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Abstract

We present Chirpy Cardinal, an open-domain dialogue agent, as a research plat-
form for the 2019 Alexa Prize competition. Building an open-domain socialbot
that talks to real people is challenging – such a system must meet multiple user
expectations such as broad world knowledge, conversational style, and emotional
connection. Our socialbot engages users on their terms – prioritizing their interests,
feelings and autonomy. As a result, our socialbot provides a responsive, person-
alized user experience, capable of talking knowledgeably about a wide variety of
topics, as well as chatting empathetically about ordinary life. Neural generation
plays a key role in achieving these goals, providing the backbone for our con-
versational and emotional tone. At the end of the competition, Chirpy Cardinal
progressed to the finals with an average rating of 3.6/5.0, a median conversation
duration of 2 minutes 16 seconds, and a 90th percentile duration of over 12 minutes.

1 Introduction

This paper describes our socialbot for open-domain conversation, Chirpy Cardinal, built as a
research platform during the 2019 Alexa Prize competition. During the competition, US-based
Amazon Alexa users could give an invocation phrase (such as let’s chat) to be connected to one of
the competing socialbots (chosen randomly). After receiving a minimal orientation phrase at the
beginning of the conversation, the user talks to the socialbot (in English) until they decide to end the
conversation – at which point, they are invited to provide a rating and comment.

To provide a convincing user experience, an open-domain conversational agent must excel at lan-
guage understanding, language generation, emotional engagement, memory, world knowledge and
conversational planning, among other desirable characteristics – an ambitious goal! Prior work within
and outside the Alexa Prize competition has taken the successful strategy of pushing progress along
individual skills, and forming an ensemble of sub-systems, each excelling at a singular characteristic
while ignoring others. For instance, supporting user initiative in open-domain conversations is
extremely challenging, as it requires understanding the countless ways a user can take initiative, and
the ability to respond to each of them with specificity. Faced with this difficulty, when it comes
to in-depth conversations, many previous dialogue systems rely primarily on bot-initiative, driving
users along carefully scripted paths. On the other hand, systems attempting higher user-initiative
via non-scripted paths are likely to lead towards shallower conversations. Thus there is a lot of
room for innovation and research in trying to simultaneously achieve two or more complementary
characteristics; this is a recurring theme throughout this work. Our goal in building this socialbot was
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to offer a natural-sounding and emotionally engaging dialogue agent that can talk knowledgeably
about a wide variety of topics, while also letting the user take as much initiative as possible.

Initiative – the ability to drive the direction of the conversation – has been studied extensively in
the context of task-oriented dialogue. Mixed initiative (Horvitz, 1999), in which the user and the
bot share initiative, is an important quality of a successful dialogue system, as it provides the user a
sense of agency without making them entirely responsible for suggesting new topics and directions.
In order to improve on mixed initiative while still providing an acceptable conversational depth, we
designed our initial system to rely heavily on system initiative, but at the same time explored several
avenues to increase user initiative in a controlled fashion. To support mixed initiative, our system
has a global navigational intent classifier (Section 3.1) and entity tracker (Section 3.2), allowing
it to track high level topic changes from both the user and the bot. Further, our response priority
system (Section 3.3) allows individual Response Generators (RGs) to interject when the user initiates
a change of topic.

High-coverage world knowledge is an important component of open-domain conversation – our
bot must be able to talk about the diverse range of entities and topics that interest users, particularly
if we wish to respect user initiative. We use the Alexa Knowledge Graph, The Washington Post,
Reddit and Twitter as sources of up-to-date knowledge in particular domains, while ensuring high
coverage by using Wikipedia and Wikidata entities as the foundation of our entity-based conversations
(Sections 4.4, 3.2 and 6.3). However, world knowledge must be delivered in a conversational style
– this is a characteristic that distinguishes a socialbot from a virtual assistant. To achieve this, we
finetuned a neural generative model on the TopicalChat dataset (Gopalakrishnan et al., 2019) to obtain
a conversational paraphrasing model that adapts external text into a conversational style (Section 5.3).

