman-
nian manifolds, and discuss the properties of the dynamics.
Table 1 shows a list of definitions of the common terms used
throughout this paper.

Variable | Definition
(M, g) Riemannian Manifold with metric g
TeM Tangent plane to M at @

Vg(a)> {s)g | Inner product on T,; M
[v]l a0l | Lengthof v € T5 M induced by g(x)
dm(y- Geodesic distance induced by g

Table 1. Notation for first-order models.
2.1. Main model

In order to motivate the choice of the model equations we
use, we begin with a geometric gradient flow model of an in-
teracting agent system. Consider a system of /N interacting
agents, with each agent described by a state vector x;(t) on
a d-dimensional connected, smooth, and geodesically com-
plete Riemannian manifold M with metric g. The change
of the state vectors seeks to decrease a system energy E:

dz;(t)
dt

Our first key assumption is that F takes the special form

ZU dM :Iil
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for some U : Rt — R with U(0) = 0, and d(+, ") the
geodesic distance on (M, g). Simplifying, and omitting
from the notation the dependency on ¢ of x; and x;, we
obtain the first-order geometric evolution equation,

= =0z, E(x1(t),...,2zN(t)), i=1,...,N.

E(xz1(t),...,x xi(1))?),
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fori=1,...,N. We call ¢(r) := 2U’(r?) the interaction
kernel. We have let w(z1, z2) = dam(2z1, 22)v(21, 22) for
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z1,29 € M, with v(z1, z5) being, for zo # z1, the unit
vector (i.e. [|v]|r, M = D) tangentat 2, to the minimizing
geodesic from z; 'to 2z if z5 is not in the cut locus of zq,
and equal to O otherwise. In order to guarantee existence
and uniqueness of a solution for (2) over the time interval
[0, T'], we make a further assumption that ¢ belongs to

Kr,s = {p € CH (0, R)| ¢l p + ¢ L < S},

for some constant S > 0. Here, R is smaller than the global
injectivity radius of M, and L> = L*°([0, R]). With this
assumption, the possible discountinuity of v(z1, z2) due to
either zo — z; or z» tends to a point in the cut locus of
z1 is canceled by the multiplication by daq(z1, z2) — 0 in
the former case, and ¢(d (21, 22)) — 0 in the latter case.
Therefore, the ODE system in (2) has a Lipschitz right-hand
side, and thus it has a unique solution existing for ¢ € [0, T
see (Hairer et al., 2006).

Using this geometric gradient flow point of view, the form
of the equations and the radial symmetry of the interaction
kernels are naturally pre-determined by the energy poten-
tial. This approach seems to us natural and geometric; for
different approaches see (Aydogdu et al., 2017; Caponi-
gro et al., 2014). Note that in the case of M = R? with
the Euclidean metric, we have dy(x;, i) = ||@y — 4|
and v(x;, Ty) = ﬁ, and we recover the Euclidean
space models used in (Bongini et al., 2017; Lu et al., 2019b)
and the many works referenced therein. Moreover, our
learning method still applies to models with different def-
initions of the weight vector, e.g. w(x;, x; ), as long as
w(x;, i) € Ty, M.

3. Learning Framework

We are given a set of trajectory data of the form
{m(t), & (t) by for 0 =t < ... <ty =T,
with the initial conditions {z*(0)}Y; being i.i.d from a
distribution £10(M). The objective is to construct an estima-
tor g/zg 1.,m,% of the interaction kernel ¢.

Before we describe the construction of our estimator, we
introduce some vectorized notations. We let, in MY =
M x - x M,

X7 = |z"(t;)| and X := |z;|,

where (MY, g%)) is the canonical product of Riemannian
manifolds with product Riemannian metric given by,

: : N
< AN ET > = Z ul7zl g(x;)»
: : g (X) =1

for u;, z; € Ty, M. The initial conditions, X J" are drawn
i.i.d. from 11o(M™). Finally, f, is the vector field on MY
(ie. f4(X) € Tx MN for X € M"), given by

FoXp) = | L SN sldu(al (1), (1) o (), 2 ()|

The system of equatlons (2) can then be rewritten, for each
m=1,...,M,as X, = fs(X3").

3.1. Geometric Loss Functionals

In order to simplify the presentation, we assume that the
observation times, i.e. {¢;},, are equispaced in [0, T (the
general case is similar). We begin with the definition of the
hypothesis space H, over which we shall minimize an error
functional to obtain an estimator of ¢.

Definition 3.1. An admissible hypothesis space H. is a com-
pact (in L>=-norm) and convex subset of L?([0, R]), such
that every ¢ € H is bounded above by some constant
So > S, ie. ||90||L°°([0,R]) < So; moreover @ is smooth
enough to ensure the existence and uniqueness of solutions
of 2)fort € [0,T],i.e. p € HNKR,s,.

For a function ¢ € H, we define the loss functional

L,M

ML Z HX“ B

,m—

Ermm(p) = o(XE)
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where the norm |[-[| , in Txy MP can be written as

i 2
Hth _.f(p(th) ‘g

N
1
anl N Z @(T;ni’,tl)w;‘?’,tl )
= i'=1 Tm;"(tl)M
with & = z"(t), T g, = dm (] (t), 27 (t;)), and
wi = w(x(t), 2} (t;)). This loss functional is non-

negative, and reaches 0 when ¢ is equal to the (true) inter-
action kernel ¢ if € H N Kg,g. Given that H is compact
and convex and £y, pr, a4 is continuous on H, the minimizer
of &1, m,m exists and is unique. We define it to be our
estimator:

¢r,mn = argmin £ p () -
pEH

As M — oo, since each trajectory has i.i.d. ICs, by the law
of large numbers, we have €1, apr am — €L,00,Mm, With
,]
e

4)

L
1 .
EL,OO,M (90) = Z ZEX()N[LU(MN) |: HXtL - fgp(th)
=1
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Since €1, 0,0 is continuous on H, the minimization of
EL,00,m Over H is well-posed and it has a unique minimizer
qAbL_,OQH = argmin,, ¢ 3,100, m(). Much of our theoreti-
cal work establishes the relationship between the estimator
n .M, the closely related (in the infinite sample limit
M — ) ¢ I,00,2> and the true interaction kernel ¢.

3.2. Performance Measures

We introduce a suitable normed function space in which to
compare the estimator (}5 1,M,# With the true interaction ker-
nel ¢. We also measure performance in terms of trajectory
estimation error based on a distance between trajectories
generated from the true dynamics (evolved using ¢ with
some initial condition X ¢ ~ po(M?®)) and the estimated
dynamics (evolved using the estimated interaction kernel
$ .M, #, and with the same initial condition, i.e. X).

3.2.1. ESTIMATION ERROR

First we introduce a probability measure p7 ¢ on R, that
is used to define a norm to measure the error of the estimator,
derived from the loss functionals (given by (3) and (4)),
that reflects the distribution of pairwise data given by the
dynamics as well as the geometry of the manifold M:

[ / > ittt @) (r) dt|

i3/

pr,m(r) = (

where ¢ is the Dirac measure. Note that E is w.r.t Xg ~
po(MN). In words, this measure is obtained by averaging
o-functions having mass at any pairwise distances in any
trajectory, over all initial conditions drawn from g (M?Y),
over all pairs of agents and all times. A time-discretized
version is given by:

P aalr) = —E[Z >

=1 1<i<i’<N

Odpn (i (1), (1)) (T) | -

Note that E is w.r.t Xo ~ po(M?). The two probability
measures defined above appear naturally in the proofs for
the convergence rate of the estimator. From observational
data we compute the empirical version:

ZZ

l m=11<i<i’<N

PR (r) =

The geometry of M is incorporated in these three measures
by the presence of geodesic distances. The norm

o0

My = [ Lo dpraa(r)

is used to define the estimation error:

llor a2 () - _¢(')‘||L2(pT,M)- We also use a rela-
tive version of this error, to enable a meaningful comparison

6dM (3 (1), (t1)) (’I“)

across different interaction kernels:

lo() - -
160 T2 or e

S ON I

le() - =

) HRel L2(pr, M)

®)

3.2.2. TRAJECTORY ESTIMATION ERROR

Let X{G 77 = (X")ie(o,1) be the trajectory generated by

th

the m*" initial condition, X'. The trajectory estimation

A.m .
error between X (g ) and Xy 1), evolved using, the un-
known interaction kernel ¢ and, respectively, the estimated
one, ¢, with the same initial condition, is given by

e (). (1)

(X1 7y, Xo17)? =

This quantity is random with the initial conditions, hence we
report the mean and standard deviation of these trajectory
errors over a (large) number of initial conditions sampled
i.i.d. from po(M?Y); and the errors are denoted as mean;c
and stdyc respectively.

3.3. Algorithm and Computational Complexity

Algorithm! 1 shows the detailed steps on how to construct
the estimator to ¢ given the observation data. We emphasize
that our estimator, and the learning theory we develop, do
not dependent on a particular choice of basis. In our exam-
ples we choose Clamped B-splines due to their regularity
and approximation-theoretic properties.

Assuming a finite dimensional subspace of H, i.e. Hys C
H with dim(Has) = n(M), we are able to re-write the
minimization Problem of (3) over H s as a linear system,
ie. Ay d = by with Ay € R™™ ™ and b]u S R"Xl for
details, see the Sec. C'.1. in SI. Moreover, this linear system
is well conditioned, ensured by the geometric coercivity
condition.

