
Double Machine Learning Density Estimation for
Local Treatment Effects with Instruments

Yonghan Jung
Purdue University

jung222@purdue.edu

Jin Tian
Iowa State University
jtian@iastate.edu

Elias Bareinboim
Columbia University

eb@cs.columbia.edu

Abstract

Local treatment effects are a common quantity found throughout the empirical
sciences that measure the treatment effect among those who comply with what
they are assigned. Most of the literature is focused on estimating the average of
such quantity, which is called the “local average treatment effect (LATE)” [31]).
In this work, we study how to estimate the density of the local treatment effect,
which is naturally more informative than its average. Specifically, we develop
two families of methods for this task, namely, kernel-smoothing and model-based
approaches. The kernel-smoothing-based approach estimates the density through
some smooth kernel functions. The model-based approach estimates the density
by projecting it onto a finite-dimensional density class. For both approaches, we
derive the corresponding double/debiased machine learning-based estimators [13].
We further study the asymptotic convergence rates of the estimators and show
that they are robust to the biases in nuisance function estimation. The use of the
proposed methods is illustrated through both synthetic and a real dataset called
401(k).

1 Introduction

Controlled experimentation is one powerful tool used throughout the empirical sciences to infer the
effect of a certain treatment on a given outcome. The idea is to randomize the treatment assignment
so as to neutralize the effect of unobserved confounders. However, in some practical settings, it
may be challenging to ascertain that individuals who are selected for treatment will follow their
recommendations. Issues of non-compliance and unmeasured confounding are quite common and
lead to the non-identification of treatment effects in many real-world cases [29, 50, 32, 56].

An approach known as instrumental variables (IVs) has been proposed to try to circumvent this issue
[68]. The idea is to find a set of variables (possibly singleton) that are not the target of the analysis
by itself but that will help to control for the unobserved confounding between the treatment and the
outcome. In particular, IVs are special variables that (i) are correlated with the treatment, (ii) do
not directly influence the outcome, and (iii) are not affected by certain unmeasured confounders.
For concreteness, consider a study of the effect of 401(k) participation (X) on the distribution of
net financial assets (Y ) [2]. This setting is represented in the causal graph in Fig. 1. Note that a
dashed-bidirected arrow exists between X and Y , which in graphical language represents unobserved
confounding affecting both X and Y . The variable Z in this model represents the eligibility of 401(k).
We note that Z qualifies as an instrument in this case – (i) it does affect the participation of 401(k)
(X) and (ii) has no direct influence on the net financial asset (Y ), (iii) is not affected by unmeasured
confounders between X and Y . The variable W represents observed covariates (e.g., gender, age,
ethnicity, income, family size).

We are interested in the particular setting where only individuals who were offered the treatment
may have access to it [31]. For instance, in the case of 401(k) participation (X = 1), only eligible
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Figure 2: Densities of outcome Y among compliers under the treatment X = 1. All densities have a
mean 0 and a variance 2.

individuals (Z = 1) would be allowed to join the program. This assumption is known in the
literature as monotonicity, which rules out the possibility that any units would respond contrary to
the instrument. Under monotonicity, the causal effect in the subpopulation whose actual treatment
X coincides with the assigned treatment Z (called compliers) is identifiable [31, 2]. The average
treatment effect (ATE) for the compliers is called ‘Local ATE’ (LATE) (or Complier average causal
effects, CACE) [31].

The most common quantification of these effects in IV settings found in practice is the average (e.g.,
LATE). The average is certainly an informative summary; however, it may fail to capture significant
differences in the causal distributions of the outcome. For instance, consider Fig. 2 that shows the
densities of outcomes Y under treatments X = 1 among compliers which are generated from samples
drawn from four synthetic data generating processes represented by the IV graph in Fig. 1 (further
discussed in Sec. 5). All of the four distributions have the same mean 0 and variance 2. However, the
difference in the LTE distributions is self-evident.

Z X

W

Y

Figure 1: A causal graph for the IV
setting. Bidirected arrows encode un-
measured confounders.

Most of the prior work on quantifying distributions of treat-
ment effects focuses on estimating cumulative distribution
functions (CDFs) or quantiles, and little attention has been
given to estimating densities (refer to Sec. 1.1 for further
comparison). As a complement to CDFs, densities have vari-
ous advantages, including a more interpretable visualization
of the distribution and generative capability of producing
samples. One challenge with estimating densities is that
while CDFs are pathwise-differentiable and enjoy

p
n-rate

estimators (n is the size of data), densities are not (i.e.,
they are non-regular), and therefore possess no influence
functions nor

p
n-rate estimators without approximations [7,

Ch. 3].