A socialbot cannot focus solely on external entities – to be truly social, it must be able to discuss
personal experiences and emotions. While ELIZA-like systems (Weizenbaum et al., 1966) attempt
this via templated repetition of user phrases, they lack the naturalness and depth of real human
conversations. Our Neural Chat module (Section 5.2) invites the user to share their everyday
experiences and current emotions, and uses a neural generative model to respond empathetically.
With it, we attempt to have a deep, sustained and emotionally engaging conversation about a user’s
lives. In addition, our Opinion module (Section 5.4) allows the user to express their feelings by
expressing their likes and dislikes. To foster a reciprocal atmosphere, our bot also shares its own
distinct feelings, experiences and opinions.

Lastly, we note that the advent of large-scale pretrained neural generative models has substantially
impacted what is possible in open-domain socialbots. While in the last Alexa Prize competition,
none of the top three socialbots used neural generation (Chen et al., 2018; Pichi et al., 2018; Curry
et al., 2018), we found current GPT-2 models (Radford et al., 2019) to be a key tool to support our
design goals. Neural generation enables natural phrasing and emotional engagement, as well as more
flexible responsiveness (e.g., when used as a fallback in Section 5.7), supporting higher user initiative.
A limitation of neural generation methods for dialogue is deterioration in quality and consistency
over a long conversation, which can be potentially overcome with symbolic constraints. We explore
ways to bring the best of both worlds – long term consistency and short term fluidity – together.

Despite being a first-time entrant, at the end of the competition our system achieved a rating of
3.6/5.0, which is within 0.1 of the highest-ranked systems, and is capable of detailed, sustained
conversations with interested users (with a 90th percentile conversation duration of 12 minutes 55
seconds). Qualitatively, during in-person interactions with users, we observed that many innovations
such as in-depth discussions of everyday life, conversational styling of informational content, and
opinionated exchanges were received with expressions of pleasant surprise – indicating our steps were
in the right direction. In Section 6, we re-examine the goals we set out to achieve, and empirically
analyze our bot’s successes and failures. In Section 7, we talk about the challenges we faced, the
trade-offs we made, our conclusions and avenues for future work.

2 System Overview

Our overall system design is shown in Figure 1. Our system is built on top of the CoBot framework
(Khatri et al., 2018). On each turn, the user’s spoken utterance is transcribed by Alexa’s Automatic
Speech Recognition (ASR) service. The transcribed utterance (which is lowercase, no punctuation)
is sent to our AWS Lambda function, which handles the core logic of our bot. AWS Lambda is a
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Figure 1: Overall system design.

serverless computing platform, which means that our function is stateless. To preserve information
between turns, we store our bot’s overall state in an external State Table (see Figure 1), hosted on
AWS DynamoDB. At the start of the turn, the previous turn’s state is fetched from the table.

We then run the NLP Pipeline (see Section 4) – a collection of modules that produce annotations
based on the user’s utterance and the current state. Modules requiring greater computational resources
are hosted on remote EC2 instances, while less-demanding modules are hosted within the Lambda
function. The NLP Pipeline is organized as a directed acyclic graph (DAG), allowing modules to
use other modules’ annotations as inputs. To minimize latency, modules are run in parallel where
possible, with each module starting as soon as its inputs are ready.

Next, we analyze the user’s utterance to determine whether the user wants to talk about any particular
entity (see Navigational Intent, Section 3.1), and update the current entity under discussion if
appropriate (see Entity Tracker, Section 3.2).

We then run our collection of Response Generators (RGs), modules designed to handle particular
conversational duties, in parallel (see Section 5). Each RG either produces a response, or no response
(None). If an RG produces a response, it also supplies a response priority (see Section 3.3), indicates
whether the response needs a prompt added from another response generator (see Section 3.4), and
specifies what the current entity under discussion should be, if the response is chosen. The Priority
Ranking module chooses the response with the highest priority, and the Entity Tracker updates the
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current entity under discussion accordingly. If the chosen response does not need a prompt, it forms
the entire bot utterance.

If the chosen response does need a prompt, we run our collection of RGs a second time. Each RG
either produces a prompt or no prompt (None). If an RG produces a prompt, it also supplies a prompt
priority (see Section 3.5) and a current entity, as before. The Priority Sampling module chooses
the prompt by sampling from the supplied prompts, with the probability distribution depending on
both the priorities of the prompts and the RGs that produced them. The Entity Tracker updates the
current entity again, and the bot’s utterance is then formed by appending the prompt to the response.