The total computational cost for solving the learning

problem is of O(M3) when the optimal n = n, =~
(log/[M)ﬁ ~ M3 (s = 1 for C* functions) as per Thm.
4.2 is used. The computational bottleneck comes from the
assembly of A, and b - However, since we can parallelize
our learning approach in m, the updated computing time in

the parallel regime is comp. time = O((—24__)5/3),

num. cores

'Implementation of the algorithm can be found on https: //
github.com/MingZhongCodes/LearningDynamics,
which also includes code to reproduce the results presented here.


https://github.com/MingZhongCodes/LearningDynamics
https://github.com/MingZhongCodes/LearningDynamics

Learning Interaction Kernels for Agent Systems on Riemannian Manifolds

Algorithm 1 Learning Algorithm

Input: data {x{" (), a'r:;"(tl)}f\‘]l’f,’lfl

Compute R?’;ﬂnymax} = {min, max}; ;s ;. mdam (2" (t1), 7 (41))
Choose a type of basis functions, e.g., clamped B-spline
Construct basis of H s, e.g. {1n}n=1, on the uniform partition
Of [R?rlﬁrn R(r)r'ljsax]

Choose either a logal chart U : M — R? or a natural embed-
dingZ : M — R?

Construct U™ € (TX;ZMN x o x Txp MN)" and d™ €

Txyp MY x - x T MY
1 L

L [FexD . [Xa

Define (-, ) on W7 € TX;HMN X e X TX;EMN as
(W5 e = Sy (Fo (X0, £ (XED) g gy

Assemble Ay (n,n') = 7o Som_ (U7, W) € R
Assemble by (n) = e Zi\f:1<ci_; Uy € RM*E

Solve A]L[Qét = EM for OZZ c R™.
Assemble ¢ = 3", Gyy.

4. Learning Theory

We present in this section the major results, including the
convergence of the estimator 8 L,M,1 to ¢ at the optimal
learning rate, and bounding the trajectory estimation error
between the true and estimated dynamics (evolved using
(5 L,M,#),» With corresponding proofs in Sec. B in the SI.

4.1. Learnability: geometric coercivity condition

We establish a geometry-adapted coercivity condition, ex-

tending that of (Bongini et al., 2017; Lu et al., 2019b) to the

Riemannian setting, which will guarantee the uniqueness

of the minimizer of €;, oo A (), and show that £, oo a1 ()

controls the ||-|| ;2 distance between the minimizer
L2 (pr, A1)

and the true interaction kernel.

Definition 4.1 (Geometric Coercivity condition). The geo-
metric evolution system in (2) with initial condition sampled
from po(M™N) on MN is said to satisfy the geometric co-
ercivity condition on the admissible hypothesis space H if
there exists a constant ¢ = cp, Ny, M > 0 such that for any
@ € Hwith o(-)- € L*(pf, o) we have

1 L
e 1520k 9 < 7 D E[IFoXnllzy aen |
=1

Here and in what follows, E is taken, as usual, w.r.t Xy ~
po(MN); unless otherwise indicated. In order to simplify
the argument on how this geometric coercivity condition

controls the distance between (ES\ L,00,# and ¢, we introduce
the inner product on L? = L?(p% ,,) defined as

L
1
(oreadis = 7 SE[(fe, (Xu), fou (Xe))me, mn |-
=1
Then the geometric coercivity condition can be rewritten as

2
CL,N,H,M ||90(')‘||L2(p;M) < <<¢7‘P>>L2(P%,M)’

and since the loss function from (4) can be written as
EL00m(p) = (¢ — &, — ¢)), this implies

cL,N M |le() - —¢(')'Hiz(p;M) < &L con(p)-

Hence when &7, o7 (¢) is small,

. : o() - *¢(')‘||L2_(p.;44)
is also small; hence if we construct a sequence of minimiz-
ers of £, o 3¢ over increasing H with decreasing £1, o0 %

values, the convergence of $ L,00,# 10 ¢ can be established.

4.2. Concentration and Consistency

The first theorem bounds, with high probability, the differ-
ence between the estimator (}5 M, and the true interaction
kernel ¢, which makes apparent the trade-off between the
L?(pf, pq)-distance between ¢ and 7 (approximation error),
and M the number of trajectories needed for achieving the
desired accuracy. Here N'(U, €) is the covering number of a
set U/ with open balls of radius € w.r.t the L°°-norm.

Theorem 4.1. Let ¢ € L*([0, R]), and H an admissible hy-
pothesis space such that the geometric coercivity condition
holds with a constant cp, N 3, rm. Then, ¢, a3, minimizer
of (3) on the trajectory data generated by (2), satisfies

2
<
L2(p% a1)

[Grane)- o)

: 2
oy (e inf o) =600 )

with probability at least 1 — 7, when M >

2 p2
%OHN(H, m) + lﬂ %)
This quantifies the usual bias-variance tradeoff in our setting:
on the one hand, with a large hypothesis space, the quantity
inf,en |lo() - —¢(')~\|L2(p% o) could be made small. On
the other hand, we wish to have the right number of samples
to make the variance of the estimator small, by controlling
the covering number of the hypothesis space H.

4.3. Convergence Rate

Next we establish the convergence rate of ¢, p7,7 to ¢ as
M increases.
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Theorem 4.2. Let j10(M?YN) be the distribution of the ini-
tial conditions of trajectories, and Hy = B, with n =
n. =< (M/log M)ﬁ, where B,, is the central ball of L,,
with radius c1 + S, and the linear space L, C L>([0, R])
satisfies

S

dim(L,) <con and inf |@— | < cin”
pELy

for some constants cy, c1,s > 0. Suppose that the geometric
coercivity condition holds on L = U,L, with constant
cL,N,c,M- Then there exists some constant C(S, R, cg, ¢1)
such that

E X gm0 (MN) [ HaL,M,Hm(') ' ﬂﬁ(')"

C(S,R,cg,c1) (logM)ﬁ '
M

L2(pk pq) ]

<

CL,N,L.M

The constant s is tied closely to the regularity of ¢, and it
plays an important role in the convergence rate. For example,
when ¢ € C!, we can take s = 1 with linear spaces of
first degree piecewise polynomials, we end up with a M 3
learning rate. The rate is the same as the minimax rate for
nonparametric regression with noise in one dimension (up to
the logarithmic factor), and in particular it is independent of
the dimension D = Nd of the state space. Empirical results
suggest that at least in some cases, when L grows, i.e. each
trajectory is sampled at more points, then the estimators
improve; this is however not captured by our bound.

4.4. Trajectory Estimation Error

We have established the convergence of the estimator
:b\ L,M,# to the true interaction kernel ¢. We now establish
the convergence of the trajectories of the estimated dynam-
ics, evolved using Zs 1,M 7, to the observed trajectories.

Theorem 4.3. Let ¢ € Kp g and 5 € KRg,s,, for some
So > 5. Suppose that X | 1) and X (o) are solutions

of 2) w.rt to ¢ and ¢, respectively, for t € [0,T), with
X o = Xo. Then we have the following inequality,

N 2
Exmpo (M) [dm’ (X 0,177, X [o,ﬂ) } <

AT?*C(M,T) exp(64T257) H¢() : —Cg()‘ i

)
L2(pr, M)

where C(M,T) is a positive constant depending only on
geometric properties of M and T, but may be chosen inde-
pendent of T if M is compact.

While these bounds are mainly useful for small times 7',
given the exponential dependence on 7' of the bounds, they
can be overly pessimistic. It may also happen that the pre-
dicted trajectories are not accurate in terms of agent po-
sitions, but they maintain, and even predict from initial

conditions, large-scale, emergent properties of the original
system, such as flocking of birds of milling of fish (Zhong
et al., 2020). We suspect this can hold also in the mani-
fold setting, albeit in ways that are affected by geometric
properties of the manifold.

5. Numerical Experiments

We consider two prototypical first order dynamics, Opinion
Dynamics (OD) and Predator-Swarm dynamics (PS1), each
on two different manifolds, the 2D sphere S2, centered at
the origin with radius 2, and the Poincaré disk P (unit disk
centered at the origin, with the hyperbolic metric). These
are model spaces with constant positive and negative cur-
vature, respectively. We conduct extensive experiments on
these four scenarios to demonstrate the performance of the
estimators both in terms of the estimation errors (approxi-
mating ¢’s) and trajectory estimator errors (estimating the
observed dynamics) over [0, 7.

For each type of dynamics, on each of the two model mani-
folds, we visualize trajectories of the system, with a random
initial condition (i.e. not in the training set), driven by ¢
and qAS We also augment the system by adding new agents:
without any re-learning, thus we can transfer qAS to drive this
augmented system (with N = 40 in our examples), and will
visualize the trajectories (again, started from a new random
initial condition). We also report on the (relative) estimation
error of the interaction kernel, as defined in (5), and on the
trajectory errors, defined in (6).

For each system of N = 20 agents, we take M = 500 and
L = 500 to generate the training data. For each H ,;, we use
first-degree clamped B-splines as the basis functions with
dim(Har) = O(ny) = O((%)%). We use a geomet-
ric numerical integrator (Hairer, 2001) (4" order Backward
Differentiation Formula with a projection scheme) for the
evolution of the dynamics. For details, see Sec. C' in the SI.
OD [0,7]

88-107%24+1.7-107?
9.0-10°+£16-10°
1.08-107T+1.6-1073
1.08-10 ' +26-10°

52 .
meanj : Training ICs

2
meang. : Random ICs

mean : Training ICs
meanj : Random ICs

Table 2. (Dynamics on S? or PD) meanyc is the mean of the trajec-
tory errors over M initial conditions (ICs), as defined in eq.(6).