In this paper, our goal is to provide methods to estimate densities of local treatment effects in IV
settings under the monotonicity assumption. We develop two families of methods for this task
based on kernel-smoothing and model-based approximations. The former smooths the density by
convolution with a kernel function; the latter projects the density onto a finite-dimensional density
class based on a distributional distance measure. For both approaches, we construct double/debiased
machine learning (DML) style density estimators [43, 54, 52, 70, 13]. We analyze the asymptotic
convergence properties of the estimators, showing that they can converge fast (i.e.,

p
n-rate) even

when nuisance estimates converge slowly (e.g., n�1/4 rate) (a property called ‘debiasedness’1). We
illustrate the proposed methods on synthetic and real data.

1.1 Related work

Our work touches different areas, which we will discuss next.

Double/Debiased Machine Learning (DML) [13]-based causal effect estimators. The DML
framework has been adapted for estimating the average causal effect under the setting where the
back-door criterion [50, Sec. 3.3.1] (also known as ignorability [57]) holds (e.g., [12, 19]). Recently,
DML-based causal effect estimators have been developed for any identifiable causal functionals in a
given causal graph and equivalence class thereof [33, 34].

1Also known as ‘nonparametric doubly robust [37] or ‘rate doubly robust’ [59].
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Local average & quantile treatment effect. The formal identification results for LATE under
the monotonicity assumption in IV settings were developed by [31, 3]. Building on these results,
semiparametric estimation for LATE has received remarkable attention [2, 60, 23, 62, 48], including
robust LATE estimators that achieve debiasedness [47, 40, 38, 64]. As shown in Fig. 2, however,
the average is sometimes insufficient to capture the effects of the treatment on the distributions of
outcomes. To address this issue, the problem of estimating quantiles or CDFs has taken attention.
A common approach to estimate quantiles or CDFs is based on the LATE estimation. Since the
expectation of Yy(Y ), an indicator that outcome Y falls short of threshold y, reduces to the CDF
(i.e., replacing Y in LATE with Yy(Y )), estimators for the LATE can be used to estimate quantiles
or CDFs [1, 2, 15, 24, 16, 30, 45, 18, 69].

Non-regular target estimand. An estimand that possesses no influence functions nor
p
n-rate

estimators is called ‘non-regular’. Densities are an example of non-regular target estimands [7, Chap.
3]. One can approximate a non-regular target with a smooth one such that an influence function andp
n-rate estimators can be derived. Two broadly used approaches are kernel-smoothing-based (e.g.,

[52, 6, 42, 19, 35]) and model-based (e.g., [46, 52, 21, 41, 40, 39]).

Causal density estimation. There is limited literature on estimating the density of treatment effects.
Most of the results assume that the ignorability/backdoor admissibility holds [55, 49]. [22] used the
kernel-smoothing technique to estimate the density of a treatment effect, and [42] provided a kernel-
smoothing-based density estimator that achieves doubly robustness and debiasedness building on top
of the work in [53]. Recently, [39] investigated a model-based approach and developed estimators that
achieve debiasedness properties. Under the IV setting, [10] provided a local polynomial regression-
based density estimator for local treatment effects; We are not aware of any work studying debiased
density estimators. As mentioned, this paper investigates both kernel-smoothing and model-based
approaches for estimating local treatment effects under IV settings and develops DML-style density
estimators for both.

2 LTE Estimation – Problem setup

In our analysis, each variable is represented with a capital letter (X) and its realized value with a small
letter (x). For a discrete (e.g., binary) random variable X , we use x(X) to represent the indicator
function such that x(X) = 1 if X = x; x(X) = 0 otherwise. For a continuous variable X with
a probability density p(x) of a distribution P and a function f(x), EP [f(X)] ⌘

R
X f(x)p(x) d[x]

where X is the domain for X , and kf(X)k ⌘
p
EP [(f(X))2]. bf is said to converge to f at rate rn if

k bf(x)� f(x)k = OP (1/rn). For a dataset D = {Vi}ni=1, we use ED [f(V )] ⌘ (1/n)
Pn

i=1 f(Vi)
to denote the empirical mean of f(V ) with D.

Structural Causal Models (SCMs). We use the language of SCMs as our basic semantic and
inferential framework [50, 4]. An SCM M is a quadruple M = hU, V, P (U), F i where U is a set
of exogenous (latent) variables following a joint distribution P (u), and V is a set of endogenous
(observable) variables whose values are determined by functions F = {fVi}Vi2V such that Vi  
fVi(pai, ui) where PAi ✓ V and Ui ✓ U . Each SCM M induces a distribution P (v) and a causal
graph G = G(M) over V in which there exists a directed edge from every variable in PAi to Vi and
dashed-bidirected arrows encode common latent variables (e.g., see Fig. 1). Within the structural
semantics, performing an intervention and setting X = x is represented through the do-operator,
do(X = x), which encodes the operation of replacing the original equations of X (i.e., fX(pax, ux))
by the constant x and induces a submodel Mx and an interventional distribution P (v|do(x)). For
any variable Y 2 V , the potential response Yx(u) is defined as the solution of Y in the submodel
Mx given U = u, which induces a counterfactual variable Yx.

