
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

MBA-Blast: Unveiling and Simplifying Mixed
Boolean-Arithmetic Obfuscation

Binbin Liu, University of Science and Technology of China & University of
New Hampshire; Junfu Shen, University of New Hampshire; Jiang Ming,
University of Texas at Arlington; Qilong Zheng and Jing Li, University of

Science and Technology of China; Dongpeng Xu, University of New Hampshire
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin

MBA-Blast: Unveiling and Simplifying

Mixed Boolean-Arithmetic Obfuscation

Binbin Liu∗ 2,1, Junfu Shen1, Jiang Ming3, Qilong Zheng2, Jing Li2, Dongpeng Xu1

1University of New Hampshire
2University of Science and Technology of China

3University of Texas at Arlington

binbin.liu@unh.edu, js1444@wildcats.unh.edu, jiang.ming@uta.edu, qlzheng@ustc.edu.cn, lj@ustc.edu.cn, dongpeng.xu@unh.edu

Abstract

Mixed Boolean-Arithmetic (MBA) obfuscation is a method

to perform a semantics-preserving transformation from a sim-

ple expression to a representation that is hard to understand

and analyze. More specifically, this obfuscation technique

consists of the mixture usage of arithmetic operations (e.g.,

ADD and IMUL) and Boolean operations (e.g., AND, OR,

and NOT). Binary code with MBA obfuscation can effectively

hide the secret data/algorithm from both static and dynamic

reverse engineering, including advanced analyses utilizing

SMT solvers. Unfortunately, deobfuscation research against

MBA is still in its infancy: state-of-the-art solutions such as

pattern matching, bit-blasting, and program synthesis either

suffer from severe performance penalties, are designed for

specific MBA patterns, or generate too many false simplifica-

tion results in practice.

In this paper, we first demystify the underlying mechanism

of MBA obfuscation. Our in-depth study reveals a hidden

two-way feature regarding MBA transformation between 1-

bit and n-bit variables. We exploit this feature and propose

a viable solution to efficiently deobfuscate code with MBA

obfuscation. Our key insight is that MBA transformations

behave in the same way on 1-bit and n-bit variables. We pro-

vide a mathematical proof to guarantee the correctness of

this finding. We further develop a novel technique to simplify

MBA expressions to a normal simple form by arithmetic re-

duction in 1-bit space. We have implemented this idea as an

open-source prototype, named MBA-Blast, and evaluated it

on a comprehensive dataset with about 10,000 MBA expres-

sions. We also tested our method in real-world, binary code

deobfuscation scenarios, which demonstrate that MBA-Blast

can assist human analysts to harness the full strength of SMT

solvers. Compared with existing work, MBA-Blast is the most

generic and efficient MBA deobfuscation technique; it has a

solid theoretical underpinning, as well as, the highest success

rate with negligible overhead.

∗This work was done when Binbin Liu was a visiting scholar at the

University of New Hampshire.

1 Introduction

Generally speaking, software obfuscation [1] is a transfor-

mation procedure to make a given program more difficult

to analyze, while still preserving the program’s original se-

mantics. The competition between software obfuscation and

deobfuscation schemes has evolved in the last years into an

intensive arms race. On the one hand, many methods have

been proposed in the literature to obfuscate software in differ-

ent ways, generating a large body of literature on this topic.

Amongst others, obfuscation techniques include encoding

identifier names and data [2, 3], control flow flattening [4],

opaque predicates [5, 6], run-time packers [7], and code virtu-

alization [8, 9]. In practice, obfuscation techniques have been

widely used in malicious software to hinder analysis [10, 11],

digital right management (DRM) solutions [12, 13], and to

protect secrets of cryptographic algorithms [14, 15]. As the

rivals in this arms race, researchers have been working hard

to understand or recover the original program behavior from

the obfuscated form [16–23]. If there is any lesson we can

learn from this body of work on improving deobfuscation

techniques, it is that no single “silver bullet” can address all

obfuscation schemes. One insight is that the status quo in

software obfuscation development puts reverse engineers at a

disadvantage: only having access to binary code greatly am-

plifies this asymmetry—the cost of deobfuscation is typically

much higher than applying obfuscation.

In this paper, we focus on the analysis of an advanced ob-

fuscation technique, called Mixed Boolean-Arithmetic (MBA)

obfuscation [24]. MBA expressions are defined as the expres-

sions that mix traditional arithmetic operators (e.g., +,−,×)

and Boolean operators (e.g., ∧,∨,¬,⊕). The effect of MBA

obfuscation can transform a simple expression like x+ y to a

complex, hard-to-understand expression with mixed Boolean

and arithmetic operators, but the actual semantics of the new

expression does not change. Existing math analysis theories

only work either on pure Boolean expressions (e.g., normal-

ization and constraint solving), or on pure arithmetic expres-

sions (e.g., arithmetic reduction). So far, no publicly known

USENIX Association 30th USENIX Security Symposium 1701

methods, including both static and dynamic analysis-based

methods, can effectively analyze or simplify MBA expres-

sions. The root cause is that mixing two heterogeneous op-

erators breaks regular reduction rules (e.g., the algebra laws

of commutation, association, and distribution), which, in an-

other word, ensures the practical strength of MBA obfus-

cation. Considering the distinct advantages in potency, re-

silience, and cost, MBA obfuscation has recently attracted the

interests from security community: multiple research projects

and industry products [9, 25–30] have adopted this technique.

Moreover, since many crypto algorithms also involve hybrid

Boolean and arithmetic operations, MBA obfuscation has a

broader impact on crypto analysis such as white-box cryptog-

raphy [31, 32].

The superior strength of MBA obfuscation has attracted

research on software reverse engineering and deobfuscation.

Existing publications have started working on simplifying

MBA obfuscated expressions in an automated way, including

bit-blasting [33], pattern matching [34], and program synthe-

sis [21, 35]. Unfortunately, state-of-the-art methods are still

premature: they either can only analyze rather simple MBA

expressions (due to the high performance cost), or they can

only detect known MBA expressions in a range of fixed pat-

terns. Many existing deobfuscation approaches only focus

on the syntactic features of MBA expressions, but ignore the

inner semantics. We feel the crux of these limitations is the

lack of a deep understanding of MBA obfuscation mechanism,

which has a solid mathematical foundation. In addition, no

standard MBA expression benchmark exists to serve as a base-

line for evaluating the effectiveness of an analysis method.

To bridge these gaps, we investigate the mathematical

mechanism of MBA obfuscation and prove a hidden two-

way transformation feature in the MBA obfuscation design:

we discover that the MBA transformation behaves the same

on 1-bit variables and any-length integers. Our finding reveals

a new opportunity to directly simplify MBA expressions in

1-bit space. In light of this insight, we develop a novel tech-

nique, called MBA-Blast, to effectively reduce convoluted

MBA expressions to simple forms. The key idea is to trans-

form all bitwise expressions to specific MBA forms on 1-bit

space and then perform arithmetic reduction. After replacing

the bitwise operators, traditional arithmetic reduction laws

can be smoothly applied, and they significantly promote the

simplification efficiency. The correctness of our method is

guaranteed by the two-way transformation feature, that is, the

simplification result in 1-bit space is also correct in any-length

integer space. We provide a mathematical proof to support

this claim.

To demonstrate its practical viability, we implement MBA-

Blast as an prototype and evaluate it on a comprehensive

dataset including 10,000 diversified MBA expressions. Our

evaluation demonstrates that MBA-Blast significantly out-

performs existing approaches. Only MBA-Blast succeeds

in simplifying all obfuscated MBA expression with negli-

gible overhead. We also evaluate MBA-Blast in assisting

real-world obfuscated binary code analysis, such as solving

MBA-powered opaque predicates with an SMT solver, ana-

lyzing virtualization obfuscated malware, and reverse engi-

neering the encryption key generation algorithm used by a

ransomware. Our results show that MBA-Blast is an appealing

method to simplify MBA obfuscated expressions.

The impact of our work is mainly on areas related to soft-

ware analysis. MBA-Blast can help human analysts simplify

complexity expressions and understand their behaviors. From

the view of arms race, our work also benefits the obfusca-

tion community, because we expose the limitation of existing

MBA design so that further improvements can be developed.

In summary, we make the following key contributions:

• We demystify the underlying mechanism of MBA ob-

fuscation and identify a two-way transformation feature.

The generated MBA rules have the same behavior on

1-bit Boolean variables and any-length integers. We are

the first to prove the existence of this feature.

• This finding paves the way for our novel MBA deob-

fuscation technique, called MBA-Blast. Our method re-

places bitwise operations with specific MBA expressions.

In this way, we can seamlessly adopt arithmetic reduc-

tion rules to simplify MBA obfuscated expressions.

• Our proposed approach is implemented as a prototype

evaluated on a comprehensive MBA benchmark and

real-world environment. The result shows that MBA-

Blast outperforms existing tools in terms of better accu-

racy and efficiency. MBA-Blast’s source code and the

MBA benchmark are available at https://github.

com/softsec-unh/MBA-Blast.

2 Background

For pedagogical reasons, we first introduce the technical back-

ground needed to understand MBA obfuscation. Then we

discuss the limitations of existing MBA deobfuscation work,

which also serves as a motivation for our research.

2.1 MBA Expression

As noted above, Mixed-Boolean-Arithmetic (MBA) expres-

sions mix Boolean operators (∧,∨,¬,⊕, . . .) and traditional

integer arithmetic operations (+,−,×, . . .). Historically, MBA

is known as smart tricks in algorithm optimizations. For in-

stance, HAKMEM Memo [36] and Hacker’s Delight [37]

collect numerous identity equations involving addition and

subtraction combined with logical operations. Two examples

are listed as follows.

x− y = x+¬y+1 (1)

x⊕ y = x∨ y− x∧ y (2)

1702 30th USENIX Security Symposium USENIX Association

https://github.com/softsec-unh/MBA-Blast
https://github.com/softsec-unh/MBA-Blast

These two MBA identity equations are used for optimiza-

tion purpose. Equation (1) shows how to build a subtracter

from an adder and (2) presents a way to implement “exclusive

or” using only three instructions, e.g., on a RISC machine.

For a long time, MBA broadly scatters in various fields of

computer science, e.g., optimization, data encoding, or com-

pression, even without a formal name.

Zhou et al. [24, 38] extends the existing MBA concept to

a more general model called “Boolean-arithmetic algebras”,

which generates MBA identities based on the following for-

mal definition.