Opinion Dynamics (OD) is used to model simple interac-
tions of opinions (Aydogdu et al., 2017; Weisbuch et al.,
2003) as well as choreography (Caponigro et al., 2014). In
fig.1 we display trajectories of the system on the two model
manifolds. The relative error of the estimator g/b\ for OD on
S?is1.894 - 10~ + 3.1 - 10~%, whereas for OD on PD is
1.935-1071 +£9.5- 1074, both are calculated using (5). The
errors for trajectory prediction are reported in table 2.
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Figure 1. Top: comparison of ¢ and 5 The true interaction kernel is shown with a black solid line, whereas the mean estimated interaction
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kernel is shown with a blue dashed line with its std interval, i.e. mean(¢) =+ std(¢), region shaded in red. Shown in the background
is the comparison of the approximate p%, m versus the empirical pé%l Bottom: comparison of trajectories X (o, 7] and X j0,7]- The
trajectories X [, 7 and X [o, ] are generated by the interaction kernel ¢ or ¢, respectively, with the same initial conditions. In the first
row, trajectories are started from a randomly chosen initial condition. In the second row, trajectories are generated for a new system, with
N = 40 agents. The colors along the trajectories indicate time, from deep blue (at ¢ = 0) to light green (at t = T').
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0. The results are visualized in fig.2. The (relative) errors
of the estimators are in table 3. The errors for trajectory
prediction are reported in table 4.

Table 3. (PS1 on S? or PD) Relative estimation errors for gg

Predator-Swarm System (PS1): this is a heterogeneous
agent system, which is used to model interactions between
multiple types of animals (Chen & Kolokolnikov, 2013;
Olson et al., 2016). The learning theory presented in sec-
tion 4 is described for homogeneous agent systems, but the
theory and the corresponding algorithms extend naturally to
heterogeneous agent systems in a manner analogous to (Lu
et al., 2019a; Miller et al., 2020). In this case, there are K2
different interaction kernels, one ¢y, ;v for each (directed)
interaction between agents of type k and agents of type &’
In our example here there are two types, {prey, predator},
and therefore 4 interaction kernels; however there is only
one predator, so the interaction kernel predator-predator is

PS1 [0, 7]
mean’ : Training ICs || 2.36- 1072 £9.8-10*
meant. : Random ICs || 2.40-1072 +£8.1-10~*
meanje: Training ICs || 4.8-10°+1.2-10"*
meani®: Random ICs 48-10734+1.2-10*

Table 4. As in table 2, but for the PS1 system.

Discussion: As shown in the figures and tables in this sec-
tion, the estimators not only provide close approximation to
their corresponding interaction kernels ¢’s, but also capture
additional information about the true interaction laws, e.g.
the support. The accuracy on the trajectories is consistent
with the theory, and the lack of overfitting and the ability
to generalize well to predicting trajectories started at new
random initial conditions, which in general are very far from
any of the initial conditions in the training data, given the
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Figure 2. Top: comparison of ¢y, s and d;k 1. The true interaction kernels are shown with black solid lines, whereas the mean estimated
interaction kernels are shown with blue dashed lines with their corresponding std interval regions shaded in red. Shown in the background
. . : L, kk' LMkk L,12 _L,M,12 L,12 L,M,z21

is the comparison of the approximate p; ), versus the empirical py. . Notice that p77"%, p7’ and p7"°, p are the same
distributions. Bottom: comparison of trajectories X o, and X (0,77 The trajectories X [o,7) and X [0,7] are generated by the interaction
kernels, { ¢k ks 1K kk/=1 and {(;Sk o 1K k,k’—1 respectively, with the same initial conditions. The two rows use a similar setup as in the OD
case. The colors along the trajectories indicate time, from deep blue/bright red (at ¢ = 0) to light green/light yellow (at t = T"). The
blue/green combo is assigned to the preys; whereas the red/yellow combo to the predator.

high-dimensionality of the state space, demonstrates the ef- 6. Conclusion
fectiveness of our approach. This is made possible because
we have taken advantage of the symmetries in the system,
in particular invariance of the governing equations under
permutations of the agents (of the same type, in the case
of heterogeneous agent systems, such as PS1), and radial
symmetry of the interaction kernels. Further invariances,
when the number of agents increases, make it possible to
re-use the interaction kernel estimated on a system of N
agents to predict trajectories of a system with the same in-
teraction kernel, but a different number of agents, which
of course has a state space of a different dimension. This

We have considered the problem of estimating the dynamics
of a particular yet widely used set of dynamical systems,
consisting of interacting agents on Riemannian manifolds.
These are driven by a first-order system of ODEs on the
manifold, with a typically very high-dimensional state space
M  where N is the (typically large) number of agents. We
constructed estimators that converge optimally and avoid the
curse of dimensionality, by exploiting the multiple symme-
tries in these systems. Extensions to more complex systems
of interacting agents may be considered, in particular to

simple example of transfer learning would not be possible second-order systems, which will require the use of parallel

for general-purpose techniques that directly estimate the transport on M, to more general 1nte.racnon l.<ernels, de-
rhes. of the system of ODEs pending on other variables beyond pairwise distances, as

well as to systems interacting with a varying environment.
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8. Addressing Reviewers’ Comments

We thank the reviewers for providing such detailed reviews
and feedback on our paper. Due to the page limit, we are
not be able to provide detailed responses to every comment;
instead we address three groups of reviews briefly and high-
light the most important issues and how we are addressing
them. To all reviewers: we have fixed the typos, and made
the corresponding cosmetic changes, including using vector
graphics, repositioning figures and tables, etc. We have
added a section, namely Sec. D.1., in the Supplementary
Information (SI) to discuss the computing platform used to
run the simulations. The software package to reproduce the
results shown in this paper will be made available online
on GitHub (starting on June 10*"); and a link to the soft-
ware package is also added in Sec. 3.3. We encourage the
reviewers to check out Sec. D in SI for detailed discussion
on how we set up the experiments and important learning
results, as well as the computing time needed to run our
experiments demonstrating the efficiency of our learning
methods. Our paper strives to keep a delicate balance of
theory and empirical findings.

To reviewers #5, #8, and #9: We have made the changes to
comply with most of your comments in order to make the
paper more accessible. We have already responded in our
first response letters to the major issues and we sincerely
appreciate the detailed reviews and feedback. We also en-
courage the reviewers to briefly go through the Sec. D in
SI for a detailed background introduction of the different
dynamical systems examined in the paper.

To reviewers #6, #7: We have gone through the introduc-
tion and hopefully cleared any possible confusion. We have
also merged sections 3.3 and 3.4, and improved their clar-
ity, so that the main idea of the computational complexity
stands out. A more detailed description of computational
complexity is now added as Sec. C.1. in SI. The overall
organization of the paper has been re-examined, and it has
been improved for a cleaner presentation.

To Meta Review: we have gone through the paper and

improved its overall organization, i.e. clean up the nota-
tions/organization/structure of our paper. As for baseline
comparisons, we have pointed out in the introduction, as it
had been already done in (Lu et al., 2019b), that most of
the current methods (sparse approximation such as SINDy,
neural network, etc.) have trouble dealing with the curse
of dimensionality from the observation data, as they infer
directly the right hand side of the ODE, X, = f(X,).
Our method, however, exploits the innate structure of the
ODE systems (e.g. invariances and symmetries), hence our
method is able to avoid the curse of dimensionality from
the observation data, and perform transfer of learning read-
ily. We have substantially improved notational clarity, and
enhanced the readability for an ML venue.
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Supplementary Material for Learning Interaction Kernels for Agent Systems
on Riemannian Manifolds

A. Preliminaries

In this work, M is a connected, smooth, and geodesically complete d-dimensional Riemannian manifold with Riemannian
metric g. For details regarding the basic definitions of Riemannian manifolds, geodesics, Riemannian distances, exponential
maps, cut loci, and injectivity radii, please see (Lee, 2003; do Carmo, 1976). We will discuss how to find the minimal
geodesic and the Riemannian distance between any two points on the two prototypical manifolds used in our numerical
algorithms: the two-dimensional sphere (S?) and the Poincaré Disk (PD).

A.1. Riemannian Geometry on the 2D Sphere

The 2D Sphere (S?) of radius r and centered at the origin can be isometrically embedded in R? in the natural way, i.e.,
x,y € S C R3. Then for any x, y € S?, the Riemannian distance between x and vy is given by

dpm(z,y)=r-60, 6= acos<<m7y>>.
]l - [yl

The minimal geodesic between & and y is the piece of the arc on the great circle of S? with the smallest length, assuming
and y are not in each others’ cut locus, i.e. diametrically opposed. The unit vector on the minimal geodesic from x to y,
denoted as v(x, y), can be computed as follows

( ) y—a:—Projfm(y—w)
v(x,y) = - )
Yo lly—z—Proj_(y—a)

Here Proj,, (w) is the projection of w onto w.