Local Treatment Effect (LTE) with IV. We consider the IV setting represented by the causal graph
G in Fig. 12, where Z is a binary instrument with domain {0, 1}, X is a binary treatment with domain
{0, 1}, and Y is a (set of) continuous outcomes with bounded domain Y ⇢ Rd, and W is a set
of covariates (continuous, discrete, or mixed). G satisfies the IV assumption that Z has no direct
influence on outcome Y and is not affected by unmeasured confounders between X and Y .

2It is common in the literature to define IV assumptions in terms of conditional independences among
counterfactual [51, 9, 8, 2, 60, 47, 64], whose connection with the causal graph in Fig. 1 is discussed in
Assumption A.1
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The causal density p(yx) is not identifiable from the observed density p(x, y, z, w) due to the
unobserved confounders between X and Y . However, the effect is possibly recovered for certain
subpopulation under additional assumptions. Formally, a unit in the population is an always-taker if
XZ=1 = XZ=0 = 1, a never-taker if XZ=1 = XZ=0 = 0, a complier if XZ=1 = 1, XZ=0 = 0, and
a defier if XZ=1 = 0, XZ=0 = 1 [3, 2]. We will make the following assumptions based on literature.
Assumption 1 (Monotonicity). There are no defiers: XZ=1 � XZ=0.
Assumption 2 (Positivity). P (x|z, w) > 0, P (z|w) > 0 for any x, z, w.

Let C denote the event that a unit is a complier (i.e., a unit such that XZ=0 = 0 and XZ=1 = 1). For
a given constant a and a variable X , let xa denote the event X = a. The LTE p(yx|C) is identifiable
under monotonicity and is given by [31, 2]:

p(yx|C) =
EP

⇥
p(y|x, zx,W )P (x|zx,W )� p(y|x, z1�x,W )P (x|z1�x,W )

⇤

EP [P (x1|z1,W )� P (x1|z0,W )]
, (1)

where the expectation is over W . In this paper, we aim to estimate the LTE density p(yx|C) in
Eq. (1). We will make the following mild assumption on some densities, popularly employed in
density estimation literature (e.g., [44, 25, 27, 61, 26, 42]).
Assumption 3. For any x, z, w, y, densities p(y|w, z, x), p(y|z, x) and p(yx|C) are bounded, and
p(yx|C) is twice differentiable.

DML method. Let  ⌘  P 0 denote a functional of an arbitrary distribution P 0. We use P to
denote the true distribution such that D ⇠ P . Let  0 ⌘  P denote the true parameter to be
estimated. To estimate  0, DML-based estimators use a Neyman Orthogonal score '(V ; 0, ⌘)
(where ⌘ ⌘ ⌘P 0 is a set of nuisance parameters and ⌘0 ⌘ ⌘P denotes the true nuisances), a function
such that EP ['(V ; 0, ⌘0)] = 0, (@/@⌘)|⌘=⌘0EP ['(V ; 0, ⌘)] = 0. Given ', an DML estimator
is constructed using the cross-fitting technique as follows: For randomly split halves of D denoted
{D0,D1}, let b⌘p for p 2 {0, 1} denote the estimates for ⌘ from Dp. Let Tp denote a solution such that
ED1�p ['(V ;Tp, b⌘p)] = oP (N�1/2). Then, T ⌘ (T0 + T1)/2 is an DML estimator [13, Def. 3.1].
In addition to being consistent, the estimator T exhibits a robustness property called debiasedness: T
converges to  0 in the root-N rate even when b⌘ converges to ⌘0 in slower N�1/4 rate [13, Thm. 3.1].
A Neyman Orthogonal Score can be derived by adding  to its influence function � [14, Thm. 1]. An
influence function of the functional  P is defined as a solution satisfying EP [�] = 0, EP

⇥
�2
⇤
<1,

and (@/@t) Pt |t=0 = EP [�(V ; , ⌘)St(V ; t = 0)] where Pt ⌘ P (v)(1 + tg(v)) for t 2 R and any
bounded mean-zero functions g(·) over V , and St(v; t = 0) ⌘ (@/@t) logPt(v)|t=0 [63, Chap. 25].

Due to space constraints, all the proofs are provided in Appendix B in suppl. material.

3 Kernel-smoothing-based approach

In this section, we develop a kernel-smoothing-based approach for estimating the LTE density.
The kernel-smoothing technique approximates a non-pathwise-differentiable target estimand with
a differentiable estimand by convoluting the density with a kernel function K(y). Properties of
the kernel function includes symmetry about the origin (i.e.,

R
Y yK(y) d[y] = 0), non-negativity

(0 < K(y) <1, 8y 2 Y) , and integrates to 1 (i.e.,
R
Y K(y) d[y] = 1) [66, Chap. 4.2].

