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Abstract

In this paper, we study the implicit bias of gradient descent for sparse regression.
We extend results on regression with quadratic parametrization, which amounts to
depth-2 diagonal linear networks, to more general depth-/N networks, under more
realistic settings of noise and correlated designs. We show that early stopping is
crucial for gradient descent to converge to a sparse model, a phenomenon that we
call implicit sparse regularization. This result is in sharp contrast to known results
for noiseless and uncorrelated-design cases. We characterize the impact of depth
and early stopping and show that for a general depth parameter IV, gradient descent
with early stopping achieves minimax optimal sparse recovery with sufficiently
small initialization wq and step size 1. In particular, we show that increasing depth
enlarges the scale of working initialization and the early-stopping window so that
this implicit sparse regularization effect is more likely to take place.

1 Introduction

Motivation. Central to recent research in learning theory is the insight that the choice of optimization
algorithms plays an important role in model generalization [1, 2, 3]. A widely adopted view is that
(stochastic) gradient descent — the most popular optimization algorithm in machine learning —
exhibits some implicit form of regularization. Indeed for example, in the classical under-determined
least squares setting, gradient descent (with small step size) starting from the origin converges to
the model with minimum Euclidean norm. Similar implicit biases are also observed in deep neural
network training in which the networks typically have many more parameters than the sample size.
There, gradient descent without explicit regularization finds solutions that not only interpolate the
training data points but also generalize well on test sets [2, 4, 5, 6, 7].

This insight, combined with the empirical success stories of deep learning, has sparked significant
interest among theoretical researchers to rigorously understand implicit regularization. The majority
of theoretical results focus on well-understood problems such as regression with linear models
[8,9, 10, 11, 12, 13] and matrix factorization [14, 15, 16, 17], and show that the parametrization (or
architecture) of the model plays a crucial role. For the latter, Gunasekar et al. [15] conjectured that
gradient descent on factorized matrix representations converges to the solution with minimum nuclear
norm. The conjecture was partially proved by Li et al. [16] under the Restricted Isometry Property
(RIP) and the absence of noise. Arora et al. [17] further show the same nuclear-norm implicit bias
using depth-/V linear networks (i.e., the matrix variable is factorized into /N components).
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Parallel work on nonlinear models and classification [5, 9] has shown that gradient descent biases
the solution towards the max-margin/minimum ¢2-norm solutions over separable data. The scale of
initialization in gradient descent leads to two learning regimes (dubbed “kernel” and “rich”) in linear
networks [18], shallow ReLU networks [19] and deep linear classifiers [20]. Li et al. [21] showed that
depth-2 network requires an exponentially small initialization, whereas depth-N network (N > 3)
only requires a polynomial small initialization, to obtain low-rank solution in matrix factorisation.
Woodworth et al. [18] obtained a similar result for high dimensional sparse regression.

The trend in the large majority of the above works has been to capture implicit regularization of
gradient descent using some type of norm with respect to the working parametrization [18, 22,
23, 24]. On the other hand, progress on understanding the trajectory of gradient descent has been
somewhat more modest. [11, 12] study the sparse regression problem using quadratic and Hadamard
parametrization respectively and show that gradient descent with small initialization and careful early
stopping achieves minimax optimal rates for sparse recovery. Unlike [16, 18] that study noiseless
settings and require no early stopping, [11, 12] mathematically characterize the role of early stopping
and empirically show that it may be necessary to prevent gradient descent from over-fitting to the
noise. These works suggest that the inductive bias endowed by gradient descent may be influenced not
only by the choice of parametrization, but also algorithmic choices such as initialization, learning rate,
and the number of iterations. However, our understanding of such gradient dynamics is incomplete,
particularly in the context of deep architectures; see Table 1 for some comparisons.

Contributions. Our focus in this paper is the implicit regularization of (standard) gradient descent for
high dimensional sparse regression, namely implicit sparse regularization. Let us assume a ground-
truth sparse linear model and suppose we observe n noisy samples (x;, y;), such thaty = Xw*+&; a
more formal setup is given in Section 2. Using the samples, we consider gradient descent on a squared
loss || Xw — y||? with no explicit sparsity regularization. Instead, we write the parameter vector w in
the form w = u?¥ — v& with N > 2. Now, the regression function f(x,u,v) = (x,u’¥ — v¥) can
be viewed as a depth-N diagonal linear network [18]. Minimizing the (now non-convex) loss over u
and v with gradient descent is then analogous to training this depth-/V network.