A.2. Riemannian Geometry on the Poincaré Disk
For any two points «,y € PD on the Poincaré Disk (PD) where PD = {x € R?s.t. |z| < 1}, the Riemannian metric,

written in the standard coordinates of R, is given by

46; ;
] x € PD,

950 = P

with §; ; being the Kronecker delta, and the corresponding Riemannian distance between « and y is

o |z — yl|°
dpi(@.y) aC°5h<1 T - ||y||2>> |

The minimal geodesics between x and y are either straight line segments if x and y are on a line through the origin or
circular arc perpendicular to the boundary. For the straight line segment case, we have the unit vector on the minimal
geodesic from x to y, denoted as v(x,y), computed as follows: we identify the vector y — @, computed in R? as a

tangent vector in T M, then normalize it to obtain v(x,y) = W For the perpendicular arc case, we first find
TeM

the inverse y’ of y w.r.t to the unit disk (in R?); then we use the three points , y, 4’ to find the center o’ of the circle
passing through x, y and y’. Then the unit tangent vector on the geodesic from @ to y is computed as follows: , we compute
y — x — Proj,,__(y — x) in R? (with the Euclidean metric), then identify it as a tangent vector in 7;; M, and normalize it:

o) y—x—Proj,_,(y—x)
v(x,y) = j .
Y =2 Projy_o(y — @)1 no
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B. Learning Theory: Foundation

In this section, we present the theoretical foundation needed to prove the theorems presented in the main body. We follow
the ideas presented in (Lu et al., 2019b) with similar strategies presented in (Cucker & Smale, 2002; Gyorfi et al., 2006). We
begin with the following assumption.

Assumption 1. H is a compact (in L>-norm) and convex subset of L*([0, R)), such that every ¢ € H is bounded above by
some constant Sy > S, i.e. ||¢]] Lo ([0,R]) < Sy, moreover ¢ is smooth enough to ensure the existence and uniqueness of
solutions of

N
a;(t) = % Y dldum(zit) @ (D))w(@i(t), o (),  i=1...,N. (1)

/=1

fort €[0,T), i.e. ¢ € HN KRg.s,-

Another important observation is that since ¢ € K, g and T is finite, the distribution of «;(¢)’s does not blow up over [0, T']
ensuring that the x;(¢)’s have bounded distance from the x;(0)’s. In fact, let Ry be the maximum Riemannian distance
between any pair of agents at t = 0, then

max 7 (t)= ,max NdM(wi(t)7:ci/ (t)) < Ry+TRS, forte|0,T].
Hence the x;(t)’s live in a compact (w.r.t to the d 4 metric) ball around the «;(0)’s, denoted as Ba(X o, R1) where

Ry = Ry + TRS. Recall the definition of the loss functional used to find the estimator, namely ¢, 5r,7; to the unknown
interaction kernel ¢, give by

Eram(p) = 11 > |X7 - rax @

l,m=1

‘TXWMN '

Further recall that the estimator is defined as gg v, = argmin €,y am (). When M — oo, we obtain the following
YEH
loss functional (by the law of large numbers).
. 2
ELco,Mm(0) : ZEXUNMQ(MN)[HXtZ - fo(X4) ‘ 3)

=1

TxthN }

The minimizer of £, oo A over H is defined as 0 L,00,H» Which is closely related to o .M, (in the M — oo sense). And
they are close to ¢, when we establish the following condition on .

Definition B.1 (Geometric Coercivity condition). The geometric evolution system in (1) with initial condition sampled from
po(MN) on MY is said to satisfy the geometric coercivity condition on the admissible hypothesis space H. if there exists a
constant cp, N 1, m > 0 such that for any ¢ € H with p(-)- € LQ(p%}M), the following inequality holds:

cr,NHMmlp() ||L2 W ST ZEXOWO MN) {Hf (X+,) HT MN?| “4)

From this condition, we can derive the following theorem.

Theorem B.1. Let ¢ € L*([0, R]), and H a compact (w.r.t the L°° norm) and convex subset of L*([0, R]) such that the
geometric coercivity condition (4) holds with a constant cp, N 3, . Then, for ¢ a3, estimated by minimizing (2) on the
trajectory data generated by (1), the following inequality

2

H(ZL,M}L(') : *éf)(')"

2 . 2
L2(pf 1) CL.NHM (EJF oo loC) =00 lzagop, o ©)

holds with probability at least 1 — T, when M > 15255 R ( (N, z572)) + ln(%)) Here N'(U, €) is the covering

— €CL,N,H,M
number of a set U with open balls of radius e w.r.t the L>-norm.
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Using this concentration result, we can get the strong consistency of our estimators under mild hypotheses.

Theorem B.2. For a family of compact (w.r.t. the L norm) convex subsets, {Hr }55_,, of L*([0, R]), when the following
conditions hold, (i) UpsHas is compact in L°°; (ii) the geometric coercivity condition, (B.1), holds on UpH s, (iii)

. M—)oo
wéI;{fM l() - =0C) N2y — O then

lim H(EL,M,HM(') : —¢(')" =0 as. (6)

M — o0

L? (p%)M)
This theorem establishes the almost sure convergence of our estimator to the true interaction kernel as M — oc.

B.1. Concentration and Consistency

Our first step is to establish the consistency of the estimator for the true kernel ¢ of the system. Note that 7 can be embedded
as a compact (in L> sense) set of L%(pk ). We establish a strong consistency result on our estimators of the form,

lim HaL,M(') : —(/5(')"

M—o0

=0, a.s.
L2(pk aq)

Our discussions of consistency under the L2 —norm on manifolds can be regarded as a natural extension from the case on
Euclidean Space in (Lu et al., 2019b). We define the following loss functional of the vectorized system, X ;

2

1 N N
gXt N Z Z ¢n’ t — 9021’ t wu’ t
=1 =1 m'i(t)M
N N 1 N
=N Z Z Giir 4 — it )Wiir 1~ N D (Biir i — @i )Wiir 1) g(w, (1)) (7

i’=1

Here we take w;;r ¢ = daq(xi(t), T (t))v(xi(t), 24 (1)) and ¢iir ¢ = d(da(24(t), i (t)); similarly for ;i ;. Now we
can see that

When M — o0, this functional converges to, by the law of large numbers,

L
1
ELoom(p) = 7 > Extgmpo(m™)Ex,, (#) -
=1

We are ready to summarize some basic properties of Ex, (¢).

Proposition 1. For o1, s € H, we have
|5Xt(901) - 5Xt(902)| < g1 () - _902(')'||L2(;33M) 126() - =1 () - _802(')‘||L2(,33M) : (®)

Here we define the probability measure, p((r) = ﬁ Zf\;,:l Odps (s (£),a,0 (£)) (T)-

Proof. Let 1,2 € H, and define o, , = @1(dm(xi(t), zi(t))), similarly for c,ofi%. Moreover, let 7 =
dp(zi(t), 2y (1)) and wypr ¢ = daq(xi(t), zor (£))v(2i(£), i (¢)). Immediately, we have

||wi1i’,t||Tmi(t)M < Tt
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since v(x;(t), z,(t)) has either length 1 or 0. Next, using Jensen’s inequality, we have

N N N
1 1 1
€x,(p1) — Ex,(p2)]| = |N Z<N > (Pl s — Ol Wit 1, N > (@i s — Pl — Coi Wi ) g (i (1))
i=1 =1 ir=1
1
N Z i, it ‘Pzzz",t)wii’,t N Z (2500 — (pzli”,t - @?z”/,t)wii//7t
i=1 =1 Te,(yM "=l Ta; M
N
- Z (p“, t <,0”/ t) ’2’/ t N2 Z 2¢”” t— 9011’ t (pzz/ t) zQz“ t
=1 7,4/ =1
<lea () - =02 () L2 ) 11200) - =01 () - =02 () ll L2t »
where p'y(r) = = ZlNi,:l Oryr , (1) O
With Proposition 1 proven, we get the following proposition establishing the continuity of our error functionals.
Proposition 2. For ¢, € H, we have the inequalities
€ mrm(01) = Enrm(p2)| < 01() - =020 )l pee [126() - =01 () - =02() |l e ©

[€L.00.:m (1) = ELcom(@2)| < Hlr () - =02() llagpr ) 1260) - =01 () - =02() [l 2 pr ) -

Proof. Using the results from Prop. 1, and defining p7, o == T S p",, we have
L L
|* Z Ex,, (1) ngtl (p2)| < 7 Y 1Ex, (01) — Ex,, (92)]
=1

< H<p1(~)~—¢2()||m 10 1200) - =01() - =2 ) ll L2t

WMh

L
Z ler() - =p2()llpagayon| T Z 126() - —e1() - =p2()-ll L2, )

=1

IN
L ~| =
—

1) =2V llgagap ) 1260) —m) L.

= lle o
Next, we have
M L
‘5L,JW,M(901) —Ermm(p2)| < M Z Zé'xm (1) — = ngm ()]
1; I=1 L3
< M Z le1() - =pa()llnzor ) 11200) - =01 () - =2 ()Nl 2ot )
< ||<P1() —p2() e 120() - =1 () - —p2()- [l e

< R [le1 — @2l 120 — 01 — 92| e -

Meanwhile, taking M — oo for ’8L,M,M (p1) = Enmm(p2)),

|€L.00.0m(p1) = ELco.m(2)] < l1() - =02( ) ll 2 pr ) 11260) - =1() - =020 ll 2 er ) »

where pf o = Exompuo (M) 107 p4)-

As a further derivation, we observe that forany ¢ € 7 C L?([0, R]), we have that max,.c[o, g [ (-):| < Rmax,c[o g [¢(-)
so we obtain the following Corollary:
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Corollary B.3. For ¢ € H, define
Lyr(¥) = Eroo,Mm(p) — EL,m.1m(9),
then for any 1, p2 € H, we have

|Lar(p1) = Lar(e2)| < 2R? o1 — pall oo 126 — 01 — @2 oo -
Now we can consider the distance between the minimizer of the error functional £, o, o4 over H and any other ¢ € H. Let
OL oo = argmin €L oo i ()-
pEH

From the geometric coercivity condition and the convexity of #, we obtain

Proposition 3. For any p € H,
(10)

Ercom(9) = ELcom(PL.oomt) > CL N M HSO() : —¢A5L,oo,?-t(')" L
LZ(F’T,M)

We now define the defect function Dy, a3 () == L m (@) — 5L7M,M<$L,oo,7-t)’ and define
Drooulp) = m Dparu(p) = Er001(P) = Er oo, M(PL,00,1)-
Dr,co,#t()—Dr a1 ()

Dr,co,n(")+e
Proposition 4. For any e > 0 and « € (0, 1), we have

D100, 1(p) — Dr s m () ae cL, N M2 Me
ey T B ) o
po) <Zlelg Dpoom(p) + € 230 ) SN(H 8syr2) P 3253

Then, we show that we can uniformly bound

on H with high probability,

where N'(U, 1) is the covering number of set U with open balls of radius r w.r.t the L —norm.