We consider a product kernel Kh,y(y0) ⌘ h�d
Qd

j=1 K((yj � y0j)/h) with given bandwidth h 2 R
and a fixed point y = {yj}dj=1 2 Rd. We assume that the kernel of interest has a bounded
second moment and norm: i.e., 2(K) ⌘

R
Y y2K(y) d[y] < 1 and kK(y)k < 1 following

[27, 61]. Example of kernels include Gaussian kernel: K(u) = (1/
p
2⇡) exp

�
�u2/2

�
for u 2 R,

Epanechnikov kernel: K(u) = (3/4)(1 � u2) |u|1(u), Quadratic kernel: K(u) = (15/16)(1 �
u2)2 |u|1(u), Cosine kernel: k(u) = (⇡/4) cos (⇡u/2) |u|1(u), etc.

For convenience, we denote the target estimand by  (y) ⌘ p(yx|C). In the kernel-smoothing-based
approach, we will aim to estimate a kernel-smoothed approximation for  (y) defined as follows:

 h(y) ⌘
Z

Y
 (y0)Kh,y(y

0) d[y0] =  [Kh,y(Y )], (2)
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where  [f(Y )] is an expectation of a function f(Y ) w.r.t.  (y), which is specified as

 [f(Y )] ⌘
EP

⇥
EP [f(Y ) x(X)|zx,W ]� EP

⇥
f(Y ) x(X)|z1�x,W

⇤⇤

EP [P (x1|z1,W )� P (x1|z0,W )]
. (3)

The second equality in Eq. (2) is by Eq. (1). For a target estimand  [f(Y )], we will denote nuisances
by ⇡z(w) ⌘ P (z|w), ⇠x(z, w) ⌘ P (x|z, w), and ✓(x, z, w)[f(Y )] ⌘ EP [f(Y ) x(X)|z, w], shortly
(⇡, ⇠, ✓).

We aim to construct a DML estimator for the estimand  h. Toward this goal, we will first derive a
Neyman orthogonal score for  h. Since a Neyman orthogonal score can be constructed based on
moment score functions (a function of parameters such that its expectation is 0 at the true parameters)
[14, Thm. 1], we start by defining the moment score function. Let

 X ⌘ EP

⇥
⇠x1(z1,W )� ⇠x1(z0,W )

⇤
, (4)

VX({⇡, ⇠}) ⌘ z1(Z)� z0(Z)

⇡Z(W )
{ x1(X)� ⇠x1(Z,W )}+

�
⇠x1(z1,W )� ⇠x1(z0,W )

 
. (5)

Then, the following is a moment score function for  h:

m( 0; h) ⌘
1

 X
( h �  0)VX , (6)

where  h is given in Eq. (2) and  0 is an estimate of  h.

Next, we derive an influence function for the moment score function m( 0; h). We first define the
following function: for a bounded function f(Y ) <1, let

 Y X [f(Y )] ⌘ EP

⇥
✓(x, zx,W )[f(Y )]� ✓(x, z1�x,W )[f(Y )]

⇤
, (7)

VY X({⇡, ✓})[f(Y )] ⌘ zx(Z)� z1�x(Z)

⇡Z(W )
{f(Y ) x(X)� ✓(x, Z,W )[f(Y )]}

+
�
✓(x, zx,W )[f(Y )]� ✓(x, z1�x,W )[f(Y )]

 
, (8)

and

�(⌘ = {⇡, ⇠, ✓}, )[f(Y )] ⌘ 1

 X
(VY X({⇡, ✓})[f(Y )]�  [f(Y )]VX({⇡, ⇠})) , (9)

where VX is defined in Eq. (5). Then, the influence function for the expectation of the moment score
function m( 0; h) in Eq. (6) is given as follows:
Lemma 1 (Influence function for m( 0; h)). Let m( 0; h) be the score defined in Eq. (6). Then,
the influence function for EP [m( 0; h)], denoted �m, is given by

�m(⌘ = {⇡, ⇠, ✓}, ) ⌘ �(⌘, )[Kh,y(Y )] (10)
where � is in Eq. (9).

For any score function (e.g., m in Eq. (6)), its addition to the influence function of the expected score
(e.g., �m) is a Neyman orthogonal score3 ([14, Thm.1], [13, Sec. 2.2.5]). Specifically,
Lemma 2 (Neyman orthogonal score for  h). Let m( 0; h) be the score function in Eq. (6),
and �m(⌘ = {⇡, ⇠, ✓}, h) be the influence function for EP [m( 0; h)] given in Eq. (10). Then,
a Neyman orthogonal score for  h is given as '( 0; ⌘ = {⇡, ⇠, ✓}) ⌘ m( 0; h) + �m(⌘, );
Specifically,

'( 0; ⌘ = {⇡, ⇠, ✓}) = 1

 X
(VY X({⇡, ✓})[Kh,y(Y )]�  0VX({⇡, ⇠})) . (11)

Given the Neyman orthogonal score '( 0; ⌘), an estimate  ̂h satisfying
ED

h
'( ̂h; ⌘̂ = {⇡̂, ⇠̂, ✓̂})

i
= oP (n�1/2) gives a DML estimator. Specifically, we propose

the following kernel-smoothing based estimator for the LTE density, named ‘KLTE’ (kernel-based
estimator for LTE):