Our main contributions are the following. We characterize the impact of both the depth and early
stopping for this non-convex optimization problem. Along the way, we also generalize the results of
[11] for N > 2. We show that under a general depth parameter [V and an incoherence assumption
on the design matrix, gradient descent with early stopping achieves minimax optimal recovery with
sufficiently small initialization wq and step size 7. The choice of step size is of order O(1/N?).
Moreover, the upper bound of the initialization, as well as the early-stopping window, increase with
N, suggesting that depth leads to a more accessible generalizable solution on gradient trajectories.

Techniques. At a high level, our work continues the line of work on implicit bias initiated in
[11, 12, 18] and extends it to the deep setting. Table 1 highlights key differences between our work
and [11, 13, 18]. Specifically, Woodworth et al. [18] study the interpolation given by the gradient
flow of the squared-error loss function. Vaskevicius et al. [11] analyze the finite gradient descent and
characterize the implicit sparse regularization on the recovery of true parameters with N = 2. Lastly,
Gissin et al. [13] discover the incremental learning dynamic of gradient flow for general N but in an
idealistic model setting where u > 0,v = 0, £ = 0, uncorrelated design and with infinitely many
samples.

Table 1: Comparisons with closely related recent work. GF/GD: gradient flow/descent, respectively.

| Design Matrix | In Noise | Depth | Early Stopping | GD vs. GF |  Remark

Vaskevicius et al. (2020) [11] RIP v N=2 v GD recovery
Gissin et al. (2020) [13] uncorrelated X N=2N>2 X GF interpolation
Woodworth et al. (2020) [18] X X N=2N>2 X GF interpolation

This paper p-coherence v N >2 v GD recovery

At first glance, one could attempt a straightforward extension of the proof techniques in [11] to general
settings of N > 2. However, this turns out to be very challenging. Consider even the simplified case
where the true model w* is non-negative, the design matrix is unitary (i.e., n~!XTX =1), and the
noise is absent (£ = 0); this is the setting studied in [13]. For each entry w; of w, the th iterate of
gradient descent over the depth- N reparametrized model is given by:

-2, N
— N
Wi 41 = Wiy (1 +w; N (wf — wi,t)) ;



which is no longer a simple multiplicative update. As pointed out in [13] (see their Appendlx C), the
recurrence relation is not analytically solvable due to the presence of the (pesky) term w ~F when

N > 2. Moreover, this extra term wit N leads to widely divergent growth rates of welghts with
different magnitudes, which further complicates analytical bounds. To resolve this and rigorously
analyze the dynamics for N > 2, we rely on a novel first order, continuous approximation to study
growth rates without requiring additional assumptions on gradient flow, and carefully bound the
approximation error due to finite step size; see Section 4.

2  Setup

Sparse regression/recovery. Let w* € R? be a p-dimensional sparse vector with k£ non-zero entries.
Assume that we observe n data points (x;, y;) € R? x R such thaty; = (x;, w*)+¢&; fori =1,...,n
where & = (£1,...,&,) is the noise vector. We do not assume any particular scaling between the
number of observations n and the dimension p. Due to the sparsity of w*, however, we allow n < p.

The linear model can be expressed in the matrix-vector form:

y =Xw" +§, )
with the n x p design matrix X = [x{,...,x]T, where x; denotes the i row of X. We also denote
X = [Xjy,...,X,], where X; denotes the i column of X.

The goal of sparse regression is to estimate the unknown, sparse vector w* from the observations.
Over the past two decades, this problem has been a topic of active research in statistics and signal
processing [25]. A common approach to sparse regression is penalized least squares with sparsity-
induced regularization such as £, or /1 penalties/constraints, leading to several well-known estimators
[25, 26, 27] and algorithms [28, 29]. Multiple estimators enjoy optimal statistical and algorithmic
recovery guarantees under some conditions of the design matrix X (e.g., RIP [30]) and the noise &.