The proof of Proposition 4 uses the following Lemma similar to Lemma 19 in (Lu et al., 2019b),
Lemma B.4. Forany e > 0and o € (0,1), if p1 € H satisfies

Drooi(p1) — Droaw (1)

<«
DL,com(p1) + €
then for any 2 € H s.t. |1 — @2 < 10 = g5 7z, We have
D -D
00,1 (02) L. (P2) < 3

Drcom(p2) + €

Using the results we have just established, the proofs of theorems B.1 and B.2 now follow similarly to the analogous results
in (Lu et al., 2019b;a; Miller et al., 2020).

B.2. Rate of Convergence

Using these results, we establish the convergence rate of ¢ .M, to ¢ as M increases.
Theorem B.5. Let 11o(M™) be the distribution of the initial conditions of trajectories, and Hy = By with n =<

(M/log M)TIH, where B, is the central ball of L,, with radius ¢; + S, and the linear space L, C L*([0, R]) sat-
isfies the dimension and approximation conditions below,

dim(L,) <con and inf |@— | <cin”
pEL,

for some constants cg,c1,s > 0. Suppose that the geometric coercivity condition holds on L := U, L, with constant
cL,N,c,M- Then there exists some constant C(S, R, ¢y, ¢1) such that

< C(S, R, co,c1) (1ogM)ﬁ .

e[ 0-—o0) :

Lz(p%,M)} - CL,N,LM

The proof of the theorem uses the results above, which took into account the geometry of M, while closely following the
ideas in (Lu et al., 2019b) and their further development in (Lu et al., 2019a; Miller et al., 2020), and is therefore omitted.
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B.3. Trajectory Estimation Error
Recall the following theorem on the trajectory estimator error:

Theorem B.6. Let ¢ € K, s and quS € Kr,s,, for some So > S. Suppose that X (o 1) and X[QT] are solutions of (1) w.r.t
to ¢ and <$, respectively, for t € [0,T), with Xo = Xo. Then the following inequalities hold:

2

3(X4)

; , (11

N 2 .
iraj, MmN (X[O,T]vX[O,T]) < 4C(M, T)T exp(64T>55) HXt - f T AN
Xt

and

2 ~
Exgmpo ) [dos o (X011 X o)) | < ACM,T)T2 exp(647253) o) - —6(.)

12)

)
L2(pr,m)

where C'(M,T) is a positive constant depending only on geometric properties of M and on T, but may be chosen
independent of T if M is compact.

It states two different estimates of the trajectory estimation error. First, it bounds the system trajectory error for any one
single initial condition; second, it bounds the expectation of the worst trajectory estimation error on time interval [0, T]
among all different initial conditions.

Proof of Theorem B.6. Assume that ¢ € Kg g, (;AS € Kg,s,, and X4, X, are two system states, at some ¢ € [0, 7], generated
by ¢, (;AS with the same initial conditions at ¢ = 0. Next, we assume that M is isometrically embedded in R? (at least one
such embedding exists, by Nash’s embedding theorem), viaamap Z : M — RY". From now on, we will identify x; with
Za;. Then for any ¢ € [0, T, we have

N 2 N
= Z [l (t) )| = ]1[1_21 /;O(wz(s) —xi(s))ds o < ;f;t/f 0 ’ xi(s) — fvz(s)‘ ;d/
Tt 2
< N;/S_O ‘ z;(s) — x( )‘ p ds.

Define the function F(x,-) : M — Ty M for every x € M as F}'(z,-) = p(dpm(,-))w(e,-). Let F2%, , =
FM(xi(t), zi(t)) and Fé\,/%{/,t = F2(@,(t), & (t)). Then

Nt . 2 N o
Z/ ’ml(s)_ﬁ:z(s)HRd/ dSZZ/ _*Z B.id s ds
=1 s=0 i—1 s=0 — o
1 N 1 N 2
M M
- 22/ By Z X I D F. N 2 Foiis ) ds
/=1 d’ il=1 - ]Rd/
N 1 " 2
:22/ ( T 5)_NZF¢QW,5 +](5)) ds.
i=1 =0 =1 R
Next,
1 Y 2 1 IIE )
_ M B " » y y
= N Fois ™ N Foits T N2 Z (F&ii’-,s —F it s T F$,%{/’s)
i'=1 =1 R/ ] y
N 2 ~ )
M ™ “
= ( Z 2 d’ i S) * Z (F@i{',s - F$,%{’,s) ) ’
=1 R i'=1 R
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Since $ € Kr.,sy» Fé\" is Lipschitz in each of its arguments; moreover, max,¢(o, g] |c/ﬂ < S, so that Lip(Fé‘"(a:, s
Lip(Ff"(~, x)) < 2S5p. Therefore,

N
2 2 . ~ ~ 2
I(5) <~ (2Lip(F2" Z i (5) = 0 (92w +2 3 Lin(F2 (o ()2 [is) — (5) 2 )
/=1
4 41
2 . ~ A 2
<N ~aLip(F5" Z lzeir(s) = &ir () llgar + 772 ZLIP(FfA('awi'(S)))2 i (s) — @i ()| gar
/=1
165 165 9
< O Z i (s) — 2 ( HRd’ 0 Z i (s) — i (8)||ga
i'=1 =1
325 9
< 0 Z @i (s) — Zir(s)||gar -
i'=1

Putting these results together, we have

N N t
2T 325
l|(t) — HRd’ <=~ i ( il s O ||:BZ ) — i ( )H%d’ ds
N N ¢
i=1 i=1 s=0 i’=1 :i’ =1
2
64T 52 al
= S50 S 1) — 1) 2 + Z / (-5 P e
i=1 =1 R’
By Gronwall’s inequality, we have
N N 2
Z ll:(t) ®)|ae < —exp (6472S53) Z/ (s) N F;V;Z . ds.
i=1 =1 R

Recall that T’ isAsmall, hence the solution X; and X ¢ live in a compact neighborhood of the initial condition, X ¢ = X 0 €
MN:ie. X, X, € B (X, R2) with Re = Ry + TRSy. From the compactness of (the closure of) this set, and via the
embedding Z, we deduce that there exists a constant Cy (M, Z,T) such that

dp(zi(t), 2i(t) < Cr(M, L, T) [|&i(t) — 2i(t)||gar , fort € [0,T].

Since Z is isometric, for u € Ty M we have ||dZ(u)|gar = [[u[|1, 14 Using both the bounds above, we have
N
S 1 . Cl M Z,T)?
(X X0 = =3 dualai(), (1)) < Z J4(t) — 4(0)
i=1
2
2C1 (M, T, T)*T exp(64T252) <~ [* 1 M
< = )SY | TURES Sr S
=1 R4
2C1 (M, T, T)?T exp(64T2S2) o= [* 1 & ’
o 1 )L 0 R M
- 5 S e -y,
=1 Ty ()M
t . 2
— 901 (M, T, T)>T exp(64T2 52 / HX e d
1( )"T exp( 0) - F5(X5) T
Letting
C(M,T) := inf Cy(M,ZT,T)?,

all isometric embeddings 7

and choosing an isometric embedding Z which gives a value at most twice the infimum, we obtain

2

(Xs) ds.

Tx MN

t
A (X1, X1)? < ATC(M,T) exp(64T253)/ HX - f5
s=0
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Now, take ¢ to be the true interaction kernel, and Zs the estimator of ¢ by our learning approach, by Prop. 1 we have that

2

at < o) =40

’TXMN L2(pr,m)

T . 2
HXS - f%;(Xs)
t=0
Together with (11), recalling that X o = X and X ~ 1o(M?Y), we have the desired result that

Exgmpio () [ (X 0,73, X p0,11)%] < AT2C(M,T) exp(64T253) Exe, o vy || 6) - =0)

L2(prm)

C. Numerical Implementations

If the trajectory data, {x"(¢;), &;" (tl)}f\fl’ﬁ;fp is given by the user, we use the following geometry-based algorithm to find

the minimizer of (2). First, we construct a finite dimensional subspace of the hypothesis space, i.e. Hps C H, where H s
. . . . 1 . . .

with dimension dim(H ) = n = n(M) ~ O(M3) is a space of clamped B-spline functions' supported on [R% | RS ]

with R°% /RS being the minimum/maximum interaction radius computed from the observation data. Hence the test

min max

functions can be expressed as linear combination of the basis functions of Hyy, i.e., o(r) = 22:1 o (r) with {1y} _q

being a basis for H ;. Next, we use either a local chart i/ : M — R< or a natural embedding Z : M — Rd/, such that
x; € M can be expressed using either local coordinates in R4 (as in the PD case) or global coordinates in RY (as in the S?
case). The computation of (-, -) ;) will be based on the choice of the local chart, or on the embedding, accordingly. Then,
we define a basis matrix, U™ € (szyf MY % ox TX;n MN)”, whose columns are

. Fo, (X57)
\I’m(:,’r])z\lfm — : ETXQMNX~-~XTX?LMN,
£, (X))

=

recall

FolXo) = %20, ‘P(d/\/l(xi(t)v;Ui’(t)))w(mi(t)vwi’(t)) € I, M".