3A Neyman orthogonal score is a function � satisfying EP [�( , ⌘0)] = 0 and @
@⌘EP [�(V ; , ⌘)]|⌘=⌘0 = 0,

where ⌘0 denotes the true nuisance [13, Def.2.2]. In words, a score function that is not sensitive to local errors in
nuisance models.
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Definition 1 (KLTE estimator for  h). Let '( 0; ⌘ = {⇡, ⇠, ✓}) be the Neyman orthogonal score
for  h given in Eq. (11). Let {D,D0} denote the randomly split halves of the samples, where
|D| = |D0| = n. Let ⌘̂ = {⇡̂, ⇠̂, ✓̂} denote the estimates for the nuisance ⌘ using D0. Then, the KLTE
estimator for  h(y) for all y 2 Y , denoted  ̂h(y), is given by

 ̂h(y) ⌘ ED

h
VY X({⇡̂, ✓̂})[Kh,y(Y )]

i
/ED

h
VX({⇡̂, ⇠̂})

i
, (12)

where VX and VY X are given in Eqs. (5,8), respectively.

We will show that the KLTE is a DML estimator exhibiting debiasedness property. Detailed asymp-
totic properties are discussed next.

3.1 Asymptotic convergence

Now, we study the convergence rate of the estimator  ̂h(y). For any fixed y 2 Y , the error
 ̂h(y) �  (y) will be analyzed in two folds: we will first analyze the error between the estimator
in Eq. (12) and the smoothed estimand in Eq. (2) (i.e.,  ̂h(y)�  h(y)), and then analyze the error
between the smoothed estimand and the true estimand (i.e.,  h(y)�  (y)).

The following result gives the error analysis for  ̂h(y)�  h(y):

Lemma 3 (Convergence rate of  ̂h to  h). For any fixed y 2 Y , suppose the estimators for
nuisances are consistent; i.e., k⌫ � ⌫̂k = oP (1) for ⌫ 2 ⌘ = {⇡, ⇠, ✓} for all (w, z, x). Suppose
h <1, and nhd !1 as n!1. Then,

 ̂h(y)�  h(y) = OP

⇣
1/
p
nhd +Rk

2 + 1/
p
n
⌘
,

where

Rk
2 ⌘

X

z

k⇡̂z � ⇡zk
n���✓̂z � ✓z

���+
���⇠̂z � ⇠z

���
o
, (13)

where ⇡z ⌘ ⇡z(W ), ⇠z ⌘ ⇠x(z,W ) and ✓z ⌘ ✓(x, z,W )[Kh,y(Y )].

The error analysis in Lemma. 3 implies the following:

Corollary 1 (Debiasedness property of  ̂h to h). If all nuisances {⇡̂, ⇠̂, ✓̂} for any given (w, z, x, y)
converge at rate {nhd}�1/4, then the target estimator  ̂h(y) achieves

p
nhd-rate convergence to  h.

We now analyze the gap between the smoothed estimand  h and the true estimand  ; i.e.,  h �  :
Lemma 4 ([66, Thm. 6.28]). The following holds:

 h(y)�  (y) = By ⌘ 0.5h22(K)(@2/@2y0)|y0=y (y
0) +O(h2). (14)

Combining the results of Lemma. (3,4), we have the following result:

Theorem 1 (Convergence rate of  ̂h to  ). For any fixed y 2 Y , suppose the estimators for
nuisances are consistent; i.e., k⌫ � ⌫̂k = oP (1) for ⌫ 2 ⌘ = {⇡, ⇠, ✓} for all (w, z, x). Suppose
h <1, and nhd !1 as n!1. Then

 ̂h(y)�  (y) = OP

⇣
1/
p
nhd +Rk

2 + 1/
p
n
⌘
+By, (15)

where By is defined in Eq. (14), and Rk
2 is defined in Eq. (13).

Thm. 1 implies that  ̂h(y) converges fast (see Corol. 1) to  (y) +By . A natural question is then how
to choose the bandwidth h that minimizes the gap in Eq. (15). The following provides a guideline in
choosing the bandwidth h:
Lemma 5 (Data-adaptive bandwidth selection). The bandwidth h that minimizes the error in
Eq. (15) is h = O(n�1/(d+4)). This choice of h satisfies the assumption in Lemma 3 (i.e., nhd !1).

Recall that Corol. 1 states the debiasedness property of  ̂h to  h for any bandwidth h satisfying
nhd !1. With the choice of h as in Lemma 5,  ̂h converges to  with the debiasedness property
preserved.
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Corollary 2 (Debiasedness property of  ̂h to  ). Let h = O(n�1/(d+4)). If nuisances {⇡̂, ⇠̂, ✓̂}
converge at {nhd}�1/4 rate for any (w, z, x, y), then the target estimator  ̂h(y) achieves

p
nhd-rate

convergence to  .