We deviate from the standard penalized least squares formulation and instead learn w* via a polyno-
mial parametrization:

w=u"—-v", uveR?,
where N > 2 and z"¥ = [2{,...,2)']" forany z = [21,...,2n]" € RP. The regression function
f(x,u,v) = (x,u” — v¥) induced by such a parametrization is equivalent to a N-layer diagonal
linear network [18] with 2p hidden neurons and the diagonal weight matrix shared across all layers.

Given the data {X, y } observed in (1), we analyze gradient descent with respect to the new parameters
u and v over the mean squared error loss without explicit regularization:

L(u,v) = fHX N)—yHi, u,v € RP.

Even though the loss function yields the same value for the two parametrizations, £(u, v) is non-
convex in u and v. Unlike several recent studies in implicit regularization for matrix factorization
and regression [16, 18, 13], we consider the noisy setting, which is more realistic and leads to more
insights into the bias induced during the optimization. Because of noise, the loss evaluated at the
ground truth (i.e., any u, v such that w* = u” — v") is not necessarily zero or even minimal.

Gradient descent. The standard gradient descent update over £(u, v) reads as:

uy =vgy=al,
aﬁ(ut,vt)
n 3(ut,vt) ’

Here, n > 0 is the step size and o > 0 is the initialization of u, v. In general, we analyze the
algorithm presented in (2), and at each step ¢, we can estimate the signal of interest by simply
calculating w; = u¥ — v. We consider constant initialization for simplicity sake. Our results apply

for random initialization concentrating on a small positive region with a probabilistic statement.

(Wes1, Vi) = (ag, ve) — t=0,1,.... 2

Vaskevicius et al. [11] establish the implicit sparse regularization of gradient descent for N = 2 and
show minimax optimal recovery, provided sufficiently small « and early stopping. Our work aims to
generalize that result to /N > 2 and characterize the role of /V in convergence.



Notation. We define S = {i € {1,...,p} : wf # 0} and S¢ = {1,...,p}\S. The largest and
smallest absolute value on the support is denoted as w},,, = max;cg |w}| and w},, = min;cg |w?|.
We use 1 to denote the vector of all ones and 15 denotes the vector whose elements on .S are all
one and 0 otherwise. Also, ©® denotes coordinate-wise multiplication. We denote s; = 15 © wy
and e; = 1g. ® w; meaning the signal part and error part at each time step t. We use A and V to
denote the pointwise maximum and minimum. The coordinate-wise inequalities are denoted as =.
We denote inequalities up to multiplicative absolute constants by <, which means that they do not
depend on any parameters of the problem.

Definition 1. Let X € R™*? be a matrix with {o-normalized columns X1, ..., X, i.e.,
Sor alli. The coherence 1 = (X) of the matrix X is defined as

= X, X
0 ISI?%?EPK i» X))

The matrix X is said to be satisfying u-incoherence.

Xill,=1

The coherence is a measure for the suitability of the measurement matrix in compressive sensing
[31]. In general, the smaller the coherence, the better the recovery algorithms perform. There are
multiple ways to construct a sensing matrix with low-incoherence. One of them is based on the
fact that sub-Gaussian matrices satisfy low-incoherence property with high probability [32, 33]. In
contrast to the coherence, the Restricted Isometry Property (RIP) is a powerful performance measure
for guaranteeing sparse recovery and has been widely used in many contexts. However, verifying
the RIP for deterministically constructed design matrices is NP-hard. On the other hand, coherence
is a computationally tractable measure and its use in sparse regression is by now classical [33, 34].
Therefore, in contrast with previous results [11] (which assumes RIP), the assumptions made in our
main theorems are verifiable in polynomial time.

3 Main Results

We now introduce several quantities that are relevant for our main results. First, the condition number
r = wp .. /wk, plays an important role when we work on the incoherence property of the design
matrix. Next, we require an upper bound on the initialization «, which depends on the following
terms:

2/(N—-2) « y(N—2)/N\ Y 2) « \(N-2)/N 4/(N-2)
(I)(u)* wr e,N) = (1) /\<(wma") A M 7

max’ ““min»

8 log w‘*z‘“‘ IOg wl:in
U(whin, N) = (2 = 277 ) %52 (wih ) ¥ A 2% (28 — 1)72 (w)y,) ¥
Finally, define
1 200

C = gwr*nin V 7 HXT£||OO V 200€.
We are now ready to state the main theorem:

Theorem 1. Suppose that k > 1 and X /\/n satisfies p-incoherence with p < 1/kr. Take any
precision € > 0, and let the initialization be such that

4/N
€
O0<a< | —— ANO(wr ,wh e, N)AU(wr, N). 3
a5 (557) AP hin s N) A W, V) ®
For any iteration t that satisfies
Ti(w*, o, N,m, G €) <t < Ty(W",a, N1, C€), “4)

where T|(-) and T, (+) are given in (25) of the Appendix, the gradient descent algorithm (2) with step

sizen < O‘)(SN,Z))/N vields the iterate w with the following property:

8N2(wk
1EXTg], ve ifi €8 and iy, S| XTE| Ve,
i = wil S QIR XTO vV hn [1XTe 0 15| ve i€ Sandwi, 2 |5XTE] Ve,
alV/4 ifi ¢ S.
&)
4/N
In the special case w* = 0, if a < (p_f_1> /S m andt < T,(W*, o, N,n,(,¢€),

then we have |w, ; — w}| < aN/4 ;.



Theorem 1 states the convergence of the gradient descent algorithm (2) in /,.-norm. The exact
formula of T;(-) and T, (-) is omitted here due to the space limitation. We ensure that T,,(-) > T;(+)
so that there indeed exists some epochs to early stop at. The error bound on the signal is invariant to
the choice of NV > 2, and the overall bound generalizes that of [11] for NV = 2. We also establish the
convergence result in /5-norm in the following corollary:

Corollary 1. Suppose the noise vector & has independent o-sub-Gaussian entries and ¢ =

2 %. Under the assumptions of Theorem 1, the gradient descent algorithm (2) would

produce iterate w; satisfying |[w; — w*||§ < (ko?logp)/n with probability at least 1 — 1/(8p?).

Note that the error bound we obtain is minimax-optimal, which is the same as [11] in the N = 2
case. However, with some calculation, the sample complexity we obtain here is n > k?r2, while the

sample complexity in [11]is n > k2 log? r log p /k. Although neither our work nor [11] achieved the
optimal sample complexity & log p/k, the goal of this work is to understand how the depth parameter
affects implicit sparse regularization.

Let us now discuss the implications of Theorem 1 and the role of initialization and early stopping:

(a) Requirement on initialization. To roughly understand the role of initialization and the effect
of N, we look at the non-negative case where w* = 0 and w = u”. This simplifies our discussion
while still capturing the essential insight of the general setting. At each step, the “update” on w can
be translated from the corresponding gradient update of u = w'/V as

Wqo = QN]_,

2N N
Wit1 = Wi © <1 - Tn <XTX(Wt —w") — XTS) ® WgN_Q)/N)

(6)

In order to guarantee the convergence, we require the initialization « to be sufficiently small so the
error outside the support can be controlled. On the other hand, too small initialization slows down the
convergence of the signal. Interestingly, the choice of N affects the allowable initialization « that
results in guarantees on the entries inside and outside the support.

Specifically, the role of IV is played by the term W,EN_Q)/ Nin (6), which simply disappears as N = 2.

Since this term only affects the update of w,,; entry-wise, we only look at a particular entry w; of

w;. Let w, represent an entry outside the support. For N > 2, the term w,EN*Q)/ Nis increasingly

small as IV increases and w; < 1. Therefore, with a small initialization, it remains true that w; < 1
for the early iterations. Intuitively, this suggests that the requirement on the upper bound of the
initialization would become looser when IV gets larger. This indeed aligns with the behavior of the

1/N

upper bound we derive in our theoretical results. Since o = w,’" increases naturally with NV, we fix
N

woy = « " instead of o to mimic the same initialization in terms of wy, for the following comparison.

We formalize this insight in Theorem 3 in Appendix A and show the convergence of (6) under the
special, non-negative case. Note that, in terms of initialization requirement, the only difference from
Theorem 1 is that we no longer require the term ¥(w . , N) in (3).