Definition 1. An MBA expression is:

∑
i∈I

aiei(x1, . . . ,xt)

where ai is a constant coefficient, ei are bitwise expressions

of variables x1, . . . ,xt . aiei is called a term in the MBA ex-

pression.

Expression (3) gives a more complex MBA example within

the definition above. The MBA includes 5 terms: x,y,−x∧
y,−3(x⊕ y) and 5. Note that if the Boolean expression is

True, the term only has the coefficient, like the last term 5.

x+ y− x∧ y−3(x⊕ y)+5 (3)

2.2 MBA Obfuscation

Because MBA identities expose the equivalence between two

expressions, they are directly applicable to program obfusca-

tion to transforms a simple expression into a complex form.

For example, equation (1) and (2) can be used for obfuscat-

ing x− y and x⊕ y. More similar MBA identity equations

can be found in Hacker’s Delight [37]. Eyrolles [39] and

Banescu [40] enumerate a collection of MBA equations for

obfuscation. Several MBA obfuscation rules for x+ y are

listed as follows. Zhou et al. [24] prove that any Boolean func-

tion has its non-trivial MBA expression equivalents, which

lays the theoretical foundation of MBA obfuscation.

x+ y → (x∨ y)+(¬x∨ y)− (¬x)

x+ y → (x∨ y)+ y− (¬x∧ y)

x+ y → (x⊕ y)+2y−2(¬x∧ y)

x+ y → y+(x∧¬y)+(x∧ y)

Due to the simplicity in implementation and the desirable

mathematical principle, MBA obfuscation has captured inter-

ests widely from academia and industry. For example, Quark-

slab [27], Cloakware [28], and Irdeto [29] include MBA ob-

fuscation in their commercial products. Tigress [41], an aca-

demic C source code diversifier/obfuscator, encodes integer

variables and expressions into complex MBA forms [25, 26].

Mougey and Gabriel [30] present a real-world MBA example

found in an obfuscated Digital Rights Management (DRM)

system. Blazy and Hutin [42] integrate formally verified MBA

obfuscation rules into the generated binaries by the CompCert

C compiler [43]. Recently, Xmark adopted MBA obfuscation

to conceal the static signatures of software watermarking [13].

As malware authors always seek more advanced evasion tech-

niques to stay under the detection radar, it did not take them

long to become aware of the practical advantage of MBA

obfuscation. ERCIM News reported in 2016 that MBA obfus-

cation has been detected in malware compilation chains [44].

We also observe MBA used in malware and virtualization

obfuscation as shown in Section 7.6 and 7.7.

2.3 Strength of MBA Obfuscation

MBA obfuscation is ideally applicable for hiding sensitive

variables and secret algorithms, such as magic numbers in

cryptographic functions [45] and encryption key generation

procedures in ransomware [46]. Compared to other obfusca-

tion techniques, MBA obfuscation exhibits multiple distinct

advantages. We elaborate on the strength of MBA obfusca-

tion in terms of potency, resilience, cost, and correctness. The

first three metrics were proposed by Collberg et al.’s pioneer

work [47] to evaluate an obfuscation scheme. Correctness is

another critical problem emerging from recent obfuscation

development, but it has been largely overlooked in prior work.

Potency. Potency refers to how complex or unreadable the

obfuscated result is to a human security analyst. MBA obfus-

cation places a heavy burden on human reverse-engineers in

four ways: (1) significantly increases the number of Boolean

and arithmetic operators; (2) introduces a multitude of new

integers and bit-vectors; (3) hides the real parameters among

them; (4) shuffles the calculation order. Manually reversing

an MBA expression to its initial form is very challenging.

Figure 1 shows an example of the code before and after MBA

obfuscation.

MBA obfuscation impedes the effort of reverse engineering

data structures from binary code [48]. A constant obfuscated

by MBA can achieve the similar effect as an “opaque con-

stant” [49]: it allows users to load a constant into a register,

but static analyzers cannot determine the exact value. Like

opaque constants, MBA obfuscation can be used to mislead

the target of unconditional jump and call instructions, hide a

variable’s address, and complicate define-use chain analysis.

Resilience. Resilience represents the robustness of an ob-

fuscation method in terms of resisting an automatic deob-

fuscator. Eyrolles [39] applies multiple simplification meth-

ods (e.g., mathematical reduction, compiler optimization, and

SMT solver simplification) on expressions with MBA obfus-

cation, but none of them can effectively produce a correct

simplification result. Bardin et al. present a novel technique

in IEEE S&P’17 to assist obfuscated binary analysis, called

backward-bounded dynamic symbolic execution [20]. How-

ever, the authors admitted that MBA obfuscation introduces

USENIX Association 30th USENIX Security Symposium 1703

int fun(int x,int y,int z)

{

int c;

c = x+y;

return c;

}

(a) Original program.

int fun(int x,int y,int z)

{

int c;

c = 4*(~x&y)-(x^y)-(x|y)

+4*~(x|y)-~(x^y)-~y-

(x|~y)+1+6*x+5*~z+

(~(x^z))-(x|z)-2*~x-

4*(~(x|z))-4*(x&~z)

+3*(~(x|~z));

return c;

}

(b) MBA obfuscated program.

Figure 1: An example of MBA obfuscation for x+y, which is

transformed into a complex expression mixing both arithmetic

and boolean operations with a redundant variable z. A human

analyst has a hard time to understand the new, obfuscated

form.

hard-to-solve predicates, which hence become a major obsta-

cle to their approach [50, 51]. In our evaluation, we use the

state-of-the-art theorem solver, Z3 [52], to check the equiva-

lence of the original expression and its MBA obfuscated form,

but Z3 fails to return a result in five hours.

Cost. The cost of an obfuscation scheme includes two parts:

instrumentation cost and run-time overhead. Instrumentation

cost represents the time and resources for conducting the ob-

fuscation transformation; run-time overhead refers to the slow-

down and extra resource costs when the obfuscated program is

running. MBA obfuscation adds very little overhead in terms

of both types of cost. During obfuscation time, MBA transfor-

mations just rewrite the target expression with a new, complex

but still equivalent MBA expression, without introducing any

additional jump tables, function calls, or system calls. The

obfuscation process can be directly applied to source code

and easily combined with the normal compilation and linker

workflow. The run-time overhead incurred by MBA obfusca-

tion is also low because only simple boolean and arithmetic

operations are involved. The new variables are directly lo-

cated on the stack, so no extra cost comes from managing the

heap memory blocks.

Correctness. Correctness means that the obfuscated pro-

gram must behave exactly the same as the original program.

Initially, correctness is easily guaranteed by designing indi-

vidual obfuscation methods as a semantic-preserving trans-

formation. However, as obfuscation methods are developed

more and more complex, it becomes challenging to preserve

program semantics after obfuscation. For instance, as one of

the most sophisticated obfuscation techniques, code virtual-

ization [8, 9] transforms part of a program to the bytecode

in a new, custom virtual instruction set, and the bytecode is

emulated by an embedded virtual machine at run time. Wang

et al.’s study [53] points out that virtualization obfuscation

results in program crash or incorrect output when 30% of the

program is virtualized. Instead, MBA obfuscation is built on

a solid mathematical basis, guaranteeing the correctness of

obfuscation result. Recent work [42] has verified the correct-

ness of a set of MBA obfuscation rules by using the formal

proof system Coq [54].

2.4 Deobfuscation of MBA Expressions

On the other side of this arms race, researchers have explored

the direction of reverse engineering and simplifying MBA

expressions. Eyrolles’ PhD thesis is the first work to go into

this subject at full length [39]. Her experiments show that

popular symbolic computation software such as Maple [55],

Wolfram Mathematica [56], SageMath [57], and Z3 [52] fail

to simplify MBA expressions because they do not support

reduction rules for mixed bitwise and arithmetic operators.

Furthermore, LLVM compiler optimizations [58] also have

very limited effect on MBA simplification. Guinet et al. [33]

present Arybo, a tool that normalizes MBA expressions to

bit-level symbolic expressions with only ⊕ and ∧ operations.

However, the bloated size of bit-level expressions cause severe

performance penalty, so Arybo can only deal with small-size

MBA expressions. SSPAM [34] simplifies MBA expressions

by a pattern matching algorithm. This method performs well

on simplifying existing MBA examples and a real-world ex-

ample [30]. As a common limitation of pattern matching

techniques, it uses limited known rules to discover and reduce

MBA expressions so it cannot handle generic MBA obfusca-

tion. Biondi [35] presents an algebraic simplification to reduce

the MBA complexity, but the method only works for specific

MBA patterns, thus is also not generically effective. Blazytko

et al. [21] leverage program synthesis techniques [59] to sim-

plify MBA expressions by generating another simpler but

equivalent expression. Due to the non-determinism and sam-

pling mechanism of program synthesis, the correctness of

simplification result is not always guaranteed.

The common limitation of existing deobfuscation efforts is

that they treat MBA obfuscation as a black box, rather than

investigate the mechanism under the hood. We also find that

the lack of a standard and comprehensive MBA benchmark

creates an obstacle: without a ground-truth benchmark, it is

not clear how to compare these different methods.

3 How MBA Obfuscation Works: from One-

bit to N-bit

In this section, we demystify the detailed underlying mecha-

nism of MBA obfuscation. Zhou et al. [24] propose a system-

atic method to automatically generate MBA equations. By

checking the truth table for t 1-bit variables, their method first

seeks an MBA identity equation that holds for the t 1-bit vari-

ables, and then it deduces that the MBA equation also holds

for any-length integer variables. In particular, for any 2t × k

Boolean matrix with linearly dependent column vectors, it

1704 30th USENIX Security Symposium USENIX Association

generates an MBA identity for t variables and k terms. The

following example elaborates the procedure. Given a 22 ×5

Boolean matrix M (t = 2 and k = 5), we derive a bitwise

expression for each column. The bitwise expressions involve

two 1-bit variables, x and y. M essentially shows the truth

table enumerating all possible values of x, y, and the bitwise

expressions.

M =













0 0 0 0 0

0 1 1 1 0

1 0 1 0 1

1 1 1 0 0

x y x∨ y ¬x∧ y x∧¬y

Then we solve the linear equation system M~v = 0 and get the

solution vector~v.