At the end of the turn, the bot’s overall state contains the user’s utterance, the conversational history,
the NLP Pipeline annotations for the user’s utterance, and a state for each individual Response
Generator.2 We write the new state to the State Table, and send the bot utterance to Alexa’s Text To
Speech (TTS) service, which delivers the spoken bot utterance to the user.

3 Dialogue Management

Our Dialogue Manager handles the high-level logic of tracking which topics we are discussing with
the user, and which responses (and prompts) should be used to form the bot’s utterances.

3.1 Navigational Intent Classifier

A user has navigational intent when they are indicating that they do (positive) or do not (negative)
want to talk about a particular topic. Users might give navigational intent while specifying the topic
(can we talk about minecraft, stop talking about minecraft), or referring to the current topic (let’s
discuss this more, could you change the subject), or referring to no topic (alexa can we talk, i don’t
want to chat any more). Users sometimes give positive and negative navigational intent in the same
utterance (i don’t want to talk about movies any more let’s chat about you). To recognize navigational
intent, we use manually-constructed regexes, as they are quite high precision.

3.2 Entity Tracker

For our response generators to work together to discuss different topics smoothly, we must track
which entities we are currently discussing, which we have finished discussing, and possible entities
to discuss in the future. This is the role of the entity tracker. We assume that at any point in the
conversation, there is one current entity, which is either a Wikipedia entity (see Section 4.4) or None
(if we’re discussing something that does not have a Wikipedia article, such as Table 1 Turn 3).3 The
current entity is updated at most three times per turn (see Figure 1):

1. After analyzing the user’s utterance. The entity tracker uses the entity linker’s output,
which is a priority-ordered list of possible entities mentioned by the user on this turn, along
with their scores (see Section 4.4 for details.) If the user expressed negative navigational
intent towards the current entity, it is rejected. If the user expressed positive navigational
intent towards some topic, we search inside the topic slot in their utterance; the highest-
priority entity with score over a low threshold (1,000) is chosen as current entity. If there is
a particular type of entity we expect the user to mention on this turn (e.g. if the bot asked
What’s your favorite movie?) and there is an entity with the expected Wikidata category (e.g.
film) with score over a low threshold (1,000), it is chosen as current entity. Otherwise, if the
entity linker has made a prediction with sufficiently high score (over 10,000), it becomes the
current entity. If none of these conditions are met, the current entity stays the same.

2. After choosing the response. When the RGs provide responses, each RG also specifies
what the new current entity should be, if its response is selected by the priority ranker. We
update the current entity to be whatever was provided by the selected RG.

3. After choosing the prompt. If we get a prompt, we update the current entity similarly.

2Each individual RG state contains information required by that RG – for example, it might contain the
current node (aka treelet, see Section 5.1) in the RG’s dialogue graph, or a list of the utterances and/or entities
that have been discussed, to avoid repetition. Each RG maintains its own individual state.

3In the future, we plan to generalize the entity tracker to track non-Wikipedia discussion topics.
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# Utterance Entity Commentary
1 User: let’s chat None

Bot: Hi, this is an Alexa Prize Socialbot. I’d love to
get to know you a bit better before we chat! Is it all
right if I ask for your name? [ Launch ]

None Launch gives FORCE_START response to be-
gin the conversation.

2 User: my name is chris None
Bot: Well it’s nice to meet you, Chris! I’m excited
to chat with you today. [ Launch ] I hope your after-
noon is going well. What are your plans for the rest
of today? [ Neural Chat ]

None Launch gives a STRONG_CONTINUE re-
sponse that needs a prompt, which is supplied
by Neural Chat with FORCE_START priority
(scripted transition).

3 User: hang out with my friends None
Bot: That sounds great, I love spending time with
friends. What will you do together? [ Neural Chat ]

None Neural Chat generates a GPT-2 response with
STRONG_CONTINUE priority.

4 User: maybe watch a movie None
Bot: Me too! I love watching movies; I get to learn
so much about what the world is like outside of
the cloud! Have you seen any movies recently?
[ Movies ]

Film Movies detects the ‘movie’ keyword in the
user’s utterance and gives a FORCE_START
response (overriding Neural Chat), setting
current entity to Film.

5 User: i saw the matrix The Matrix The Entity Linker and Entity Tracker iden-
tify The Matrix as the current entity.

Bot: Nice! Did you like The Matrix? [ Movies ] The Matrix
6 User: i loved it neo is amazing The Matrix

Bot: Oooh, yeah, I agree. Hey, isn’t Keanu Reeves
in that movie? What do you think about Keanu
Reeves? [ Movies ]

Keanu
Reeves

Movies sets current entity to Keanu Reeves.