So far, we have analyzed the error  ̂h(y) �  (y) pointwise for the fixed y 2 Y . To analyze the
difference between the two densities  ̂h(y) and  (y) for all y 2 Y , we consider the following
divergence function of two densities:
Definition 2 (f -Divergence Df [20]). Let f denote a convex function with f(1) = 0. Df (p, q) ⌘R
Y f(p(y), q(y))q(y) d[y], is a f -divergence function between two densities p, q.

f -divergence covers many well-known divergences. For example, Df reduces to KL divergence with
f(p, q) = (p/q) log(p/q). We will assume that the function f(p, q) in Df is differentiable w.r.t. p
and q.

We now analyze the distance between  ̂h and  w.r.t. Df . The following result provides an upper
bound for Df .
Lemma 6 (Upper bound of the divergence Df ). Suppose Df is a f -divergence such that f(p, q) =
0 if p = q. Then,

Df ( , b h) 
Z

Y
w(y)

⇣
 ̂h(y)�  (y)

⌘
d[y],

where w(y) ⌘ f 0
2( (y),  ̃(y)) ̂h(y), f 0

2(p, q) ⌘ (@/@q)f(p, q), and  ̃h(y) ⌘ t ̂h(y)+ (1� t) (y)
for some fixed t 2 [0, 1].

By invoking Thm. 1, we derive an upper bound for Df ( , b h) as follows:

Theorem 2 (Convergence rate of  ̂h). Suppose the estimators for nuisances are consistent; i.e.,
k⌫ � ⌫̂k = oP (1) for ⌫ 2 ⌘ = {⇡, ⇠, ✓} for all (w, z, x, y). Suppose Df is a f -divergence such that
f(p, q) = 0 if p = q. Suppose w(y) in Lemma 6 is finite. Then,

Df ( , b h)  OP

✓
sup
y2Y

�
Rk

2 +By

 
+ 1/

p
nhd + 1/

p
n

◆
, (16)

where Rk
2 is defined in Eq. (13) and By is defined in Eq. (14).

The following result asserts that the debiasedness property is exhibited w.r.t. Df :

Corollary 3 (Debiasedness property of  ̂h w.r.t. Df ). Let h = O(n�1/(d+4)). Suppose Df

satisfies f(p, q) = 0 if p = q. Suppose w(y) in Lemma 6 is finite. If nuisances {⇡̂, ⇠̂, ✓̂} converges at
{nhd}�1/4 rate for any (w, z, x, y), then Df ( , b h) converges to 0 at

p
nhd-rate.

4 Model-based approach

In this section, we develop a model-based approach for estimating the LTE density  (y) = p(yx|C).
We will approximate  with a class of distributions or a density model G = {g(y;�) : � 2 Rb}
where g(y;�) 2 G is differentiable w.r.t. �. Example density models include exponential family (e.g.,
Gaussian distribution), mixture of Gaussians, or more generally, mixture of exponential families.
The choice of the density model may depend on domain knowledge. Alternatively, one may choose
among a set of candidate density families using separate validation data or applying cross-validation.
We adapt the model-based approach developed in [39] for estimating the causal density under the no
unmeasured confounders assumption.

Given a density model G, the best approximation for  (y) is defined as g(y;�0) 2 G that achieves
the minimum f -divergence to  :

�0 ⌘ arg min
�2Rb

Df ( (y), g(y;�)), (17)

where Df is the f -divergence defined in Def. 2. Our goal is estimating �0.
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Consider m(�; ) ⌘ (@/@�)Df ( (y), g(y;�)). Definition of �0 given in Eq. (17) implies that
m(�; ) = 0 at � = �0. We note that m(�; ) serves as a moment score function. The closed-form
expression of the score is given by [39]:

m(�; ) ⌘
Z

Y
g0(y;�) {f 0

2( (y), g(y;�))g(y;�) + f( (y), g(y;�))} d[y], (18)

where g0(y;�) = (@/@�)g(y;�) and f 0
2(p, q) ⌘ (@/@q)f(p, q).

To construct a DML estimator based on the score function m(�; ), we first derive an influence
function for the score:
Lemma 7 (Influence Function for m(�, )). An influence function for m(�; ) in Eq. (18), denoted
�m, is given by

�m(�; ⌘ = {⇡, ⇠, ✓}, ) ⌘ �(⌘, )[Rf (Y ;�, )], (19)

where �(⌘, )[·] is defined in Eq. (9), and

Rf (Y ;�, ) ⌘ g0(Y ;�) {f 00
21( (Y ), g(Y ;�))g(Y ;�) + f 0

1( (Y ), g(Y ;�))} ,
where g0(y;�) ⌘ (@/@�)g(y;�), f 0

1(p, q) ⌘ (@/@p)f(p, q) and f 00
21(p, q) ⌘ (@/@p)f 0

2(p, q).