~v =













1

1

−2

1

1













Regarding~v as the coefficients, we produces an MBA identity

as follows. The equation holds because the matrix M, treated

as the truth table, exhaustively enumerates all possible values

of the expressions.

x+ y−2(x∨ y)+(¬x∧ y)+(x∧¬y) = 0

From this identity, an MBA obfuscation rule is easily con-

structed as follows:

x+ y → 2(x∨ y)− (¬x∧ y)− (x∧¬y)

Although so far this method only guarantees that the MBA

identity holds for 1-bit variables, Zhou et al. [24] further prove

it also holds for integers of any length. For simplicity, here we

ignore the formal mathematical proof and give an imprecise

description. For n-bit integers, every bit is treated separately

when calculating the MBA expression. Because the identity

holds for every bit, the whole calculation result also holds.

Let X and Y be n-bit integers. x0,y0,x1,y1, . . . represent every

bit of the integer. The following calculation shows how the

1-bit identity is extended to an n-bit MBA expression:

X +Y −2(X ∨Y)+(¬X ∧Y)+(X ∧¬Y) =

∑































20 · (x0 + y0 −2(x0 ∨ y0)+(¬x0 ∧ y0)+(x0 ∧¬y0))

21 · (x1 + y1 −2(x1 ∨ y1)+(¬x1 ∧ y1)+(x1 ∧¬y1))

. . .

2n−1 · (xn−1 + yn−1 −2(xn−1 ∨ yn−1)+(¬xn−1∧

yn−1)+(xn−1 ∧¬yn−1))

= 20 ·0+21 ·0+ · · ·+2n−1 ·0

= 0

This method provides a systematic approach for construct-

ing MBA equations. It is generic to cover simple cases such

as shown in Hacker’s Delight [37] and also the complex cases

in Eyrolles [39] and Tigress [41].

4 Our Finding: “N-bit to One-bit” Also Holds

In this section, we present an exciting finding: the existing

MBA obfuscation design actually implies a two-way transfor-

mation feature between 1-bit and n-bit variables. This finding

paves the way for our deobfuscation method.

The approach in Section 3 successfully extends MBA iden-

tity from 1-bit space to integer space. Interestingly, the authors

also vaguely mention that the reverse direction is also “plainly”

correct. That means, if an MBA identity exists in integer space,

then it must also hold in 1-bit space, which can be represented

by the Boolean matrix described in § 3. However, the descrip-

tion provided by the authors was too brief to fully understand

the proof procedure. It is not a trivial question because nor-

mal math reduction rules do not work by default within the

context of MBA calculation. Eyrolles [39] also admitted that

“we keep only one direction of the equivalence—this is the

only direction we were able to prove, despite the other one

being described as ‘plain’ by Zhou et al.”

We wish to highlight that the correctness of n-bit to one-

bit transformation is a matter of utmost importance: it will

shatter the foundation of MBA obfuscation. If this proposition

is proved as true, an integer MBA identity is the sufficient and

necessary condition for the same form of MBA identity in

1-bit space. This implies that any integer MBA identity can be

reduced to 1-bit space for simplification. Since 1-bit space is

significantly smaller than integer space, the solution space for

simplification and verification will be exponentially reduced,

as we demonstrate later.

We prove the above proposition regarding n-bit to 1-bit

transformation is true using proof by contradiction. To the

best of our knowledge, we are the first to verify the correctness

of this proposition. The detailed proof is shown as follows.

Definition 2. Let E =
s−1

∑
j=0

a je j be an MBA expression, where

a j are integers and e j are boolean functions f j(X1,X2, . . . ,Xt)
taking t variables X1,X2, . . . ,Xt as input. Each variable has n

bits. We use Xk,i to represent the ith bit of the kth input variable

in e j. Let M be the 2t ×s boolean matrix representing the truth

table of e0,e1, . . . ,es−1.~v =









a0

a1

. . .

as−1









is an s dimension vector

consisting of all the coefficients in E.

Theorem 1. E ≡ 0 if and only if the linear system M~v = 0.

Proof. The sufficiency is proved in the MBA construction

method [24], that is, if M~v = 0, then E ≡ 0. Now we prove

USENIX Association 30th USENIX Security Symposium 1705

the necessity, namely, if E ≡ 0, then M~v = 0.

If E ≡ 0, then

E = 20 ·E0 +21 ·E1 + . . .+2n−1 ·En−1 ≡ 0

where Ei is the calculation of E on the ith bit of input vari-

ables:

Ei =
s−1

∑
j=0

a j · f j(X1,i, . . . ,Xt,i)

We prove Ei = 0 by contradiction.

Suppose ∃k,Ek =
s−1

∑
j=0

a j f j(X1,k, . . . ,Xt,k) = ē 6= 0. We con-

struct a group of inputs X ′
1,X

′
2, . . . ,X

′
t where



















X ′
1,i = X1,k

X ′
2,i = X2,k

. . .

X ′
t,i = Xt,k

i = 1,2, . . . ,n

Feed X ′
1,X

′
2, . . . ,X

′
t to E, then ∀i = 1,2, . . . ,n,Ei = ē

E = 20 ·E0 +21 ·E1 + . . .+2n−1 ·En−1

= 20 · ē+21 · ē+ . . .+2n−1 · ē

= (2n −1)ē

Because E ≡ 0,

(2n −1)ē = 0

ē = 0

This contradicts the supposition that ē 6= 0. Hence, our suppo-

sition is false, so for any input X1,i,X2,i, . . . ,Xt,i,

Ei =
s−1

∑
j=0

a j · f j(X1,i, . . . ,Xt,i) = 0

a0e0 +a1e1 + . . .+as−1es−1 = 0

Therefore,

M~v = 0

Essentially our proof shows that, if an n-bit MBA identity

E(X1,X2, . . . ,Xt)≡ 0

holds, the same identity also holds in one-bit space

E(x1,x2, . . . ,xt)≡ 0

This conclusion completes the “ two-way transformation”

feature in MBA obfuscation, which sheds a light on our new

approach to reversing MBA obfuscation.

Obfuscated MBA

En

n-bit Space 1-bit Space

(1)

(2)

(3)

Obfuscated MBA

E1

Simplified MBA

E’n
Simplified MBA

E’1

Figure 2: The logic flow of MBA-Blast simplification. (1)

Transform the Obfuscated MBA expression from n-bit to 1-

bit space. (2) Simplify the MBA in 1-bit space. (3) Transform

the simplified MBA from 1-bit to n-bit space.

5 MBA-Blast

The “two-way” feature in current MBA obfuscation implies

that any n-bit obfuscated MBA expression can be simplified in

1-bit space. Consequently, the MBA reduction in 1-bit space

is equivalent to that in n-bit space. This idea enlightens us to

design a novel method, called MBA-Blast, to simplify n-bit

MBA expression.

5.1 Approach

Our key idea is to develop MBA simplification rules in 1-

bit space and use them to simplify any n-bit complex MBA

expression. Figure 2 shows the logic flow. Given an n-bit ob-

fuscated MBA expression En, our goal is to find a simple and

equivalent n-bit expression E ′
n as the simplified result (as indi-

cated by the dashed arrow). Theoretically, our simplification

includes three steps as follows.

(1) Transform En in n-bit space to E1 in 1-bit space.

(2) Find a simplified MBA expression E ′
1 in 1-bit space,

such that E1 −E ′
1 ≡ 0.

(3) Transform E ′
1 in 1-bit space to E ′

n in n-bit space.

Step (1) and (3) have been proved in Section 3 and 4, which

means, any n-bit MBA identity is equivalent to the same form

on 1-bit space.

En −E ′
n ≡ 0 ⇔ E1 −E ′

1 ≡ 0

Therefore, the simplification problem boils down to Step (2):

finding a simple MBA form E ′
1 to satisfy the 1-bit MBA

identity E1 −E ′
1 ≡ 0.

The unique benefit of reducing the problem to 1-bit space is

that, we can use truth tables to enumerate all possible values.

1-bit variables only have two possible values, 0 and 1, so it

1706 30th USENIX Security Symposium USENIX Association

Table 1: Truth table of x∨ y and x∧ y.

x y x∨ y x∧ y

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

largely reduces the searching space when investigating MBA

equation. Taking the truth table in Table 1 as an example,

applying the method in Section 3 generates the following

1-bit MBA equation,

x+ y− (x∨ y)− (x∧ y) = 0

which means,

x∨ y = x+ y− (x∧ y)

In this way, we can build MBA equations for two-variable

truth table (24 = 16 different cases), as shown in Table 2.

For ease of presentation, the first column presents the truth

values as a 4-digit binary string, e.g., the truth value of x∨ y

is 0111. Note that the truth value 1111 is represented as −1

to guarantee MBA equations are valid on a ring [24].

The interesting finding in Table 2 is that, all the 16 cases

can be represented as a linear combination of x, y, x∧ y, and

−1. In other words, any two-variable 1-bit expression can be

transformed to an MBA expression with the following general

form, where c1,c2,c3,c4 are coefficients.

c1x+ c2y+ c3(x∧ y)− c4

This finding forms the foundation of our simplification

method. According to Definition 1, an MBA expression ∑aiei

is essentially a linear combination of 1-bit expressions. After

replacing all 1-bit expressions with the corresponding MBA

forms in Table 2 and combining like terms, the original MBA

expression will be reduced to a simple form including only 4

terms: x, y, x∧ y, and a constant.

∑aiei = ∑ai(c1ix+ c2iy+ c3i(x∧ y)− c4i)

=C1x+C2y+C3(x∧ y)−C4

The following example shows how to simplify the obfus-

cated MBA expression in Section 3, x+y → 2(x∨y)− (¬x∧
y)− (x∧¬y).

2(x∨ y)− (¬x∧ y)− (x∧¬y)

= 2(x+ y− x∧ y)− (y− x∧ y)− (x− x∧ y)

= 2x+2y−2(x∧ y)− y+(x∧ y)− x+(x∧ y)

= x+ y

This procedure produces an MBA identity equation 2(x∨
y)− (¬x∧ y)− (x∧¬y) = x+ y in 1-bit space. According to

the “two-way” feature, this equation also holds in n-bit space.

Table 2: Enumeration of all the Bool-Arithmetic rules used in

MBA-Blast.

Truth Value Boolean Expr MBA Expr

0000 0 0

0001 x∧ y x∧ y

0010 x∧¬y x− (x∧ y)
0011 x x

0100 ¬x∧ y y− (x∧ y)
0101 y y

0110 x⊕ y x+ y−2∗ (x∧ y)
0111 x∨ y x+ y− (x∧ y)
1000 ¬(x∨ y) −x− y+(x∧ y)−1

1001 ¬(x⊕ y) −x−y+2∗ (x∧y)−1

1010 ¬y −y−1

1011 x∨¬y −y+(x∧ y)−1

1100 ¬x −x−1

1101 ¬x∨ y −x+(x∧ y)−1

1110 ¬(x∧ y) −(x∧ y)−1

1111 -1 -1

Therefore, x+y is the simplification result of 2(x∨y)−(¬x∧
y)− (x ∧¬y) in n-bit space. A more complex example is

shown in Appendix C, which simplifies the MBA expression

in Figure 1.