7 User: i want to talk about something else None Navigational Intent detects negative intent, so
Entity Tracker rejects the current entity.

Bot: OK, no problem. [ Movies ] There’s actually
something else I wanted to ask you about. What’s
your favorite animal? [ Categories ]

Animal Movies acknowledges and asks for a prompt.
Categories gives a GENERIC prompt.

8 User: i love cats Cat Entity Linker and Entity Tracker identify Cat
as current entity.

Bot: Good to hear you like cats. I have to be honest
though, I’m not a big fan of cats. I feel like cats
don’t respect my personal space, but I would love to
hear why you like cats? [ Opinion ]

Cat Opinion gives a CAN_START response about
cats.

9 User: hmm i love cats because they are fluffy Cat
Bot: That make sense. Now that I think about
it, one good reason to like cats is that they purr
and I definitely need that kind of positive feed-
back. [ Opinion ] Wanna know something interest-
ing about cat? [ Wiki ]

Cat Opinion finishes talking. Wiki gives a CUR-
RENT_TOPIC prompt about Cat.

10 User: you are not very smart Cat
Bot: I know you feel frustrated. I’m always trying
to get better. [ Offensive User ] I’ve been listening
to some new music today and I wanted to chat about
instruments. If you were a musical instrument which
one would you be? [ Music ]

Musical in-
strument

Offensive User gives a FORCE_START re-
sponse to the critical utterance, then [ Music ]
provides a GENERIC prompt to steer the con-
versation in a new direction.

11 User: what do you find interesting None The user gives an unexpected response.
Bot: I like the violin, but I’m more of a classical
music player. [ Neural Fallback ] I remember you
mentioned Neo. Would you like to talk more about
it? [ Wiki ]

Neo (The
Matrix)

Neural Fallback gives a GPT-2-generated re-
sponse, which is selected as no other RG (ex-
cept Fallback) has a response. Wiki gives a
CONTEXTUAL prompt.

12 User: sure Neo (The
Matrix)

Bot: Neo has got into so many adventures! What
are some adventures that you’ve enjoyed? [ Wiki ]

Neo (The
Matrix)

Wiki asks an open-ended question (specific to
movie characters) about Neo (The Matrix).

13 User: morpheus teaching jujitsu to neo Neo (The
Matrix)

Bot: I liked that Neo and Trinity were able to res-
cue Morpheus from a building protected by armed
guards and agents. Morpheus has done so many
amazing things! What are some of your favorite
Morpheus moments? [ Wiki ]

Morpheus
(The
Matrix)

Wiki gives a response (generated by the GPT-
2 conversational paraphrasing model), sets the
current entity to Morpheus (The Matrix), and
asks another open-ended question.

14 User: i want to stop talking None We detect stop intent; the conversation ends.

Table 1: An example dialogue. To respect users’ privacy, this is not a real user conversation.
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Response Priority Meaning
FORCE_START This inactive RG should take control (e.g., Table 1, Turn 4),

or override, such as handling offensive user utterances (e.g., Table 1, Turn 10).
STRONG_CONTINUE This active RG can continue the conversation with a good

next response (e.g., Table 1, Turn 2). Only a FORCE_START can override it.
CAN_START This inactive RG can potentially take control (e.g., Table 1, Turn 8),

but should not interrupt a STRONG_CONTINUE.
WEAK_CONTINUE This active RG can continue the conversation but its next response is of

poorer quality. It should be overridden by any available CAN_STARTs (or higher).
UNIVERSAL_FALLBACK Only used by Fallback and Neural Fallback RGs (e.g., Section 5 and Table 1, Turn 11)

Table 2: Response Priorities (ordered by descending importance)

Prompt Priority Meaning
FORCE_START This RG should take control. This is mainly used for scripted transitions (e.g., Table 1, Turn 2).
CURRENT_TOPIC This RG has a prompt that talks about the current entity (see Section 3.2 and Table 1, Turn 9).
CONTEXTUAL This RG has a prompt that does not talk about the current entity, but that is conditioned on

the conversation history, e.g. referring to a previous topic (e.g., Table 1, Turn 11).
GENERIC This RG has a prompt that is not conditioned on the conversation so far (e.g., Table 1, Turn 7).