Next, we define the derivative vector, dm ¢ TX?{ MY xox TX?L MY | as follows,

a1 Xfl
TUN |
tr
Then, we define the learning matrix Ay, € R™*™ as follows
m
Apr(n,n') LMZ U)a, fornn =1,....n

Here the inner product (-, ) on ¥/ € Txy: MY x oo x Txy. MY is defined as

L
(v Z £, (X0, fw (X ))gMN(le).
1=1
Next for the learning right hand side, b v € R we have
- 1 &
b]\4(77):mn;<d7\1’n>@7 f0f77:17~-~7n

!Other type of basis functions can be considered, such as piecewise polynomials, Fourier, etc., provided they satisfy the approximation
assumptions in the main theorem.
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Therefore, the minimization of (2) over H ; can be rewritten as
a1
A]\/[O_Z:g]\], a= e R™*1,
Qg

Ay is symmetric positive definite (guaranteed by the geometric coercivity condition), hence we can solve the linear system
to obtain &, and assemble
n
r) = Z Gy (7)
n=1

In order to produce unique solution of (1) using Ey, we smooth out g/zS\ for the evolution of the dynamics.

If the trajectory data is not given, we will generate it using a Geometric Numerical Integrator, which is a fourth order
Backward Differentiation Formula (BDF) of fixed time step size h combined with a projection scheme. For details see
(Hairer et al., 2006). Once a reasonable evolution of the dynamics is obtained, we observeitat0 =t < ... <ty =Tto
obtain a set of trajectory data, and use it as training data to input to the learning algorithm. The observation times do not

need to be aligned with the numerical integration times, i.e. where numerical solution of {x"(t), &; (t)}fvnfv ! | is obtained

at {tlr}lL,/zl (except for t; = 0 and t;» = T'). When ¢; does not land on one of the numerical integration time points, a
continuous extension method is used to interpolate the numerical solution at ;.

C.1. Computational Complexity

The total computational cost for solving the learning problem is: M LN 24+ M Ld_?:L2 +n3 with M LN? for computing pairwise
distances M Ldn? for assembling Ay, and by, and n3 for solving Apr@ = bys. When choosing the optimal n = n, ~

(IOIgVIM) 7T &~ M3 (s = 1 for C"* functions) as per Thm. B.5, we have comp. time = MLN?+MLAM?3 +M = O(M%)

The computational bottleneck comes from the assembly of A,; and b v - However, since we can parallelize our learning

M
num. cores

approach in m, the updated computing time in the parallel regime is comp. time = O (( g). The total storage for

the algorithm is M L N d floating-point numbers for the trajectory data, albeit one does not need to hold all of the trajectory
data in memory. The algorithm can process the data from one trajectory at a time, requiring LN d. Once the linear system,
A& = by, is assembled, the algorithm just needs to hold roughly n? ﬂoatln% point numbers in memory. When we use the
optimal number of basis functions, i.e. n, = M3, the memory used is O(M3).

D. Numerical Experiments

We consider three prototypical first order dynamics, Opinion Dynamics (OD), Lennard-Jones Dynamics (LJD), and Predator-
Swarm dynamics (PS1), on two different manifolds, the 2D sphere (S? centered at the origin with radius %) and the Poincaré
disk (PD, unit disk centered at the origin, with the hyperbolic metric). The two prototypical manifolds are chosen because S?
and P are model spaces with constant positive and negative curvature, respectively. We conduct extensive experiments on
the aforementioned six different scenarios to demonstrate the performance of our learning approach for dynamics evolving
on manifolds. We report the results in terms of function estimation errors and trajectory estimation errors, and discuss in
detail the learning performance of the estimators.

The setup of the numerical experiments is as follows. We generate a set of M, different initial conditions, and evolve the
various dynamics of N agents for ¢ € [0, T'] using a Geometric Numerical Integrator with a uniform time step h (for details
see section C); then we observe each dynamics at equidistant times, i.e. 0 = ¢; < ... <t = T, to obtain a set of trajectory
data, {zI"(t;), mzn(tl)}fvl anl , to approximate the “true” probability distribution p% - From this set of pre-generated
trajectory data, we randomly choose a subset of M < M, of them to be used as training data for the learning simulation.
The hypothesis space where the estimator is learned is generated as a set of n first-degree clamped B-spline basis functions
built on a uniform partition of the learning interval [R°% | R ], with R% and R being the minimum and maximum

interaction radii computed from the training and trajectory data, respectively. Once an estimator, denoted as QAS is obtained,
we report the estimation error, ¢(-) - —¢(-)-, using

lo() - =) Il 2 (pppn)
16C) 22 (prp)

() - =0C) lret.L2 (o i) = ; (13)
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and the trajectory estimation error

m 2 Al (1), &7 (1))?
(X5 1, X o) = s N (14)

between, the true and estimated dynamics, evolved using ¢ or (,zAS with the same initial conditions for ¢ € [0, T respectively,
and observed at the same observation times 0 = ¢; < ... < t; = T, over both the training initial conditions and another set
of M randomly chosen initial conditions. Moreover, the above learning procedure is run 10 times independently in order to
generate empirical error bars. We will report the errors in the form of mean =+ std. Visual comparisons of ¢ versus a, and X
versus X will be shown, and discussions of learning results will be presented in each subsection.

Table 1 shows the values of the common parameters shared by all six experiments.

M, ‘ N ‘ L ‘ M ‘Nurn. of Learning Trials ‘ R on S? ‘ R on PD
3000 \ 20 \ 500 \ 500 \ 10 \ 5 \ 00

Table 1. Values of the parameters shared by the six experiments

Moreover, section A shows the details on how to calculate the geodesic direction and the Riemannian distance between any
two points on S? and PD. The distribution of the initial conditions, MO(MN ), is given as follows: uniform on M = S?;
whereas uniform on an open ball (centered at origin with radius r) for the PD case with o given as follows.

1 4 1
o= <2 + cosh(5) —1 \/cosh(5) " (cosh(b) — 1)2)/2'

This radius is used so that the maximum distance between any pair of agents on the Poincaré disk is 5. PS1 will have
different setup for the initial conditions, which will be discussed in section D.4.

D.1. Computing Platform

We use a computing workstation with an AMD Ryzen 9 3900X CPU (which has 12 computing cores), and available 128 GB
memory, running CentOS 7. All 6 experiments are ran in the MATLAB (R2020a) environment with parallel mode enabled
and a parallel pool of 12 workers. Such parallel mode is used in each experiment for the computation of pZ. > learning, and
trajectory error estimation. Detailed report of the running time for the experiments is provided in the result section of each
experiment.

D.2. Opinion Dynamics

We first choose opinion dynamics, which is used to model simple interactions of opinions (Aydogdu et al., 2017; Weisbuch
et al., 2003) as well as choreography (Caponigro et al., 2014). We consider the generalization of this dynamics to take place
on two different manifolds: the 2D sphere (S?) and the Poincaré disk (PD). We consider the interaction kernel

1, 0<r< % —0.01

ar1r® 4+ bir? + crr + dy, %—0.01§r<%
é(r) =4 0.1, % <r <0.99

asr3 + bar? 4+ cor +ds, 099<7r <1

0, otherwise

The parameters, i.e. (ai,as,by,bs,c1,c2,d1,ds), are chosen so that ¢ € C1([0,1]). Table 2 shows the values of the
parameters needed for the learning simulation.

ng | nmep | T | h
51| 69 | 10 | 0.01

Table 2. Test Parameters for OD.
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Results for the S? case: Fig. 1 shows the comparison between ¢ and its estimator 5 learned from the trajectory data.

x10" %107
‘ 3

0.1

n2.5
0.08

0.06

0.04

0.02

0.5 1 1.5 2 25 3 3.5 4 4.5
r (pairwise distance)

Figure 1. (OD on S?) Comparison of ¢ and a with the relative error being 1.894 - 107! +£3.1-107* (calculated using (13)). The true
interaction kernel i is s shown in L 2 black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed llne with its std
interval, i.e. mean(¢>) + std(¢>) region shaded in red. Shown in the background is the comparison of the approximate pf: o, versus the
empirical pqLﬂj‘(I,,

As it is shown in Fig. 1, the estimator is able to capture the compact support of the ¢ from the trajectory data. Fig. 2 shows
the comparison of the trajectory data between the true dynamics and estimated dynamics.

Coord. 3 Coord. 3

Coord. 3

Coord. 2 . Coord. 1 Coord. 2 Coord. 1

Figure 2. (OD on S?) Comparison of X (generated by ¢) and X (generated by 5), with the errors reported in table 3. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at ¢ = 0) to light green (at ¢t = T").
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A quantitative comparison of the trajectory estimation errors is shown in Table 3.