The distinct advantage of our method is that it guarantees

to simplify an MBA expression to a normal simple form, with

only low-cost arithmetic computation. The “two-way” feature

guarantees the simplification result seamlessly working in

1-bit space and n-bit space.

5.2 MBA-Blast Algorithm

The method above is able to simplify one MBA expression.

However, in practice, a complex MBA expression may in-

clude multiple sub-expressions obfuscated by different MBA

equations. We need to apply the simplification to each sub-

expression recursively until no sub-expression can be sim-

plified any more. The whole procedure is described as Algo-

rithm 1.

The algorithm takes an expression E as input and returns

its simplified form. First, it traverses all sub-expressions of

E and marks it as reducible if the sub-expression is an MBA.

Then, for each reducible sub-expression e, the algorithm first

replaces every bitwise operation with the MBA expression in

Table 2 (ReplaceBoolWithMBA) and then performs conven-

tional arithmetic reduction (ArithReduce) to get the normal

form. Next, the ReplaceMBAWithBool function tries to match

the normal MBA form with the simple bitwise expression in

Table 2, e.g., −y+(x∧ y)− 1 is replaced by x∧¬y. If e′ is

simpler than e, which means the simplification is successful,

e′ is used for updating the whole expression E. Otherwise,

e′ is already the simplest form, so the algorithm marks e as

USENIX Association 30th USENIX Security Symposium 1707

Algorithm 1 MBA-Blast Algorithm

1: Input: MBA expression E

2: function MBA-BLAST(E)

3: for es ∈ SubExpr(E) is MBA do

4: es ← reducible

5: end for

6: while e ∈ SubExpr(E) is reducible do

7: ReplaceBoolWithMBA(e)

8: e′ ← ArithReduce(e)

9: ReplaceMBAWithBool(e′)

10: if e′ is simpler than e then

11: update(E, e′)

12: else

13: e ← irreducible

14: end if

15: end while

16: return E

17: end function

irreducible and continues to work on other reducible sub-

expressions. The complexity of e′ and e are measured by the

number of their Directed Acyclic Graph (DAG) nodes. More

detailed discussion about complexity measurement of MBA

expressions is presented in Section 7. The algorithm keeps

simplifying MBA sub-expressions and it terminates when no

reducible sub-expression is available.

6 Implementation

We implement the algorithm as an analysis prototype called

MBA-Blast. Figure 3 shows an overview of MBA-Blast’s ar-

chitecture and how it interacts with other analysis tools. The

prototype accepts inputs from various front-ends, simplifies

MBA expressions, and outputs the results in different for-

mats. In total, the whole implementation includes a front-end

interface, the main MBA-Blast program, and a back-end inter-

face. The front-end interface receives MBA expressions from

different sources (e.g., an execution trace, the disassembled

code from IDA Pro [60], or source code) and translates the

code to an intermediate representation (IR) for MBA-Blast

to process. MBA-Blast simplification consists of four ma-

jor components. First, a parser reads the obfuscated formula

and builds the Abstract Syntax Tree (AST). Second, a tree

substitution component substitutes bitwise operations with

specific MBA expressions. After that, each AST is translated

to IR by a formula generation step. The last component ap-

plies arithmetic reduction laws to the formulas and outputs

the simplified results to the back-end interface. The back-end

interface can translate the IR to different outputs, for exam-

ple, human-readable formulas or SMT-LIB code for theorem

provers such as Z3. MBA-Blast is designed as a tool that can

easily work with binary analysis tools, solvers, and compilers.

The whole prototype is written in 2800 lines of Python

code. The parser, AST substitution, and formula generation

components are developed based on Python AST library. We

leverage the SymPy library for arithmetic simplification and

solving linear equation systems. We design an representation

for efficiently analyzing, transforming, and interpreting MBA

symbolic formulas. We also develop several utilities for mea-

suring the quantitative metrics of MBA expressions, such as

counting the number of DAG nodes and MBA alternations.

7 Evaluation

In this section, we conduct a set of experiments to evaluate

MBA-Blast. We have four objectives in mind: correctness,

effectiveness, practicability, and performance. In particular,

we design experiments to answer the following four research

questions (RQs).

1. RQ1: Is the simplified result equivalent to the original

MBA expression? (correctness)

2. RQ2: Compared to the original complicated MBA ex-

pression, how much complexity is reduced by MBA-

Blast? (effectiveness)

3. RQ3: Is MBA-Blast able to assist security experts in

real-world software reverse engineering? (practicability)

4. RQ4: How much overhead does MBA-Blast introduce?

(performance)

As the answer to RQ1, we apply MBA-Blast to simplify

two MBA datasets where the ground truth (correctly simpli-

fied form) is available. We use Z3 solver [52] to check whether

every simplified result is equivalent to the ground truth. For

RQ2, we calculate and compare the complexity metrics such

as number of DAG nodes and number of MBA alternation.

We also run Z3 on the original and simplified MBA to com-

pare the solving time. For RQ3, we perform case studies to

show MBA-Blast’s practicability, including analyzing the out-

put of an MBA obfuscator, solving MBA-powered opaque

predicates, and reverse-engineering virtualized malware and

a ransomware sample. In response to RQ4, we study MBA-

Blast’s performance data such as running time and memory

footprint.

7.1 Experimental Setup

Datasets. We aim to evaluate MBA-Blast using a large num-

ber of diverse MBA expressions. First, we checked existing

resources including MBA expressions [24, 30, 36–39] and

collected 62 MBA obfuscation equations as the first dataset.

The number of existing MBA examples is quite deficient for

a systematic study. We also find these examples are biased

as well. For instance, they only include a limited diversity of

bitwise expression patterns like x∧ y and x∨ y.

We notice that new MBA identity equations can be sim-

ply extended from the linear combination of existing MBA

1708 30th USENIX Security Symposium USENIX Association

Expression

Substitution

Arithmetic

Reduction

Dynamic

Analyzer

Static

Disassembler

Source Code

Editor

MBA-Blast

Front-end

Interface
Back-end

Interface

Parser
Formula

Generation

IR IRAST AST IR

Trace

Assembly Code

Source Code

Human-readable

Formula

Solver Input

Formula

C, Java, Python, ...

SMT Solver

Human Reader

Figure 3: An overview of MBA-Blast’s workflow. The words in italics represent the format between two components.

identities. Figure 4a shows an example. By multiplying −2

to the second MBA identity and then adding to the first one,

it extends a new MBA obfuscation expression. Furthermore,

this extension can also produce multiple-variable MBA ex-

pressions as shown in Figure 4b.

x⊕ y = y+ x−2(x∧ y)

x∧ y = (x∨ y)− (¬x∧ y)− (x∧¬y)

⇓

x⊕ y = y+ x−2(x∨ y)+2(¬x∧ y)+2(x∧¬y)

(a) Generate new MBA identity by linear combination.

x+ y = 2(x∨ y)− (¬x∧ y)− (x∧¬y)

x∧ z =−(x⊕ z)+ z+(x∧¬z)

⇓

x+ y+ z = 2(x∨ y)− (¬x∧ y)− (x∧¬y)+(x∧ z)

+(x⊕ z)− (x∧¬z)

(b) Generate multiple-variable MBA identity.

Figure 4: Extend MBA identities by linear combination.

These extensions synthesize the Dataset 2 including 10,000

MBA expressions. Every sample in the dataset is a 3-tuple:

〈C,S,M〉. C is the complex MBA form, S is the simple form,

and M records the meta data. Note that, S is the correct simpli-

fied result, i.e., ground truth, for every complex MBA C. To

guarantee the diversity of the dataset, we control the following

features, which are calculated and saved as the meta data M

in every sample.

• Length of variables. The dataset covers different vari-

able length, including 8 bits, 16 bits, 32 bits, and 64 bits.

Each category contains 2,500 MBA expressions.

• Number of variables. The number of input variables

ranges from 1 to 10.

• Number of terms. Since new MBA expressions can be

generated by linear combination, the number of terms is

another feature for controlling complexity. Number of

terms in this dataset ranges from 3 to 80.

Peer Tools for Comparison. We collect existing, state-of-

the-art MBA deobfuscation tools and run them on the same

datasets as the comparison baselines. The latest version of

three open source tools are downloaded from GitHub for com-

parison: Arybo [33], SSPAM [34], and Syntia [21]. Arybo is

a Python tool for transforming MBA formulas to a bit-level

symbolic representation. SSPAM (Symbolic Simplification

with PAttern Matching) is a tool for simplification of MBA

expressions written in Python. It uses SymPy for arithmetic

simplification, and Z3 for flexibly matching equivalent ex-

pressions with different representations. Syntia is a program

synthesis framework for synthesizing obfuscated code’s se-

mantics. It produces input-output pairs from instruction traces

and then synthesizes a code snippet’s semantic based on these

input-output pairs.

Machine Configuration. All of our experiments are run-

ning on a testbed machine with Intel Xeon W-2123 4-Core

3.60GHz CPU, 64GB 2666MHz DDR4 RAM, 2.5TB SSD

Hard Drive, Running Ubuntu 18.04 OS.

7.2 Dataset 1: Collected MBA Examples

In the first experiment, we run MBA-Blast and other peer tools

on Dataset 1, which contains all MBA expressions collected

from existing works. The simplification result is evaluated

from two aspects, correctness and effectiveness.

Correctness means the expressions before and after sim-

plification must be semantically equivalent. We use Z3

solver [52] to perform equivalence checking. The challenge

here is most of the MBA expressions before simplification

are too complex for Z3 to solve. Since we have the initially

un-obfuscated expressions as the ground truth, our alternative

is to check equivalence between the simplified result and the

ground truth. Note that even a correctly simplified result may

have different syntax with its ground truth (see the example

in Table 4), so the equivalence checking step is indispensable.