Table 3: Prompt Priorities

This system allows the user to initiate topics (e.g. the bot starts talking about cats if the user utterance
is i want to talk about cats), allows RGs to initiate topics (see Table 1, Turn 4), allows multiple RGs
to talk seamlessly about the same topic (see Table 1, Turn 10), and allows RGs to signal when a topic
should be finished (see Table 1, Turn 7).

3.3 Response Priority Ranking System

We use a priority system to decide which response generator’s response should be selected on each
turn. When generating responses, each RG provides one of the response priorities in Table 2.4 This
hierarchy supports the ability to preserve conversational continuity (STRONG_CONTINUE), while
remaining responsive to the user’s initiative (FORCE_START). Though it is a relatively simple rule-
based system, we have found it well-suited to our needs. The priority levels are clear to understand,
and make it easy to modify behavior. By avoiding a centralized response-choosing module, our
design allows RGs to decide themselves whether or not they should respond, and whether their
response is high quality. This makes it easier for multiple people to work on different RGs, each
with self-contained logic. Lastly, if one RG encounters an error, timeout, or inability to find relevant
content, the other RGs provide alternatives.

3.4 Response-and-Prompt System

As described in Section 2, on some turns the bot utterance consists of a response from one RG,
followed by a prompt from another RG. This system is useful when the responding RG can handle
the user’s current utterance, but is unable to take the conversation forward (see Table 1, Turn 10) or
when the responding RG has finished talking about one topic, and another RG is needed to supply
a change of topic (see Table 1, Turn 7). The response-and-prompt system makes it easy to always
supply the user with a strong path forward in the conversation (e.g. by asking the user a question).

3.5 Prompt Priority Sampling System

While we use a deterministic ranking system to choose the highest-priority response (Section 3.3),
prompts often represent changes of topic, which are less restricted by context, and (in human-human
conversations) tend to have a degree of randomness. Thus, we use a priority sampling system to select
a prompt. When generating prompts, each RG supplies one of the prompt priorities in Table 3.

Under the Priority Sampling module, if a FORCE_START prompt is supplied, we choose it. Otherwise,
we sample from a manually-specified distribution over the remaining priorities, masking out any that

4In case of a tie, we tie-break using a manually-specified priority ordering of the RGs.
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Training Regime # MIDAS Chirpy Training Set Chirpy Test
Training Set # Silver # Gold Set Micro-F1

MIDAS (baseline) 10,090 0 0 0.53
MIDAS+self-training (τ = 0.95) 10,090 41,152 0 0.54
MIDAS+self-training (τ = 0.75) 10,090 62,150 0 0.54
MIDAS+supervised 10,090 0 2,407 0.81

Table 4: Performance of our Dialogue Act model under different training regimes.

are not present on this turn. The distribution is biased towards maintaining continuity of discussion
(CURRENT_TOPIC� CONTEXTUAL > GENERIC). Then, among the RGs that produced a prompt
of the sampled priority, we sample one prompt, using a manually specified distribution over the
RGs. This system allows us to specify scripted transitions when desired, and to provide variety via
randomness, while still enabling us to tune the likelihood of changing topic, which is an important
controllable parameter in chit-chat conversations (See et al., 2019).

4 NLP Pipeline

The NLP Pipeline is run at the start of every turn (see Figure 1), and contains modules that annotate
the user’s utterance with information that is useful for other parts of the bot.

4.1 CoreNLP

On each turn of the conversation, we annotate the the user’s utterance using the Stanford CoreNLP
toolkit (Manning et al., 2014), which runs on a remote EC2 module with CPU only. We use the fol-
lowing CoreNLP annotators: tokenization, sentence splitting, part-of-speech tagging, lemmatization,
named entity recognition, constituency parsing, dependency parsing, coreference resolution, and
sentiment analysis. Due to the format of the user utterances (lowercase with no punctuation), we use
the caseless models5 for part-of-speech tagging, constituency parsing and named entity recognition.