0.1]

meanyc: Training ICs || 8.8-1072+£1.7-107°
stdic: Training ICs 59-100+1.5-107°

meanyc: Random ICs || 9.0-107* £ 1.6-10"°
stdic: Random ICs 6.0-100+£1.7-107°

Table 3. (OD on S?) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly drawn
from p10(M™N) (second set of two rows). meanyc and stdic are the mean and standard deviation of the trajectory errors calculated using
(14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 4.

Condition Number || 1.8-10°+1.4-10"
Smallest Eigenvalue || 1.09-107"+9.0-107"

Table 4. (OD on S?) Information from the learning matrix A.

It took 1.41 - 10* seconds to generate p:Lp’ aq and 4.76 - 10* seconds to run 10 learning simulations, with 1.44 - 103 seconds
spent on learning the estimated interactions (on average, it took 1.44-10% £ 3.1 seconds to run one estimation), and 4.61 - 10*
seconds spent on computing the trajectory error estimates (on average, it took 4.61 - 10% & 20.0 seconds to run one set of
trajectory error estimation).

Results for the PD case: Fig. 3 shows the comparison between the C' version of ¢ and its estimator qg learned from the
trajectory data.

0.1

0.08

0.06

0.04

0.02

0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5
r (pairwise distance)

Figure 3. (OD on PD) Comparison of ¢ and $ , with the relative error being 2.114 - 1071 +£ 5.0 - 10 (calculated using (13)). The true
interaction kernel is shown in a black solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its std
interval, i.e. mean(¢) =+ std(¢), region shaded in red. Shown in the background is the comparison of the approximate pqu, m versus the
empirical pqLﬂj‘(I,,

As it is shown in Fig. 3, the estimator is able to capture the compact support of the ¢ from the trajectory data. Fig. 4 shows
the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 4. (OD on PD ) Comparison of X (generated by ¢) and X (generated by $), with the errors reported in table 5. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at ¢ = 0) to light green (att = 7).

As shown in Fig. 3, around r = % the estimator (E produces values bigger than that from ¢, leading to stronger influence,
hence the merging of cluster happening in the predicted trajectories in the second row of Fig. 4. As demonstrated by
the average prediction error on trajectories, this is a relatively rare event, occurring for only certain initial conditions. A
quantitative comparison of the trajectory estimation errors is shown in Table 5.

[0.7]

meanic: Training ICs 253-100T+£72-107°
stdic: Training ICs 1.90-107T+6.5-103

meanic: Random ICs 255-1071+9.7-1073
stdic: Random ICs 1.89-1071+59-1073

Table 5. (OD on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from 1o (M™) (second set of two rows). meanyc and stdjc are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 6.

Condition Number || 4.9-10° +1.5-10"
Smallest Eigenvalue || 5.3-107°+£1.2-107"

Table 6. (OD on PD ) Information from the learning matrix A.

It took 1.33 - 10* seconds to generate p:% q and 4.06 - 10* seconds to run 10 learning simulations, with 1.23 - 10® seconds
spent on learning the estimated interactions (on average, it took 1.23- 102 4-1.1 seconds to run one estimation), and 3.93 - 10*
seconds spent on computing the trajectory error estimates (on average, it took 3.93 - 10% 4 82.1 seconds to run one set of
trajectory error estimation).
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D.3. Lennard-Jones Dynamics

The second first-order model considered here is induced from a special energy functional, the so-called Lennard-Jones
energy potential. This first-order model, the Lennard-Jones Dynamics (LJD), is a simplified version of the second-order
dynamics used in molecular dynamics. The energy function, Uy, is given by

o = ((2)" - (2)°).

Here ¢ is the depth of the potential well, o is the distance when U is zero, and r is the distance between any pair of agents.
We set ¢ = 10 and 0 = 1. The corresponding interaction kernel ¢, derived from this potential, is

o =S85 ((2) ()"

r

We shall use a slightly modified version of ¢y :

du(1) — o5(1)/4, 0<r<j
LW = o (Dr + ou(1), 3 <r<1
o(r) =< ou(r), 1 <7r <0.99R
asr3 + bsr? + car + ds, 0.99R\ <71r < Rpm
07 RM S T.

The parameters, (ag, bs, c3, d3), are chosen so that ¢ € C*([0, Raq]) when R < oo; otherwise ¢(r) = ¢py(r) forr > 1.
Table 7 shows the values of the parameters needed for the learning simulation.

Ng2 | neop | T | h
51 | 69 | 1077 [ 107°°

Table 7. Test Parameters for LID.

Results for the S? case: Fig. 5 shows the comparison between ¢ and its estimator $ learned from the trajectory data.
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r (pairwise distance)

Figure 5. (LJD on S?) Comparison of ¢ and &5, with the relative error being 3.65 - 1072 £ 2.7 - 10~* (calculated using (13)). The true

interaction kernel is shgwn ina lllack solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its

std interval, i.e. mean(¢) = std(¢), region shaded in red. Shown in the background is the comparison of the approximate p% versus the
.. L

empirical p’
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Fig. 6 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 6. (LJD on S?) Comparison of X (generated by ¢) and X (generated by a), with the errors reported in table 8. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at t = 0) to light green (att = T').

A quantitative comparison of the trajectory estimation errors is shown in Table 8.

[0.7]

meanyc: Training ICs 288-107°+£25-107°
stdic: Training ICs 6.1-10 7+1.8-10°

meanic: Random ICs || 2.88-10"3+3.2-107°
stdic: Random ICs 6.0-1007+1.8-107°

Table 8. (LID on S?) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from pu0(M™) (second set of two rows). The trajectory estimation errors is calculated using (13).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 9.

Condition Number || 6-10° £1.5-10°
Smallest Eigenvalue || 2.4-107°+6.2-10°

Table 9. (LID on S?) Information from the learning matrix A.

It took 2.43 - 10* seconds to generate p% pmand 7.14 - 10* seconds to run 10 learning simulations, with 1.72 - 10® seconds
spent on learning the estimated interactions (on average, it took 1.72- 102 4-2.5 seconds to run one estimation), and 6.96 - 10*
seconds spent on computing the trajectory error estimates (on average, it took 6.96 - 10® 4+ 35.9 seconds to run one set of
trajectory error estimation).

Results for the PD case: Fig. 7 shows the comparison between ¢ and its estimator (Z learned from the trajectory data.
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Figure 7. (LJD on PD ) Comparison of ¢ and a;, with the relative error being 2.52 - 1072+ 3.6 - 10~* (calculated using (13)). The true
interaction kernel is shgwn ina lllack solid line, whereas the mean estimated interaction kernel is shown in a blue dashed line with its

std interval, i.e. mean(¢) =+ std(¢), region shaded in red. Shown in the background is the comparison of the approximate pk versus the
empirical p;?

Fig. 8 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.

o 10 | 9 =0
E 00 e T 00 e '
.00 £ -~ -1.0-- ; 0
-1.0 0.0 10  -1.0 0.0 1.0
1.0f . 1.0f . P T
~ . N 10
To0o - - . 00 - -l B
Co) . '- . ) . . .
1.0 : ~-1.0¢- , L0
-1.0 0.0 10  -1.0 0.0 1.0
C\? 1.0’ . L 1.0“ . ... L 75\(1(t) T
E 00 e 0.0 S R
3 - oL H . oLt N
O .10 EEEFS 1.0 SRS -0
-1.0 0.0 10  -1.0 0.0 1.0
Coord. 1 Coord. 1

Figure 8. (LJD on PD ) Comparison of X (generated by ¢) and X (generated by gg), with the errors reported in table 10. Top: X and X
are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen initial
condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates the
flow of time, from deep blue (at ¢ = 0) to light green (at ¢t = T").

A quantitative comparison of the trajectory estimation errors is shown in Table 10.
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[0,T]

meanc: Training ICs || 2.27-10 °+4.0-10"°
stdic: Training ICs 5.6-10 14+ 1.7-10 °

meanyc: Random ICs || 2.28 - 107> £3.8-107°
stdic: Random ICs 5.6-10 7+ 1.6-10 °

Table 10. (LJD on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from ,uo(/\/lN ) (second set of two rows). meanic and stdc are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 11.

Condition Number || 6-10°+1.9-10°
Smallest Eigenvalue || 1.7-107°£6.6- 10"

Table 11. (LD on PD ) Information from the learning matrix A.

It took 1.51 - 10* seconds to generate p% am and 6.23 - 10* seconds to run 10 learning simulations, with 1.20 - 103 seconds
spent on learning the estimated interactions (on average, it took 1.20- 102 £ 9.4 seconds to run one estimation), and 6.10- 10*
seconds spent on computing the trajectory error estimates (on average, it took 6 - 103 4 1.3 - 103 seconds to run one set of
trajectory error estimation).

D.4. Predator-Swarm Dynamics

The third first-order model considered here is a heterogeneous agent system, which is used to model interactions between
multiple types of animals (Chen & Kolokolnikov, 2013; Olson et al., 2016) or agents (need ref.). The learning theory
presented in this work is described for homogeneous agent systems, but the theory and the corresponding algorithms extend
naturally to heterogeneous agent systems in a manner analogous to (Lu et al., 2019a; Miller et al., 2020).

We consider here a system of a single predator versus a group of preys, namely the Predator-Swarm Dynamics (PS1),
discussed in (Chen & Kolokolnikov, 2013). The preys are in type 1, and the single predator is in type 2. We have multiple
interaction kernels, depending on the types of agents in each interacting pair: ¢/ defines the influence of agents in type &’
on agents in type k, for k, k" = 1, 2. The interaction Kernels are given as follows.