The other aspect, effectiveness, reflects how much complex-

ity is reduced by the simplification method, so we measure

and compare the expression complexity before and after sim-

plification. Eyrolles [39] introduces three metrics to measure

MBA complexity: number of nodes, MBA alternation, and

average bit-vector size. Because SSPAM, Syntia, and MBA-

Blast do not change bit-vector size and Arybo always reduces

USENIX Association 30th USENIX Security Symposium 1709

Table 3: Comparative evaluation results using Dataset 1. In “# of Correctness” column, “Yes” means equivalent, “No” means not

equivalent, and “T.O.” means time out (Z3 fails to return a result in five hours), and “Ratio” indicates the ratio of outputs passing

equivalence checking. “Average # of Nodes”, “Average # of MBA Alternation”, and “Average Processing Time” report the result

on correctly simplified results. “Before” represents obfuscated MBA expressions to be simplified, and “After” represents the

simplified expressions delivered by different deobfuscation tools. “Average Processing Time” reports the average time that each

tool takes to process one MBA sample.

Method
of Correctness Average # of Nodes Average # of MBA Alternation Average Processing Time

Yes No T.O Ratio (%) Before After A/B (%) Before After A/B (%) (Seconds/Sample)

Arybo 37 0 25 59.7 9.1 27.3 300.0 2.1 0.0 0.0 30.2

SSPAM 62 0 0 100.0 9.4 7.9 84.0 2.3 1.5 65.2 4.6

Syntia 59 3 0 95.2 9.4 4.6 48.9 2.3 0.5 26.1 8.9

MBA-Blast 62 0 0 100.0 9.4 4.7 50.0 2.3 0.5 21.7 0.009

Table 4: Correct simplification result appears different, but it

is semantically equivalent to the ground truth.

Ground Truth Before After

−3(x∧¬y) 4(¬x∧ y)− (x⊕ y)+3¬(x∨
y) + ¬(x ⊕ y) − ¬y − ¬x −
(¬x∨ y)−¬(x∧ y)

3(x∧ y)−3x

any length variable to 1-bit variable, so measuring bit-vector

size is trivial in this experiment. We use the rest two quantita-

tive metrics to measure MBA complexity.

1. Number of DAG nodes. An MBA expression is trans-

lated to a Directed Acyclic Graph (DAG), where the

nodes are operators, variables, and constants. The num-

ber of nodes in the DAG is a metric for describing the

expression complexity.

2. MBA Alternation. A key source of MBA complexity

comes from mixing integer arithmetic operations and

bitwise operations. We adopt “MBA alternation” to mea-

sure the number of operations that connect different

types of operations. For example, in x∧ y+ 2z, the +
represents an MBA alternation, because its left operand

is a bit-vector generated by x∧ y, and its right operand

is an integer arithmetic 2z.

For these complexity metrics, a larger value indicates a

more complex MBA expression. We expect the metrics’ val-

ues will decrease after simplification. Table 3 shows the eval-

uation result on Dataset 1. For this and the following exper-

iment, we set five hours as a practical timeout threshold for

Z3 solving.

Compared to the existing tools, all MBA-Blast’s outputs

pass correctness testing, and their complexity measurement

values are considerably reduced. We observe that Arybo per-

forms well on simple MBA expressions. However, when han-

dling complex expressions, Arybo’s simplification result is

even more complex than the original expression. For over 1/3

(25 out of 62) of the samples, it generates very complex formu-

las that cannot be solved by Z3 within the time threshold. The

reason is that Arybo breaks all integers to 1-bit variables caus-

ing the result size to increase drastically. The simplification

result from Arybo does not have MBA alternation, because

it reduces all arithmetic operators to bitwise operators. SS-

PAM successfully simplifies majority of the samples as they

are included in SSPAM’s pattern matching library. The core

technique of Syntia is stochastic program synthesis, which

approximates program semantics using Monte Carlo Tree

Search (MCTS). Syntia’s simplification largely relies on the

quality of sampling input-output pairs. When the sampling

points perfectly represent the MBA expression, it can achieve

a correct, simplified form, and its complexity reduction is on

a par with MBA-Blast. Because the samples in Dataset 1 are

not very complex, Syntia can correctly synthesize majority

of them (59/62). The last column shows MBA-Blast only in-

troduces negligible processing overhead compare to the peer

tools.

7.3 Dataset 2: Comprehensive MBA Dataset

As the second experiment, we run MBA-Blast and other base-

line tools on Dataset 2. The result in Table 5 presents an ob-

vious gap between other tools and MBA-Blast}. Only MBA-

Blast successfully generates verifiable simplification results

for all MBA samples. The average processing time for each

case is less than 0.1 second, significantly faster than existing

tools.

Because the MBA samples in Dataset 2 are diverse and

well-labeled, this experiment reveals more detailed findings.

Arybo can handle 431 MBA samples in Dataset 2, all of which

are small-size, 8-bit MBA (average number of DAG nodes is

13.4). For the rest of cases, Arybo generates size-explosion

results (over 20,000 DAG nodes) that exceed Z3 solver’s pro-

cessing capacity. SSPAM can process more complex MBA

samples using its pattern library, and the average number of

DAG nodes is 32.1. For other MBA samples, SSPAM either

returns an incorrect result or crashes with a segmentation er-

ror. Syntia can output a simplified expression for every MBA

sample in Dataset 2, but up to 85.6% of them are not correct

result due to the imprecise “guess” in program synthesis. On

1710 30th USENIX Security Symposium USENIX Association

Table 5: Comparative evaluation results using Dataset 2. In “# of Correctness” column, “Yes” means equivalent, “No” means not

equivalent, and “T.O.” means time out (Z3 fails to return a result in five hours), and “Ratio” indicates the ratio of outputs passing

equivalence checking. “Average # of Nodes”, “Average # of MBA Alternation”, and “Average Processing Time” report the results

on correctly simplified results. “Before” represents obfuscated MBA expressions to be simplified, and “After” represents the

simplified expressions delivered by different deobfuscation tools. “Average Processing Time” reports the average time that each

tool takes to process one MBA sample.

Method
of Correctness Average # of Nodes Average # of MBA Alternation Average Processing Time

Yes No T.O Ratio (%) Before After A/B (%) Before After A/B (%) (Seconds/Sample)

Arybo 431 0 9,569 4.3 13.4 25.5 190.3 3.4 0.0 0.0 640.7

SSPAM 2,550 0 7,450 25.5 32.1 25.1 78.3 8.5 5.4 63.5 438.2

Syntia 1,438 8,562 0 14.4 26.4 4.6 4.0 6.4 0.5 1.6 9.3

MBA-Blast 10,000 0 0 100.0 113.2 19.5 17.2 30.8 0.9 2.9 0.053

0 2000 4000 6000 8000 10000
MBA expressions in Dataset 2

0

50

100

150

200

250

Nu
m

be
r o

f D
AG

 N
od

es

Original
SSPAM
Syntia
MBA-Blast

(a) Number of DAG Nodes.

0 2000 4000 6000 8000 10000
MBA expressions in Dataset 2

0

10

20

30

40

50

60

70

Nu
m

be
r o

f A
lte

rn
at

io
n

Original
SSPAM
Syntia
MBA-Blast

(b) Number of MBA Alternation.

Figure 5: The distribution of two complexity metrics on

Dataset 2. We compare the MBA expression before simplifi-

cation with the simplified results from SSPAM, Syntia, and

MBA-Blast. We do not plot Arybo’s results because they

increase the complexity metrics’ values.

the samples that Syntia synthesizes the correct result, its per-

formance rivals MBA-Blast, as shown in Figure 5a and 5b.

The figures zoom in two complexity metrics (Number of DAG

nodes and MBA alternation) and plot the distribution. Syn-

tia’s dots are very close to MBA-Blast’s dots, indicating that

they compete with each other in terms of complexity reduc-

tion; however, MBA-Blast can correctly simplify considerably

more MBA expressions.

Moreover, Figure 6 presents Z3’s solving time when per-

forming correctness testing for different length variables in

Dataset 2. For simplicity, we only present 8-bit and 64-bit

graphs and the complete result is shown in Appendix B. The

curve density represents how many expressions are verified

as correct. The black curve represents MBA samples before

simplification. When the length of variable increases from

8-bit to 64-bit, the density of black curve becomes sparser.

It is because when variable length growths, the searching

space becomes larger and Z3 has more difficulty to solve the

formula. Compared to that, the density of blue curve, repre-

senting MBA-Blast’s result, does not change and it covers

all samples in the Dataset 2. That means, considerable MBA

samples were not solvable before MBA-Blast’s simplification,

but they can be solved very quickly after MBA-Blast’s simpli-

fication. Before simplification, only 1,542 MBA expressions

in Dataset 2 pass correctness testing. After MBA-Blast’s sim-

plification, Z3 can solve 6.5X more expressions.

The trend and slope of these curves represent the change

of expression complexity before and after simplification. For

those variables with short length, the majority of blue curve

has a small slope, which means most of the simplified result

can be solved quickly. As the length of variables increase

from 8-bit to 16-bit, more part of the curve has a large slope.

That means, due to the increasing search space, Z3 spends

more time to verify the simplification result when the vari-

able length is large. The simplification results from SSPAM

are more complex than MBA-Blast and Syntia’s results are

competent, but both of them fail to generate correct results

for majority of samples in the dataset.

In addition, we observe that the number of input variables

also affects Z3’s verification time. Overall, the solving time

increases with the number of inputs. For MBA samples in-

volving more than 8 input variables, Z3 spends considerable

USENIX Association 30th USENIX Security Symposium 1711

0 500 1000 1500 2000 2500
8-bit MBA expressions

10−2

10−1

100

101

102

103

104
Z3

 S
ol

ve
 T

im
e

(S
ec

on
ds

)
Original
SSPAM
Syntia
MBA-Blast

(a) 8-bit result.

0 500 1000 1500 2000 2500
64-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(b) 64-bit result.

Figure 6: Z3 solving time when handling different data length in Dataset 2.

time to verify it, although MBA-Blast correctly generates the

simplification result.

x+ y = x∨ y+ x∧ y

x− y = x∧¬y−¬x∧ y

(a) MBA obfuscation rules in Tigress.

x− y+ z = (x− y)+ z

= ((x− y)∨ z)+((x− y)∧ z)

= ((x∧¬y−¬x∧ y)∨ z)+

((x∧¬y−¬x∧ y)∧ z)

(b) Tigress recursively generates a complex MBA expression.

((x∧¬y−¬x∧ y)∨ z)+((x∧¬y−¬x∧ y)∧ z)

= ((x− x∧ y− y+ x∧ y)∨ z)+((x− x∧ y

− y+ x∧ y)∧ z)

= ((x− y)∨ z)+((x− y)∧ z)

= (t ∨ z)+(t ∧ z) (x−y → t)

= (t + z− t ∧ z)+ t ∧ z

= t + z

= x− y+ z (t → x−y)

(c) MBA-Blast simplification steps.