Remark 1. We investigate how the depth N influences the requirement on initialization due to the
change on gradient dynamics. We rewrite ® (w5, w*. €, N) in terms of wo = ¥, and therefore

the upper bound for wg under the simplified setting of non-negative signals (Theorem 3) is

2N/(N—-2 _ 2N/(N—2) B 4AN/(N—2)
<(1> [ (W) (W)
Wy = 3 A\ A .

wk wk .
min
log —=

log nejax

2N/(N-2) . . .
) is increasing

We start by analyzing each term in the upper bound. First, we notice that (
with respect to N. For the second term,

(Wi NN\ 2
log © (log —wi‘ﬂx )2N/(N~-2) ’

1
8

*
max

the denominator gets smaller as N increases when we pick the error tolerance parameter ¢
small. Therefore, we get that the second term is getting larger as N increases. The last term



min

AN/(N—-2)
* \(N—2)/N
((7“”) follows a similar argument. We see that it is possible to pick a larger

w*
log —min

initialization wo = oY for larger N. We will demonstrate that below in our experiments.

(b) Early stopping. Early stopping is shown to be crucial, if not necessary, for implicit sparse
regularization [11, 12]. Interestingly, [13, 18] studied the similar depth- /N polynomial parametrization
but did not realize the need of early stopping due to an oversimplification in the model. We will
discuss this in details in Section 4.1. We are able to explicitly characterize the window of the number
of iterations that are sufficient to guarantee the optimal result. In particular, we get a lower bound of
the window size for early stopping to get a sense of how it changes with different V.

Theorem 2 (Informal). Define the early stopping window size as T,(Ww*,a,N,n,(,e) —
T, (w*,a, N,n,(, €), the difference between the upper bound and lower bound of the number of
iterations in (4) of Theorem 1. Fixing o and ) for all N, the early stopping window size is increasing
with N under mild conditions.

We defer the formal argument and proof of Theorem 2 to Appendix D.3. We note that the window we
obtain in Theorem 1 is not necessarily the largest window that allows the guarantee, and hence the
early stopping window size can be effectively regarded a lower bound of that derived from the largest
window. We note that a precise characterization of the largest window is difficult. Although we only
show that this lower bound increases with IV, we see that the conclusion matches empirically with
the largest window. Fix the same initialization o = 0.005 and step size = 0.01 for N = 2, 3,4, we
show the coordinate path in Figure 1. We can see that as N increases, the early stopping window
increases and the error bound captures the time point that needs stopping quite accurately. The
experimental details and more experiments about early stopping is presented in Section 5.

=2, window size=528 N=3, window size=19178 N=4, window size=1485677
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Figure 1: The black line indicates the early stopping window for different N = 2,3, 4. The blue
line is the coordinate path for each entry on the support. The red line indicates the absolute value of
the largest entry on the coordinate path outside the support. We use the orange line to indicate the
requirement outside the support for early stopping.

Remark 2. Similar to Theorem 2, we look at how initialization scale affects the early stopping
window for any fixed N > 2. With n fixed, the early stopping window is increasing as the initialization
« decreases.

We defer the detailed calculation to Section D.4. This generalizes the finding that vanishing ini-
tialization increases the gap between the phase transition times in [14] from N = 2 to any N > 2.

4 Proof Ingredients

The goal of this paper is to understand how generalization and gradient dynamics change with
different N > 2. For N = 2, gradient descent yields both statistically and computationally optimal
recovery under the RIP assumption [11]. The matrix formulation of the same type of parametrization
is considered in the setting of low-rank matrix recovery, and exact recovery can be achieved in
the noiseless setting [15, 16]. The key proof ingredient is to reduce the convergence analysis to
one-dimensional iterates and differentiate the convergence on the support from the error outside the
support. Before we get into that, we conduct a simplified gradient flow analysis.



4.1 A Simplified Analysis

Consider a simplified problem where the target signal w* is non-negative, n~'X"X = I and the
noise is absent. We omit the reparametrization of v like before and the gradient descent updates on
u will be independent for each coordinate. The gradient flow dynamics of w = u'¥ is derived as
8wi _ Gwl aul _ 78’[02' oL _ 2N2(wf . wl)w
ot 6uz ot 8u, 8ui
foralli € {1,2,...,p}. Notice that w; increases monotonically and converges to w} if w} is positive
or otherwise keeps decreasing and converges to 0 if w; = 0. As such, we can easily distinguish the
support and non-support. In fact, gradient flow with dynamics as in (7) would exhibit a behavior
of “incremental learning” — the entries are learned separately, one at a time [13]. However, with
the presence of noise and perturbation arising from correlated designs, the gradient flow may end
up over-fitting the noise. Therefore, early stopping as well as the choice of step size is crucial for
obtaining the desired solution [11]. We use (7) to obtain a gradient descent update:

2|

92
%

. (7

_2
w; 41 = w; ¢ (1 + 2N?n(w} — wi’t)wit . (8)

2

The gradient descent with N = 2 is analyzed in [11]. However, when N > 2, the presence of wzl R
imposes an asymmetrical effect on the gradient dynamics. The difficulty of analyzing such gradient
descent (8) is pointed out in [13]. More specifically, the recurrence relation is not solvable. However,
gradient descent updates still share similar dynamics with the idealized gradient flow in (7). Inspired
by this effect, we are able to show that the entries inside the support and those outside the support are
learned separately with a practical optimization algorithm shown in (2) and (12). As a result, we are
able to explore how the depth N affects the choice of step size and early stopping criterion.

4.2 Proof Sketch

Growth rate of gradient descent. We adopt the same decomposition as illustrated in [11], and define
the following error sequences:

1 1
b= -X"Xe, - —X"¢, p, = (XTX — I) (s¢ —w*), 9)
n n n

where e; and s, stand for error and signal accordingly, and the definitions can be found in (13) in
Appendix. We can then write the updates on s; and e; as

St+1 =58 © (1 —2Nn(s; —w*+p, +by) ® SgN_Q)/N)N7 o
er1 = e @ (1—2Ny(p, +by) ®eND/MN,

To illustrate the idea, we think of the one-dimensional updates {s;};>0 and {e; };>0, ignore the
error perturbations p, and b, in the signal updates {s; };>¢, and treat |p, + by|| . < B in the error
updates {e; };>o.

St41 = S¢(1 —2Nn(s — w*)sgN_Z)/N)N, err1 = er(1— 2NnBe§N_2)/N)N. (11)

We use the continuous approximation to study the discrete updates. Therefore, we can borrow many

insights from the analysis about gradient flow to overcome the difficulties caused by wzlz & as pointed
out in equation (8). With a proper choice of step size 7, the number of iterations 7; for s; converging
to w* is derived as

-1

St11 — St 1 w’ 1 w* —alv
< < _—
e =0 2N (wr — 552NN T N /aN sev-zm O < a2N=2 )~

N/4

The number of iterations 7, for e, staying below some threshold o"¥/* is derived as

Tu—1

alN/4
Ct+1 — €¢ 1 / 1
T, > > ——_de.
tz:; 4N2T]B6§2N_2)/N 4N2?7.B N 6(2N—2)/N



With our choice of coherence i in Theorem 1, we are able to control B to be small so that 7; is
smaller than 7T,. This means the entries on the support converge to the true signal while the entries
outside the support stay around 0, and we are able to distinguish signals and errors.

Dealing with negative targets. We now illustrate the idea about how to generalize the result about
non-negative signals to general signals. The exact gradient descent updates on u and v are given by:

e e o).
12)
Vit = Vi © (1 +2N7 (TllXT(X(Wt —w)—§ O va2>> :

The basic idea is to show that when w is positive, v} remains small up to the early stopping criterion,
and when w} is negative, u} remains small up to the early stopping criterion. We turn to studying the
gradient flow of such dynamics. Write r(t) = LXT(X(w(t) — w*) — &. Itis easy to verify that the
gradient flow has a solution:

u(t) = <a2N1 +2N(N —2)p /Ot r(v)dv) - ,

v(t) = (aQ_Nl —2N(N - 2)n /Ot r(v)dv) - :

We may observe some symmetry here, when u; ; is large, v; ; must be small. For the case w; > 0, to
ensure the increasing of u; ; and decreasing of v; ; as we desire, the initialization needs to be smaller
than w;, which leads to the extra constraint on initialization ¥(wy, ,€) with order of O(w%,;.)
as defined before. It remains to build the connection between gradient flow and gradient descent,
where again we uses the continuous approximation as before. The detailed derivation is presented in
Appendix B.3.