N

=(r—0.01)+ (1 - 54z) 0<r<0.01

ol

0
() =d 17 0.01 < 7 < 0.99R
R aiard +biar? +caar+dig, 0.99RMm <71 < Ry
0, Ryp<r

The parameters, (a1,1,b1,1,¢1.1,d1,1), are chosen so that ¢11(r) € C1([0, Rap]) when Ry < oo; otherwise ¢q1(r) =
1-— 7% for r > 0.01;

o.§13 (r —0.01) + 502 0<r<0.01
bra(r) = T 0.01 < 7 < 0.99R 4
U0 a1 0m3 4 byar? + cior +dia, 0.99RpM <7 < Ray
Oa RM S r

The parameters, (a1,2,b1,2, 1,2, d1,2), are chosen so that ¢12(r) € C*([0, Ryq]) when Raq < oo; otherwise ¢12(r) = =
forr > 0.01;

gt (r = 0.01) + 53%) 0<r<001
() =4 0.01 < r < 0.99R s
U= a0 1r3 4 bayar? + conr +dag, 0.99Ru <7 < R
07 RM S T

The parameters, (a2 1, b2.1, 2,1, d2.1), are chosen so that ¢o; (r) € C*([0, Raq]) when Ryq < oo; otherwise g1 (r) = =
for r > 0.01; then ¢ = 0, since there is only one predator. We set T' = 0.5 and h = 10~ for the two P.S1 models.
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Results for the S? case: In order to produce more interesting interactions, we choose the distribution of the initial condition
to be as follows. The setting will start from R? first. The position of the predator is randomly chosen uniformly within a
circular disk of radius 0.1 centered at the origin of R%. The remaining N — 1 agents will be prey and chosen uniformly
at random within an annulus of radii 0.3 and 0.8, centered at the origin. Then these positions will mapped through a
stereographic projection (where the origin of R? is the south pole of S?) back to S2. When back on S?, the position of the
predator is moved via parallel transport to a random location on S?, and the rest of the preys are moved using the same map,
so that the relative position between each pair of agents is not changed.

Table 12 shows the number of basis functions, namely ny’s, for each estimator q?,c x for k, k' = 1,2, and their corresponding
degrees, pi x/’s, for the Clamped B-spline basis.

ni1 | N12 | N21 | N2
50 37 37 1

P11 | P12 | P21 | P22
1 1 1 0

Table 12. (PS1 on S? ) Number of basis functions.

Fig. 11 shows the comparison between ¢/ and its estimators $,W learned from the trajectory data.
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Figure 9. (PS1 on S?) Comparison of ¢ and ak 1/, with the relative errors shown in table 17. The true interaction kernels are shown in
black solid lines, whereas the mean estimated interaction kernel are shown in blue dashed lines with their corresponding std interval,

ie. mean(@k == std(;ﬁk %’ ), regions shaded in red. Shown in the background is the comparison of the approximate pqLa’kk, versus the

- L,M,kk’ : L,12, L,M,12 L,12, L,M,21 st
empirical p77™"" . Notice that p7>"“/p77™ " and p;’"“/p77""" are the same distributions.
EI‘I‘1,1 ‘ EI‘I'LQ ‘ EIT271 ‘ EI‘I‘272

2.98-107"£5.9-107° | 84-10°£3.0-107" [ 25-107°£1.6-107° | 0

Table 13. (PS1 on S? ) Relative estimation errors calculated using (13).

Fig. 10 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 10. (PS1 on S? ) Comparison of X (generated by ¢k k’s) and X (generated by (;AS;C x’s), with the errors reported in table 14. Top:
X and X are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen
initial condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates
the flow of time, from deep blue/bright red (at t = 0) to light green/light yellow (at ¢ = T"). The blue/green combination is assigned to the
preys; whereas the red/yellow comb for the predator.

A quantitative comparison of the trajectory estimation errors is shown in Table 18.

[0.7]

meanyc: Training ICs 2.36-1072+9.8-10" %
stdic: Training ICs 1.9-1002+15-10" ¢

meanyc: Random ICs || 2.40-1072£8.1-107*
stdic: Random ICs 23.107°+6.1-10"°

Table 14. (PS1 on S?) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from ,uo(/\/lN ) (second set of two rows). mean;c and stdc are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 19.

Condition Number for A, 2.2-107 £1.8-10°
Smallest Eigenvalue for A; 1.28.10°%5+85-10" 1
Condition Number for A, 2.9-10° £2.2-10°
Smallest Eigenvalue for A; 9-107 " £57-10 "

Table 15. (PS1 on S? ) Information from the learning matrix Ay’s.

The matrix A; is used to obtain the estimators, 517 1 and QASLQ; whereas A, is used to obtain &52_’1 and &5\272. Since there
is one single predator, we set ;5272 to zero. It took 9.77 - 10* seconds to generate pan, am and 4.01 - 10° seconds to run 10
learning simulations, with 1.66 - 10® seconds spent on learning the estimated interactions (on average, it took 1.66 - 10% & 4.6
seconds to run one estimation), and 4.05 - 10° seconds spent on computing the trajectory error estimates (on average, it took
4.0 -10* £ 7.1 - 102 seconds to run one set of trajectory error estimation).
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Results for the PD case: In order to produce more interesting interactions, we choose the distribution of the initial condition
to be as follows: the predator is randomly placed in a circle centered at the origin with radius r1, given as follows

1 4 1
o= (2 i cosh(0.5) —1 \/cosh(0.5) -1 * (cosh(0.5) — 1)2>/27

so that the agents are at most 0.5 distance away from each other; then the group of preys (Swarm) will be randomly and
uniformly placed on an annulus centered at the origin with radii,( Ry, 1), given as follows

1 4 1
e (2 + cosh(1)—1 \/cosh(l) -1 + (cosh(1) — 1)2>/2

and

1 4 1
B = (2 * cosh(2) —1 \/cosh(2) -1 * (cosh(2) — 1)2>/2;

so that the group of preys are surrounding the single predator. Table 16 shows the number of basis functions, namely ngy’s,
for each estimator ¢y for k, k' = 1,2, and their corresponding degrees, py, x’s, for the Clamped B-spline basis.

ni,1 ni,2 n21 n2 2
68 43 43 1
P11 P1,2 P21 P2,2
1 1 1 0

Table 16. (PS1 on PD ) Number of basis functions.

Fig. 11 shows the comparison between ¢/ and its estimators $kk, learned from the trajectory data.
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Figure 11. (PS1 on PD ) Comparison of ¢ and $k &, with the relative errors shown in table 17. The true interaction kernels are shown
in black solid lines, whereas the mean estimated interaction kernel are shown in blue dashed lines with their corresponding std interval,

ie. mean((gk = std(a)\;C %’ ), regions shaded in red. Shown in the background is the comparison of the approximate p;’kk, versus the

. L,M,kk’ p L,12, L,M,12 L,12, L,M,21 s bt
empirical p7. . Notice that p>"“/pr. and p7’“/p7. are the same distributions.
Err1,1 | Err 2 | Erra 1 | Errao

9.0-10774£2.6-10° ‘ 1.34-107°+£8.8-107° ‘ 3.6-107°4£24-10"" ‘ 0

Table 17. (PS1 on PD ) Relative estimation errors calculated using (13).
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Fig. 12 shows the comparison of the trajectory data between the true dynamics and estimated dynamics.
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Figure 12. (PS1 on PD ) Comparison of X (generated by ¢y, x/’s) and X (generated by $k k'), with the errors reported in table 18. Top:
X and X are generated from an initial condition taken from the training data. Middle: X and X are generated from a randomly chosen
initial condition. Bottom: X and X are generated from a new initial condition with bigger N = 40. The color of the trajectory indicates
the flow of time, from deep blue/bright red (at ¢ = 0) to light green/light yellow (at ¢ = T'). The blue/green combination is assigned to the
preys; whereas the red/yellow comb for the predator.

A quantitative comparison of the trajectory estimation errors is shown in Table 18.

[0, T

meanyc: Training ICs || 4.8-10 °+1.2-10 ¢
stdic: Training ICs 23.10°+£3.0-10 ¢

meanc: Random ICs || 4.8 1072 +1.2-10 2
stdic: Random ICs 25-1075+£3.9-1073

Table 18. (PS1 on PD ) trajectory estimation errors: Initial Conditions (ICs) used in the training set (first two rows), new ICs randomly
drawn from ,u,o(./\/lN ) (second set of two rows). meanic and stdic are the mean and standard deviation of the trajectory errors calculated
using (14).

We also report the condition number and the smallest eigenvalue of the learning matrix A to indirectly verify the geometric
coercivity condition in table 19.

Condition Number for A; 2.3-107 £4.7-10°
Smallest Eigenvalue for A; || 7-10 T +1.7-10"
Condition Number for As 5-10° £3.1-10°
Smallest Eigenvalue for A 4.108+£29-10°°

Table 19. (PS1 on PD ) Information from the learning matrix Ay,’s.

The matrix A; is used to obtain the estimators, 517 1 and QASLQ; whereas A, is used to obtain &52_’1 and &5\272. Since there
is one single predator, we set ;5272 to zero. It took 7.37 - 10* seconds to generate pan, am and 2.49 - 10° seconds to run 10
learning simulations, with 1.25 - 10® seconds spent on learning the estimated interactions (on average, it took 1.25-10% £ 1.5
seconds to run one estimation), and 2.48 - 10° seconds spent on computing the trajectory error estimates (on average, it took
2.48 - 10* £ 2.3 - 102 seconds to run one set of trajectory error estimation).
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