We derive a Neyman orthogonal score based on the moment score m(�, ) and its influence function
�m(�, ⌘, ):
Lemma 8 (Neyman orthogonal score for �). A Neyman orthogonal score for estimating �, denoted
'(�0; (⌘ = {⇡, ⇠, ✓}, )), is given by

'(�0; (⌘ = {⇡, ⇠, ✓}, )) ⌘ m(�0, ) + �m(�, ⌘, ), (20)

where �m(�, ⌘, ) is defined in Eq. (19).

Given the orthogonal score '(�0; (⌘, )) in Eq. (20), we propose the following estimator for �,
named ‘MLTE’ (model-based estimator for LTE):
Definition 3 (MLTE estimator for �). Let '(�0; ⌘ = {⇡, ⇠, ✓}, ) be the Neyman orthogonal
score for � given in Eq. (20). Let {D,D0} denote the randomly split halves of the samples, where
|D| = |D0| = n. Let ⌘̂ = {⇡̂, ⇠̂, ✓̂} denote the estimators for the nuisance ⌘ using D0. Then, the
MLTE estimator for �, denoted �̂, is given as a solution satisfying ED

h
'(�̂; ⌘̂,  ̂)

i
= oP (n�1/2).

To illustrate, we exemplify Eq. (18) and Lemma (7, 8) for the case where Df is a KL-divergence
and g(y;� = {µ,�2}) is a normal distribution. First, m(�; ) = {mµ(µ; ),m�(�2; , µ)}, where
mµ(µ; ,�) = (1/�2) ( [Y ]� µ) and m�(�2; , µ) = (0.5/�4)

�
�2 �  [(Y � µ)2]

�
. We note

that µ̂m ⌘  ̂[Y ] and �̂2
m ⌘  ̂[(Y � µ̂)2] are estimators for �0 = {µ0,�2

0} for the score m(�; ).

Also, Rf (Y ;�, ) ⌘ �(@/@�) log (g(Y ;�)) = {Rf (Y ;µ, ), Rf (Y ;�2, )}, where
Rf (Y ;µ, ) ⌘ (µ � Y )/�2 and Rf (Y ;�2, ) ⌘ 0.5{�2 � (Y � µ)2}/�4. Then, the Neyman or-
thogonal score is given as '(µ;�2, ⌘, ) = (1/�2) {µ�  [Y ]� �(⌘, )[Y ]} and '(�2;µ, ⌘, ) =
(0.5/�4)

�
�2 �  [(Y � µ)2]� �(⌘, )[(Y � µ)2]

 
. Finally, solutions for '(µ;�2, ⌘, ) and

'(�2, µ; ⌘, ) are given by (µ̂, �̂2), where, for �[·] in Eq. (9), µ̂ =  ̂[Y ] + ED

h
�(⌘̂,  ̂)[Y ]

i
and

�̂2 =  [(Y � µ̂)2] + ED

h
�(⌘̂,  ̂)[(Y � µ̂)2]

i
.

The MLTE estimator in Def. 3 is consistent provided that nuisances estimates ⌘̂ are consistent [14,
Thm.4]. Such �̂ is known to achieve debiasedness [13], since �̂ is a DML estimator. Specifically,

Theorem 3 (Convergence rate of �̂). Let '(�0; (⌘ = {⇡, ⇠, ✓}, ) be given in Eq. (20).
Let �m(�, ⌘, ) be given in Eq. (19). Let �0, ⌘0, 0 denote the true parameters. Let �̂
be the MLTE estimator for � defined in Def. 3. Suppose (1) Rf (y;�, ) is bounded and
R0

f (y;�, ) ⌘ (@/@ )Rf (y;�, ) < 1; (2) There exists a function H(y) < 1 s.t.
sup�, max{Rf (y;�, ), R0

f (y;�, )} = O (H(y)); (3) {'(�; (⌘, ))} is Donsker4 w.r.t. � for

4A function class where complexities are restricted. See Def. S.1 in the Appendix for the definition. Donsker
class include Sobolev, Bounded monotone, Lipschitz class, etc.
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the fixed ⌘; (3) The estimators are consistent: �̂ � �0 = oP (1) and k⌫ � ⌫̂k = oP (1) for
⌫ 2 {⇡z(w), ⇠x(z, w), ✓(x, z, w)[H(Y )]} for all (w, z, x, y); and (4) EP ['(�; (⌘, ))] is differen-
tiable w.r.t. � at � = �0 with non-singular matrix M(�0, (⌘, )) ⌘ (@/@�)|�=�0EP ['(�; (⌘, ))]

for all (⌘, ), where M(�0, (⌘̂,  ̂))
P!M ⌘M(�0, (⌘0, 0)). Then,

b� � �0 = �M�1ED [�m(�0; ( 0, ⌘0))] + oP (n
�1/2) +OP (R

m
2 ),

where

Rm
2 =

X

z

✓
k⇡̂z � ⇡zk

n���✓̂z � ✓z
���+

���⇠̂z � ⇠z
���
o
+
���⇠̂z � ⇠z

���
2
+
���✓z � ✓̂z

���
2
+
���⇠̂z � ⇠z

���
���✓z � ✓̂z

���
◆
,

where ⇡z ⌘ ⇡z(W ), ⇠z ⌘ ⇠x(z,W ), and ✓z ⌘ ✓(x, z,W )[H(Y )].