Figure 7: Tigress’s complex MBA expression and MBA-

Blast’s simplification.

7.4 Defeating Tigress MBA Obfuscation

We are interested in applying MBA-Blast in real-world obfus-

cation scenario to check its practicability. Tigress [41] is an

automated software obfuscation tool with MBA obfuscation

embedded. We first randomly generate 1,000 C functions as

the testbed and then use the EncodeArithmetic option in

Tigress to obfuscate these functions.

One interesting observation is that Tigress can recursively

apply MBA obfuscation transformation to generate complex

result. For example, Figure 7a shows two obfuscation trans-

formation in Tigress. By recursively applying these rules, it

translates x− y+ z to a more complex MBA expression in

Figure 7b.

Our evaluation result shows that MBA-Blast successfully

simplifies all of the obfuscated output from Tigress, including

these complex cases. As shown in Algorithm 1, MBA-Blast

keeps simplifying sub-linear MBA expressions, so the whole

obfuscated expression is simplified in a bottom-up way. Fig-

ure 7c shows how MBA-Blast simplifies a complex MBA

expression generated by Tigress.

7.5 Solving MBA-Powered Opaque Predi-

cates

Opaque predicate is a prevalent software obfuscation tech-

nique to complicate control flow. This method has been widely

adopted by obfuscation tools such as Obfuscator-LLVM [61].

Recently, deobfuscation methods based on symbolic execu-

tion [20, 62] and machine learning [63] have been proposed

to detect and reverse engineer opaque predicates in programs.

However, opaque predicates can be further protected by MBA

obfuscation to hide the static features and generate more

variants. MBA-powered opaque predicates bring new chal-

lenges to symbolic execution and machine learning based

countermeasures. First, both Backward-bounded DSE [20]

and LOOP [62] rely on SMT solvers to check whether a

predicate is opaquely true or false, but as we have shown,

SMT solvers cannot solve complex MBA expressions in a

1712 30th USENIX Security Symposium USENIX Association

reasonable time. Second, a large number of heterogeneous

MBA obfuscation rules can be created by the method used in

Dataset 2, so it is very hard for machine learning methods [63]

to learn the patterns of MBA obfuscation.

In this experiment, we show that MBA-Blast can assist solv-

ing MBA-powered opaque predicates. The simplified output

of MBA-Blast removes the complexity of MBA obfuscation,

hence it unleashes the power of other opaque predicate re-

verse tools. We collect commonly used opaque predicates

from existing work [20, 62] as follows.

∀x ∈ Z. x2 + x mod 2 ≡ 0

∀x ∈ Z. x(x+1)(x+2) mod 3 ≡ 0

∀x,y ∈ Z. 7y2 −1 6= x2

∀x ∈ Z. (x2 +1) mod 7 6= 0

∀x ∈ Z. (x2 + x+7) mod 81 6= 0

∀x ∈ Z. (4x2 +4) mod 19 6= 0

∀x ∈ Z. x2(x+1)2 mod 4 ≡ 0

We apply MBA obfuscation to these predicates and create 70

variants. For example, we apply x+y → 2(x∨y)−(¬x∧y)−
(x∧¬y) to x2 + x mod 2 ≡ 0 and the new opaque predicate

is:

∀x ∈ Z. 2(x2 ∨ x)− (¬x2 ∧ x)− (x2 ∧¬x) mod 2 ≡ 0

In our experiment, we use Z3 to solve the 70 MBA-powered

opaque predicates, but Z3 does not return any result in the

time limit of five hours. In contrast, MBA-Blast successfully

simplifies all MBA-powered opaque predicates. Then we

apply Z3 to the outputs of MBA-Blast, and it solves the results

within the similar time as that in previous work. Therefore,

this experiment demonstrates that the simplification result

from MBA-Blast helps to harness the full strength of SMT

solver-based deobfuscation methods.

7.6 MBA Usage in Real-World Malware

An interesting question is the popularity of MBA obfuscation

in real-world malware. Unfortunately, unlike binary packers

that reveal distinctive features (e.g., entropy deviation and

code-to-data ratio [23]), blindly searching the presence of

MBA obfuscation in malware binaries is a nontrivial task—

being stealthy is another advantage of MBA obfuscation. Even

so, we observe MBA integrated into commercial software

obfuscator VMProtect [9]. In this experiment, we study the

usage of MBA in the malware obfuscated by VMProtect.

VMProtect is one of the most sophisticated obfuscators that

are also widely used in malware. For example, in May 2019,

hackers infected over 50,000 servers around the world with

cryptocurrency mining malware, whose kernel-mode rootkit

is protected by VMProtect to frustrate reverse engineers and

malware researchers [64, 65]. VMProtect translates program

Table 6: MBA in malware obfuscated by VMProtect. “N” is

the number of malware samples in each category. “# with

MBA” shows the number of samples that include MBA.

“MBA Expr” reports the number of MBA expressions detected

from the samples in each category. Avg. # of Nodes and Avg.

MBA alternation reports the average MBA complexity in each

category.

Category
N Size (MB)

with MBA Avg. # of Avg. MBA

MBA Expr Nodes Alternation

(132) min max (105) (157)

Trojan 36 0.2 12.5 30 41 6.7 1.6

Virus 33 0.1 15.9 26 40 7.5 1.7

Malware 33 0.1 15.3 26 41 5.3 1.3

Riskware 8 0.6 24.4 7 11 9.8 2.6

CoinMiner 7 2.4 9.5 6 9 10.9 2.9

Backdoor 4 0.4 6.7 2 3 8.0 2.0

ADware 4 0.2 6.6 3 4 8.8 2.0

Rsmware 3 0.7 9.3 3 5 10.6 3.0

Spyware 2 0.3 10.5 1 2 10.0 3.0

Others 2 0.3 0.7 1 1 5.0 2.0

code into custom bytecode and interprets the bytecode at run

time via an embedded emulator, so that the original code never

reappears in memory. In addition, VMProtect applies MBA

obfuscation to further complicate the operations in bytecode

handlers.

To investigate the usage of MBA in VMProtect obfuscated

malware, we collect 132 samples from VirusTotal [66] by

searching the keywords “vmprotect” and “vmp”. To guar-

antee the collected samples are up-to-date, we restricted the

“Last Submission Date” from 2020/05 to 2020/09. For every

sample, we first identify the fetch-dispatching cycle in the

virtual machine. Next, we extract the handlers that performs

various VM operations, such as addition and subtraction. By

manually inspecting the behaviors of these handlers, we find

that MBA are used in VMProtect handlers for encoding arith-

metic and bitwise computation. For example, VMProtect uses

the following MBA to encode subtraction:

x− y = ¬(¬x+ y)∧¬(¬x+ y)

Table 6 summarizes the collected VMProtect malware sam-

ples and the detected MBA with complexity metrics. Among

the 132 malware samples, we identify 157 MBA expressions

in 105 samples from different categories. It indicates that

MBA widely exist in diverse types of VMProtect malware,

from traditional Trojan and virus to modern ransomware and

spyware. Appendix A shows more complex MBA samples

collected from these malware.

For all the MBA expressions identified from malware sam-

ples, MBA-Blast successfully simplifies them to a concise,

human-readable form. For example, the following procedure

shows how MBA-Blast simplifies the obfuscated expression

above on the right side of the equation and produces the re-

sult x− y. We also run Z3 to verify the correctness of the

simplification result. This experiment shows that MBA-Blast

USENIX Association 30th USENIX Security Symposium 1713

can effectively simplify the MBA in virtualization obfuscated

malware so that malware analysts are released from tedious

manual reverse engineering.

¬(¬x+ y)∧¬(¬x+ y)

= ¬t ∧¬t (¬x+y → t)

=−t − t + t ∧ t −1

=−t −1

=−(¬x+ y)−1 (t →¬x+y)

=−(−x−1)− y−1

= x− y

7.7 Case Study: Ransomware Analysis

This section presents our experience of using MBA-Blast

to analyze a ransomware sample1collected from VirusTotal.

Since MBA obfuscation can transform bitwise operations

to complex forms with trivial runtime overhead, it is well

suited for obfuscating crypto algorithms. Ransomware is an

infamous malware type that intensively relies on crypto al-

gorithms to encrypt the victims’ files. We run the collected

ransomware sample in a sandbox and set up Intel Pin [67] to

record the ransomware execution. After that, we investigate

the recorded trace and identify suspicious MBA transforma-

tions. This ransomware encrypts users’ files using AES-256

algorithm and shreds files before removing them from disk.

In the record trace, we observe a suspicious MBA behavior

happening before entering the AES algorithm, so we doubt

that the MBA transformation is related to key generation or

initialization vector (IV). By carefully reverse engineering

the binary code, we understand the ransomware’s behavior

and confirm that the malware developer adopts MBA to ob-

fuscate both the encryption key and IV. More specifically,

the ransomware generates a key and an IV for every file it

encrypts, and then it appends the key and IV to the end of file

after encryption. After the victim pays ransom to the malware

developer, a decryption process is invoked to extract the key

and IV from every file for decryption. Malware authors must

protect the key and IV, otherwise victims can obtain them

and then recover their files by running AES-256 decryption

algorithm without paying ransom. We observe an MBA ex-

pression taking the encryption key K and a constant C as

inputs, and then use MBA-Blast to simplify it. The MBA and

MBA-Blast’s simplification procedure is listed as follows.

The final simplification result is K ⊕C. Therefore, the mal-

ware developer hides the encryption key by calculating ⊕
with a magic number C. MBA obfuscation is adopted for pro-

tecting the ⊕ operation. Similarly, we discover that the IV is

also protected by ⊕ with a different constant. This case study

shows that, although MBA-Blast is not particularly designed

as a malware analysis tool, it can help understand behaviors

1MD5: 218ee40649267be13d85c6ff0a91b603

of obfuscated malware.

(K ∨¬C)+(¬K ∨C)−2∗ (¬(K ∨C))−2∗ (K ∧C)

=−C+K ∧C−1+(−K +K ∧C−1)−

2(−K −C+K ∧C−1)−2(K ∧C)

= K +C−2(K ∧C)

= K ⊕C

7.8 Performance

This section shows MBA-Blast’s performance data. Table 7

presents the time and memory cost when MBA-Blast pro-

cesses MBA expressions with different complexity level.

MBA-Blast is very effective because it does not rely on any

search or heuristic method. Our implementation is based on

AST and SymPy Python library, which can perform expres-

sion substitution and arithmetic reduction efficiently. Overall,

MBA-Blast only introduces a negligible overhead.