5 Simulation Study

We conduct a series of simulation experiments' to further illuminate our theoretical findings. Our
simulation setup is described as follows. The entries of X are sampled as i.i.d. Rademacher random
variables and the entries of the noise vector £ are i.i.d. N (0, 0?) random variables. We let w* = y135.
The values for the simulation parameters are: n = 500, p = 3000, £k = 5,y = 1, 0 = 0.5 unless
otherwise specified. For ¢5-plots each simulation is repeated 30 times, and the median {5 error is
depicted. The shaded area indicates the region between 25" and 75" percentiles pointwisely.

Convergence results. We start by showing that the general choice of N leads to the sparse recovery,
similar to N = 2 in [11], as shown in our main theorem. We choose different values of IV to illustrate
the convergence of the algorithm. The result on simulated data is shown in Figure 2, and we defer
the result on MNIST to Appendix E. Note that the ranges in the x-axes of these figures differ due
to different choice of N and 1. We observe that as N increases, the number of iterations increases
significantly. This is due to the term u’¥ =2 and v =2 in (12), and the step size n ~ . With a very
small initialization, it takes a large number of iterations to escape from the small region (close to 0).

Larger initialization. As discussed in Remark 1, the upper bound on initialization gets larger with
larger N. We intentionally pick a relatively large oY = 2 x 10~ where the algorithm fails to
converge for N = 2. With the same initialization, the recovery manifests as [V increases (Figure 3).

Early stopping window size. Apart from the coordinate path shown in Figure 1, we obtain multiple
runs and plot the log-¢5 error (the logarithm of the ¢5-error) of the recovered signals to further confirm
the increase of early stopping window, as shown in Section 3. Note that for both Figures 1 and 4,
we set n = 100 and p = 200. Since o would decrease quickly with N, which would cause the
algorithm takes a large number of iterations to escape from the small region. We fix oV = 107°
instead of fixing « for Figure 4.

Incremental learning dynamics. The dynamics of incremental learning for different /V is discussed
in [13]. The distinct phases of learning are also observed in sparse recovery (Figure 5), though we do

!The code is available on https://github.com/jiangyuan21i/Implicit-Sparse-Regularization.
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Figure 2: Coordinates paths for different choice of N = 2, 3,5 with oY = 1076 andn = 1/(5N?).
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Figure 4: log-¢5 error of N = 2, 3, 4 with the fixed step size n = 0.01.

not provide a theoretical justification. Larger values of N would lead to more distinct learning phases
for entries with different magnitudes under the same initialization o’V and step size 7.
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Figure 5: Coordinates paths for N = 2, 3, 5. The entries of w* on the support S are now [1, 2, 3, 4].
The initialization is oY = 10~* and the step size is 7 = 1073 for all V.

Kernel regime. As pointed out in [18], the scale of initialization determines whether the gradient
dynamics obey the “kernel” or “rich” regimes for diagonal linear networks. We have carefully
analyzed and demonstrated the sparse recovery problem with small initialization, which corresponds
to the “rich” regime. To explore the "kernel" regime in a more practical setting, we set n = 500,
p = 100, and the entries of w* arei.i.d. A/ (0,1) random variables. The noise level is ¢ = 25, and the
initialization and step size is set as ™ = 1000 and 7 = 10~ 7 for all N. Note that we are not working



in the case n < p as [18]. We still observe that the gradient dynamics with large initialization (Figure
6) can be connected to ridge regression if early stopping is deployed.
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Figure 6: log-¢5 error of N = 2, 3,4 for a ridge regression setting. The ridge regression solution is
selected by 5-fold cross validation.

6 Conclusions and Future Work

In this paper, we extend the implicit regularization results in [11] from N = 2 to general N > 2,
and further study how gradient dynamics and early stopping is affected by different choice N. We
show that the error bound is invariant with different choice of N and yields the minimax optimal
rate. The step size is of order O(1/N?). The initialization and early stopping window gets larger
when increasing N due to the changes on gradient dynamics. The incremental learning dynamics and
kernel regime of such parametrizations are empirically shown, however not theoretically justified,
which is left for future work.

The convergence result can be further 1mproved by relaxmg the requirement on the incoherence of
design matrix from p < k*i topu S +——5——5—, similar to [11]. Overall, we believe
~ kwk .. /w ~ k log(wmax/w

max min

that such an analysis and associated techniques could be apphed for studying other, deeper nonlinear
models in more practical settings.
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