Corollary 4 (Debiasedness property for �̂). If nuisances {⇡̂, ⇠̂, ✓̂} converges at n�1/4 rate, then
the target estimator �̂ converges to �0 at

p
n-rate.

For the above example where Df is the KL divergence and g(y;�) is a normal distribution, H(Y ) =
Y for Rf (y;µ, ), and H(Y ) = Y 2 for Rf (y;�2, ).

5 Empirical applications

In this section, we apply the proposed methods to synthetic and real datasets. For the kernel-smoothing
based approach, we compare KLTE with a baseline plug-in estimator (‘kernel-smoothing’), where
estimates of nuisances ⌘̂ = {⇡̂, ⇠̂, ✓̂} are plugged in the estimand Eq. (2). We use the Gaussian kernel.
The bandwidth is set to h = 0.5n�1/5. In estimating the density, we choose 200 equi-spaced points
{y(i)}200i=1 in Y and evaluate both estimators at Kh,y(i)

for i = 1, · · · , 200. For the model-based
approach, we compare MLTE (e.g., µ̂, �̂2) with a moment-score-based estimator (called ‘moment’),
defined as �̂m satisfying m(�̂m;  ̂) = oP (n�1/2) (e.g., {µ̂m, �̂2

m}). We use KL divergence for Df

and the normal distribution for g(y;�). For both approaches, nuisances are estimated through a
gradient boosting model XGBoost [11], which is known to be flexible.

5.1 Synthetic dataset

We applied the proposed estimators to estimate the LTE p(yx|C) where the true densities are given as
in the 4th plot in Fig. 2. As shown in the ground-truth in Fig. 3a, true densities p(yx0 |C), p(yx1 |C)
are given as a mixture of four Gaussians. Estimated densities for Moment and MLTE are given in
Fig. (3b, 3c). We note that model-based approaches fail to capture important characteristics (such as
the number of modes) of the true density (‘ground-truth’ in Fig. 3a) because the assumed density
class is misspecified. The ‘kernel-smoothing’ (Fig. 3d) captures only one of the modes having the
highest densities, and this leads to misinterpretation of the true densities. KLTE (Fig. 3e) is able to
capture the number, location, and scales of modes correctly.
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Figure 3: LTE estimation with a synthetic dataset. The ground-truth density is in (a). Red and Green
for x0 and x1, respectively.

5.2 Application to 401(k) data

We applied the proposed estimators (KLTE and MLTE) on 401(k) data, where the data generating
processes corroborate with Fig. 1. Monotonicity assumption holds naturally, since ineligible units
(Z = 0) cannot participate (X = 1) in 401(k). In our analysis, we used the dataset introduced
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by [2] containing 9275 individuals, which has been studied in [2, 17, 5, 47, 58, 64], to cite a few.
Model-based approaches (Moment in Fig. 4a and MLTE in Fig. 4b) and kernel-smoothing based
approaches (kernel-smoothing in Fig. 4c and KLTE in Fig. 4d) are implemented to analyze the data.

The model-based (Fig. (4a,4b)) and kernel-smoothing based (Fig. (4c,4d)) estimates both capture
important characteristics of the distribution, such as mode, location, and scale parameters. The results
of proposed estimators (MLTE and KLTE in Fig. (4b,4d)) are consistent with findings from previous
analyses [2, 17, 5, 58]: The effects of the 401(k) participation (i.e., X = 1) on net financial assets
are positive over the whole range of asset distributions. To connect to CDF method, we provide in
Fig. 4e the CDF estimate induced by KLTE density estimation (Fig. 4a). We note that the CDF in
Fig. 4e captures the nonconstant impact trend of the 401(k) participation on the net financial assets,
which has been also described in the previous analyses [2, 17, 5, 58].
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Figure 4: LTE of 401(k) participation (X) on net financial asset (Y ). Red and Green for x0 and x1,
respectively.

6 Conclusion

In this paper, we develop kernel-smoothing-based and model-based approaches for estimating the
LTE density in the presence of instruments. For each approach, we give Neyman orthogonal scores
(Lemma (2,8)) and constructed corresponding DML estimators (KLTE in Def. 1 and MLTE in Def. 3),
that exhibit debiasedness property (Corol. (3, 4)). We demonstrated our work through synthetic
and real datasets. The performance of model-based estimators depends critically on the choice of
the density class. Kernel-based estimators do not have to make assumptions about the true density
class but will suffer from the curse of dimensionality. This work is limited to settings where the
monotonicity assumption holds, i.e., there are no defiers. One could perform sensitivity analyses on
the impact of potential defiers to the estimates as conducted in [65, 36].
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