Table 7: MBA-Blast’s performance on MBA expressions with

different complexity.

of Nodes Time (Second) Memory (MB)

10 0.0128 0.2

100 0.0528 0.5

200 0.0964 0.6

300 0.1358 0.7

8 Discussion

MBA-Blast demonstrates the feasibility and scalability of au-

tomatically reducing complex MBA expressions. However,

we also note some potential opportunities for future improve-

ment as below.

First, the simplification result from MBA-Blast may not

be the simplest form. The normal output form is c1x+ c2y+
c3(x∧ y)− c4. While it does significantly reduce the MBA

complexity, this form is not guaranteed as the simplest result.

Table 4 has provided one example. The ReplaceMBAWith-

Bool function alleviates this problem by reversely applying

the transformation in Table 2. MBA-Blast can be further

extended to mitigate this problem by adding more rules in

Table 2 so that it can produce more diverse simplification

result.

Similarly, an adversary may attack MBA-Blast by inten-

tionally applying multiple rounds of MBA substitution. The

correct simplification requires precisely understanding the

dependency between these rounds. Current MBA-Blast im-

plementation only handles simple dependence cases, i.e., sub-

stituting all common sub-expressions. A more precise depen-

dency analysis will be helpful to address this limitation.

It is also possible that attackers combine MBA obfuscation

with other data encoding techniques to create complex expres-

sions with bitwise and arithmetic operations but does not meet

1714 30th USENIX Security Symposium USENIX Association

the MBA definition in this paper. MBA-Blast is designed for

resolving MBA expressions, so unfortunately it does not have

the capacity to directly reverse other obfuscation methods. It

is interesting to further investigate whether MBA-Blast can

benefit other de-obfuscation techniques.

9 Conclusion

This paper tackles a data obfuscation scheme, Mixed Boolean-

Arithmetic (MBA) obfuscation, which uses both bitwise and

arithmetic operations to generate an unintelligible expression.

The cost of applying MBA obfuscation is rather low, but the

resulting expression becomes a tough challenge for reverse en-

gineering attempts, including advanced binary code analysis

utilizing SMT solvers. The existing efforts to counter MBA

obfuscation either work in an ad-hoc manner or suffer from

heavy overhead. In this paper, we investigate the underlying

mechanism of MBA obfuscation and prove a hidden two-way

transformation feature between 1-bit and n-bit variables. This

finding enlightens us to develop MBA-Blast, a novel MBA

deobfuscation technique. The key idea is to simplify MBA

expressions to normal forms and then perform arithmetic re-

duction in 1-bit space. Our large-scale MBA deobfuscation

experiment and real-world malware study demonstrate MBA-

Blast’s efficacy and generality. Developing MBA-Blast not

only advances automated software reverse engineering, but

also delivers a benchmark serving as a baseline for future

research in this direction.

Acknowledgments

We would like to thank our shepherd Lorenzo Cavallaro and

the anonymous paper and artifact reviewers for their help-

ful feedback. We especially thank Thorsten Holz for the in-

sightful suggestions. We also thank VirusTotal for providing

the academic API and malware samples. This research was

supported by NSF grant CNS-1948489. Jiang Ming was sup-

ported by NSF grant CNS-1850434.

References

[1] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg

Merzdovnik, and Edgar Weippl. Protecting Software Through Ob-

fuscation: Can It Keep Pace with Progress in Code Analysis? ACM

Computing Surveys, 49(1), April 2016.

[2] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfus-

cation, Watermarking, and Tamperproofing for Software Protection,

chapter 4.4, pages 258–276. Addison-Wesley Professional, 2009.

[3] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The

Hands-On Guide to Dissecting Malicious Software, chapter 13, pages

269–296. No Starch Press, 2012.

[4] Chenxi Wang, Jonathan Hill, John C. Knight, and Jack W. Davidson.

Protection of Software-Based Survivability Mechanisms. In Proceed-

ings of International Conference on Dependable Systems and Networks

(DSN’01), 2001.

[5] Christian Collberg, Clark Thomborson, and Douglas Low. Manufactur-

ing Cheap, Resilient, and Stealthy Opaque Constructs. In Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL’98), 1998.

[6] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Generalized Dynamic

Opaque Predicates: A New Control Flow Obfuscation Method. In

Proceedings of the 19th Information Security Conference (ISC’16),

2016.

[7] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G

Bringas. SoK: Deep Packer Inspection: A Longitudinal Study of the

Complexity of Run-Time Packers. In Proceedings of the 36th IEEE

Symposium on Security and Privacy (S&P’15), 2015.

[8] Oreans Technologies. Code Virtualizer: Total Obfuscation against Re-

verse Engineering. http://oreans.com/codevirtualizer.php,

2019.

[9] VMProtect Software. VMProtect software protection. http://

vmpsoft.com, 2019.

[10] Kevin A. Roundy and Barton P. Miller. Binary-code Obfuscations in

Prevalent Packer Tools. ACM Computing Surveys, 46(1), 2013.

[11] Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfuscation: The

Hidden Malware. IEEE Security and Privacy, 9(5), 2011.

[12] Christian Collberg and Clark Thomborson. Software Watermarking:

Models and Dynamic Embeddings. In Proceedings of the 26th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL’99), 1999.

[13] Haoyu Ma, Chunfu Jia, Shijia Li, Wantong Zheng, and Dinghao Wu.

Xmark: Dynamic Software Watermarking Using Collatz Conjecture.

IEEE Transactions on Information Forensics and Security, 14(11),

March 2019.

[14] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot.

White-Box Cryptography and an AES Implementation. In International

Workshop on Selected Areas in Cryptography, 2002.

[15] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C Van Oorschot.

A White-Box DES Implementation for DRM Applications. In ACM

Workshop on Digital Rights Management, 2002.

[16] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Auto-

matic Reverse Engineering of Malware Emulators. In Proceedings of

the 30th IEEE Symposium on Security and Privacy (S&P’09), 2009.

[17] Kevin Coogan, Gen Lu, and Saumya Debray. Deobfuscation of

Virtualization-obfuscated Software: A Semantics-based Approach. In

Proceedings of the 18th ACM Conference on Computer and Communi-

cations Security (CCS’11), 2011.

[18] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya De-

bray. A Generic Approach to Automatic Deobfuscation of Executable

Code. In Proceedings of the 36th IEEE Symposium on Security and

Privacy (S&P’15), 2015.

[19] Babak Yadegari and Saumya Debray. Symbolic Execution of Obfus-

cated Code. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security (CCS’15), 2015.

[20] Sébastien Bardin, Robin David, and Jean-Yves Marion. Backward-

Bounded DSE: Targeting Infeasibility Questions on Obfuscated Codes.

In Proceedings of the 38th IEEE Symposium on Security and Privacy

(S&P’17), 2017.

[21] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten

Holz. Syntia: Synthesizing the Semantics of Obfuscated Code. In

Proceedings of the 26th USENIX Security Symposium (USENIX Secu-

rity’17), 2017.

[22] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. VMHunt: A

Verifiable Approach to Partial-Virtualized Binary Code Simplification.

In Proceedings of the 25th ACM Conference on Computer and Com-

munications Security (CCS’18), 2018.

USENIX Association 30th USENIX Security Symposium 1715

http://oreans.com/codevirtualizer.php
http://vmpsoft.com
http://vmpsoft.com

[23] Binlin Cheng, Jiang Ming, Jianming Fu, Guojun Peng, Ting Chen,

Xiaosong Zhang, and Jean-Yves Marion. Towards Paving the Way for

Large-Scale Windows Malware Analysis: Generic Binary Unpacking

with Orders-of-Magnitude Performance Boost. In Proceedings of the

25th ACM Conference on Computer and Communications Security

(CCS’18), 2018.

[24] Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. Informa-

tion Hiding in Software with Mixed Boolean-Arithmetic Transforms.

In Proceedings of the 8th International Conference on Information

Security Applications (WISA’07), 2007.

[25] Christian Collberg, Sam Martin, Jonathan Myers, and Bill Zim-

merman. Documentation for Arithmetic Encodings in Ti-

gress. http://tigress.cs.arizona.edu/transformPage/

docs/encodeArithmetic.

[26] Christian Collberg, Sam Martin, Jonathan Myers, and Bill Zimmerman.

Documentation for Data Encodings in Tigress. http://tigress.cs.

arizona.edu/transformPage/docs/encodeData.

[27] Quarkslab. Epona Application Protection v1.5. https://epona.

quarkslab.com, July 2019.

[28] Clifford Liem, Yuan Xiang Gu, and Harold Johnson. A Compiler-based

Infrastructure for Software-protection. In Proceedings of the 3rd ACM

SIGPLAN Workshop on Programming Languages and Analysis for

Security (PLAS’08), 2008.

[29] Irdeto. Irdeto Cloaked CA: a secure, flexible and cost-effective condi-

tional access system. www.irdeto.com, 2017.

[30] Camille Mougey and Francis Gabriel. DRM Obfuscation Versus Aux-

iliary Attacks. In REcon Conference, 2014.

[31] Hamilton E. Link and William D. Neumann. Clarifying Obfuscation:

Improving the Security of White-Box DES. In International Confer-

ence on Information Technology: Coding and Computing, 2005.

[32] Andrey Bogdanov and Takanori Isobe. White-Box Cryptography Re-

visited: Space-Hard Ciphers. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security (CCS’15),

2015.

[33] Adrien Guinet, Ninon Eyrolles, and Marion Videau. Arybo: Manipula-

tion, Canonicalization and Identification of Mixed Boolean-Arithmetic

Symbolic Expressions. In Proceedings of GreHack 2016, 2016.

[34] Ninon Eyrolles, Louis Goubin, and Marion Videau. Defeating MBA-

based Obfuscation. In Proceedings of the 2016 ACM Workshop on

Software PROtection (SPRO’16), 2016.

[35] Fabrizio Biondi, Sébastien Josse, Axel Legay, and Thomas Sirvent.

Effectiveness of Synthesis in Concolic Deobfuscation. Computers &

Security, 70, 2017.

[36] Michael Beeler, R William Gosper, and Richard Schroeppel. Hakmem.

Technical report, Massachusetts Institute of Technology, Artificial In-

telligence Laboratory, 1972.

[37] H.S. Warren. Hacker’s Delight. Addison-Wesley, 2003.

[38] Yongxin Zhou and Alec Main. Diversity via Code Transformations:

A Solution for NGNA Renewable Security. The National Cable and

Telecommunications Association Show, 2006.

[39] Ninon Eyrolles. Obfuscation with Mixed Boolean-Arithmetic Expres-

sions: Reconstruction, Analysis and Simplification Tools. PhD thesis,

Université Paris-Saclay, 2017.

[40] Sebastian Banescu and Alexander Pretschner. Chapter Five - A Tutorial

on Software Obfuscation. Advances in Computers. 2018.

[41] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra.

Distributed Application Tamper Detection via Continuous Software

Updates. In Proceedings of the 28th Annual Computer Security Appli-

cations Conference, ACSAC ’12, 2012.

[42] Sandrine Blazy and Rémi Hutin. Formal Verification of a Program

Obfuscation Based on Mixed Boolean-arithmetic Expressions. In

Proceedings of the 8th ACM SIGPLAN International Conference on

Certified Programs and Proofs (CPP’19), 2019.

[43] Xavier Leroy. Formal Verification of a Realistic Compiler. Communi-

cations of the ACM, 52(7), July 2009.

[44] Fabrizio Biondi, Sébastien Josse, and Axel Legay. By-

passing Malware Obfuscation with Dynamic Synthe-

sis. https://ercim-news.ercim.eu/en106/special/

bypassing-malware-obfuscation-with-dynamic-synthesis,

July 2016.

[45] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic Function

Detection in Obfuscated Binaries via Bit-precise Symbolic Loop Map-

ping. In Proceedings of the 38th IEEE Symposium on Security and

Privacy (S&P’17), 2017.

[46] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel

Egele. PayBreak: Defense Against Cryptographic Ransomware. In

Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security (ASIACCS’17), 2017.

[47] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy

of Obfuscating Transformations. Technical report, The University of

Auckland, 1997.

[48] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A Dy-

namic Excavator for Reverse Engineering Data Structures. In Pro-

ceedings of the 18th Annual Network and Distributed System Security

Symposium (NDSS’11), 2011.

[49] Andreas Moser Christopher Kruegel and Engin Kirda. Limits of Static

Analysis for Malware Detection. In Proceedings of the 23rd Annual

Computer Security Applications Conference (ACSAC’07), 2007.

[50] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves

Marion. How to Kill Symbolic Deobfuscation for Free (or: Unleashing

the Potential of Path-oriented Protections). In Proceedings of the 35th

Annual Computer Security Applications Conference (ACSAC’19), 2019.

[51] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves

Marion. Obfuscation: Where Are We in anti-DSE Protections? (a First

Attempt). In Proceedings of the 9th Workshop on Software Security,

Protection, and Reverse Engineering (SSPREW’19), 2019.

[52] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.

In Proceedings of the 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’08),

2008.

[53] Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu.

Translingual Obfuscation. In Proceedings of the 1st IEEE European

Symposium on Security and Privacy (Euro S&P’16), 2016.

[54] The Coq development team. The Coq proof assistant reference manual

Version 8.9.1. http://coq.inria.fr, 2019.

[55] MapleSoft. The Essential Tool for Mathematics. https://www.

maplesoft.com/products/maple/, 2020.

[56] WOLFRAM. WOLFRAM MATHEMATICA. http://www.

wolfram.com/mathematica/, 2020.

[57] sagemath. SageMath. http://www.sagemath.org/, 2020.

[58] Peter Garba and Matteo Favaro. SATURN – Software Deobfuscation

Framework Based on LLVM. In Proceedings of the 3rd International

Workshop on Software Protection (SPRO’19), 2019.

[59] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program

Synthesis. Foundations and Trends R© in Programming Languages,

4(1-2):1–119, 2017.

[60] Chris Eagle. The IDA Pro Book: The Unofficial Guide to the World’s

Most Popular Disassembler. No Starch Press, 2011.

1716 30th USENIX Security Symposium USENIX Association

http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeData
http://tigress.cs.arizona.edu/transformPage/docs/encodeData
https://epona.quarkslab.com
https://epona.quarkslab.com
www.irdeto.com
https://ercim-news.ercim.eu/en106/special/bypassing-malware-obfuscation-with-dynamic-synthesis
https://ercim-news.ercim.eu/en106/special/bypassing-malware-obfuscation-with-dynamic-synthesis
http://coq.inria.fr
https://www.maplesoft.com/products/maple/
https://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
http://www.sagemath.org/

[61] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.

Obfuscator-LLVM–Software Protection for the Masses. In Proceedings

of the IEEE/ACM 1st International Workshop on Software Protection

(SPRO’15), 2015.

[62] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. LOOP: Logic-

Oriented Opaque Predicate Detection in Obfuscated Binary Code. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS’15), 2015.

[63] Ramtine Tofighi-Shirazi, Philippe Elbaz-Vincent, Irina Mariuca

Asavoae, and Thanh-Ha Le. Defeating Opaque Predicates Statically

through Machine Learning and Binary Analysis. In Proceedings of the

3rd International Workshop on Software Protection (SPRO’19), 2019.

[64] Lindsey O’Donnell. 50k Servers Infected with Cryptomining Malware

in Nansh0u Campaign. http://tiny.cc/vj9zsz, May 2019.

[65] Ed Targett. Chinese Hackers Dropped Rootkit in 50,000 Servers: Then

Left Theirs Wide Open. https://www.cbronline.com/news/

guardicore-chinese-hackers-servers, May 2019.

[66] VirusTotal. VirusTotal Intelligence: Combine Google and Facebook

and apply it to the field of Malware. https://www.virustotal.

com/gui/intelligence-overview, 2020.

[67] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. Pin: Building customized program analysis tools with dynamic

instrumentation. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2005.

A MBA Samples from VMProtect malware

We list more complex MBA samples found in VMProtect

malware as follows.

-x-y = ~(~(~(-1+x)|~(-1+x))+y)&~(~(~(-1+x)|~(-1+x))+y)

= ~(~(~(-1+x)&~(-1+x))+y)&~(~(~(-1+x)&~(-1+x))+y)

x+1-y = ~(~(x+1)+y)|~(~(x+1)+y)

= ~(~(x+1)+y)&~(~(x+1)+y)

a+b = ~(~(a+b)|~(a+b))|~(~(a+b)|~(a+b))

-x+~y = (~(-1+x)|~(-1+x))+(~y&~y)

~a+x&y = (~a&~a)+(~(~x|~y)|~(~x|~y))

x&y+a&b = (~(~x|~y)|~(~x|~y)) + (~(~a|~b)|~(~a|~b))

= (~(~x&~x)&~(~y&~y)) + (~(~a&~a)&~(~b&~b))

x|y+a|b = (~(~x&~y)&~(~x&~y)) + (~(~a&~b)&~(~a&~b))

= (~(~x|~x)|~(~y|~y)) + (~(~a|~a)|~(~b|~b))

B Z3 Solving Time Comparison on Dataset 2

Figure 8 presents the complete simplification result of 8-bit,

16-bit, 32-bit, and 64-bit MBA samples in Dataset 2.

C A Complex MBA Example

Figure 9 shows the procedure of using MBA-Blast to simplify

the MBA sample in Figure 1.

0 500 1000 1500 2000 2500
8-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(a) 8-bit result.

0 500 1000 1500 2000 2500
16-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(b) 16-bit result.

0 500 1000 1500 2000 2500
32-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(c) 32-bit result.

0 500 1000 1500 2000 2500
64-bit MBA expressions

10−2

10−1

100

101

102

103

104

Z3
 S

ol
ve

 T
im

e
(S

ec
on

ds
)

Original
SSPAM
Syntia
MBA-Blast

(d) 64-bit result.

Figure 8: Compare Z3 solving time when handling all differ-

ent data length in Dataset 2.

USENIX Association 30th USENIX Security Symposium 1717

http://tiny.cc/vj9zsz
https://www.cbronline.com/news/guardicore-chinese-hackers-servers
https://www.cbronline.com/news/guardicore-chinese-hackers-servers
https://www.virustotal.com/gui/intelligence-overview
https://www.virustotal.com/gui/intelligence-overview

4∗ (¬x∧ y)− (x⊕ y)− (x∨ y)+4∗¬(x∨ y)−¬(x⊕ y)−¬y− (x∨¬y)+1+6∗ x+5∗¬z+(¬(x⊕ z))− (x∨ z)−2∗¬x

−4∗ (¬(x∨ z))−4∗ (x∧¬z)+3∗ (¬(x∨¬z))

= 4∗ (y− (x∧ y))− (x+ y−2∗ (x∧ y))− (x+ y− (x∧ y))+4∗ (−x− y+(x∧ y)−1)− (−x− y+2∗ (x∧ y)−1)− (−y−1)

− (−y+(x∧ y)−1)+1+6∗ x+5∗ (−z−1)+(−x− z+2∗ (x∧ z)−1)−1∗ (x+ z− (x∧ z))−2∗ (−x−1)

−4∗ (−x− z+(x∧ z)−1)+3∗ (z− (x∧ z))−4∗ (x− (x∧ z))

= 4∗ y−4∗ (x∧ y)− x− y+2∗ (x∧ y)− x− y+(x∧ y)−4∗ x−4∗ y+4∗ (x∧ y)−4+ x+ y−2∗ (x∧ y)+1+ y+1+ y−

(x∧ y)+1+1+6∗ x−5∗ z−5− x− z+2∗ (x∧ z)−1− x− z+(x∧ z)+2∗ x+2+4∗ x+4∗ z−4∗ (x∧ z)+4+3∗ z

−3∗ (x∧ z)−4∗ x+4∗ (x∧ z)

= x+ y

Figure 9: MBA-Blast simplification procedure of the example in Figure 1.

1718 30th USENIX Security Symposium USENIX Association

	Introduction
	Background
	MBA Expression
	MBA Obfuscation
	Strength of MBA Obfuscation
	Deobfuscation of MBA Expressions

	How MBA Obfuscation Works: from One-bit to N-bit
	Our Finding: ``N-bit to One-bit'' Also Holds
	MBA-Blast
	Approach
	MBA-Blast Algorithm

	Implementation
	Evaluation
	Experimental Setup
	Dataset 1: Collected MBA Examples
	Dataset 2: Comprehensive MBA Dataset
	Defeating Tigress MBA Obfuscation
	Solving MBA-Powered Opaque Predicates
	MBA Usage in Real-World Malware
	Case Study: Ransomware Analysis
	Performance

	Discussion
	Conclusion
	MBA Samples from VMProtect malware
	Z3 Solving Time Comparison on Dataset 2
	A Complex MBA Example