4.2 Dialogue Act Classifier

Dialogue acts can support understanding of user intent (Stolcke et al., 2000), and have been success-
fully employed in previous Alexa Prize socialbots (Yu et al., 2019). To build a dialogue act classifier,
we finetuned the HuggingFace implementation (Wolf et al., 2019a) of a BERT-based classification
model (Devlin et al., 2018) on the MIDAS dataset (Yu and Yu, 2019). The dataset contains 12,894
examples, where each example is a bot utterance,6 the user’s response to that utterance, and the user’s
dialogue act.7 The dataset was collected by Gunrock (Yu et al., 2019), the winner of the 2018 Alexa
Prize competition. Unlike other dialogue act datasets, such as SWBD-DAMSL (Jurafsky et al., 1997),
which are designed for human-human dialogue, the MIDAS annotation schema was specifically
designed for human-chatbot dialogue.

Though this baseline model achieved a micro-average F1-score of 0.78 on the MIDAS test set, we
wished to evaluate its performance in our own bot’s conversational setting. We hand-labeled a ‘Chirpy’
test set containing 602 examples from our bot’s conversations. The same baseline model achieved
only 0.53 on this test set (see Table 4). We suspect the performance drop is due to the distributional
difference between the utterances generated by our bot and by Gunrock. To improve performance on
our data, we experimented with self-training (McClosky et al., 2006). Using the baseline model, we
labeled a large number of unlabeled examples from our own bot’s conversations. Examples whose
label was predicted with a confidence score greater than a threshold τ were added to our training set.
Using τ = 0.75 and τ = 0.95 added 62,150 and 42,152 silver-labeled training examples, respectively.
After training on these expanded datasets, we re-evaluated on our own test set. The inclusion of

5https://stanfordnlp.github.io/CoreNLP/caseless.html
6The bot utterance is included because it contains context essential to understand the user utterance (Yu and

Yu, 2019). For instance, the user utterance ‘tiger king’ is an opinion when in response to ‘What is the best show?’
and a statement when in response to ‘What is the last show you watched?’.

7To better fit our needs, we modified the label space as described in Section C.1.
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the silver-labeled data did not substantially boost performance (see Table 4). Finally, we turned to
supervised training, and hand-labeled an additional 2,407 examples from our own bot’s conversations
(procedure described in Section C.2). After training on the MIDAS data and this data, we achieved a
much higher micro-F1 of 0.81 on the Chirpy test set.

In our bot, we run the Dialogue Act classifier on an EC2 machine with one NVIDIA T4 Tensor Core
GPU, annotating every user utterance in the conversation. We find that its accuracy is best on classes
with low variance in user utterances, such as positive answer, while classes with high variance, such
as statement, are more difficult. However, even for the low variance classes, the classifier’s labels are
very useful – we are able to achieve much higher recall in recognizing positive answer and negative
answer by using the classifier’s labels, compared to regexes or word lists.

4.3 Question Classifier

Users often spontaneously ask factual questions, personal questions, follow-up questions, and even
questions unrelated to the current topic. Recognizing and answering these questions is important,
particularly for user initiative, but is also non-trivial, as user utterances do not contain punctuation.

To recognize questions, we initially used the Dialogue Act classifier’s labels (which include question
types like factual question and open-ended question). However, this did not work well; the classifier
seemed to condition too much on the bot utterance preceding the user utterance – which is less useful
for recognizing questions than other dialogue acts. Instead, we fine-tuned a RoBERTa model (Liu
et al., 2019; Wolf et al., 2019a) on an simplified version of the Dialogue Act training data, framing
the task as binary classification, conditioned only on the user utterance. This model achieved an
F1-score of 0.92 and improved the reliability of question detection.

The classifier’s labels are used to determine when certain RGs should respond – for example, when
the Evi RG (Section A.3) should answer a factual question. The labels are also useful for the neural
generative models (Sections 5.2, 5.3, 5.7). We observe that the GPT-2-based models are much more
likely to answer (rather than ignore) a user’s question if a question mark is present. Thus, we use the
classifier labels to determine when to append a question mark to the user utterance.

4.4 Entity Linker

A key part of our high-coverage strategy (Section 1) is entity linking – detecting when the user is
referring to an entity, and identifying the correct entity. To obtain our pool of potential entities, we
processed a dump8 of English language Wikipedia. For each article (i.e. each entity E), we collected
(a) the pageview (number of views in one month), and (b) the anchortext distribution Panchortext(a|E).

To compute the anchortext distribution for an entity E, we count the number of anchortexts (i.e.,
strings, lowercased) that are used as hyperlinks to E across Wikipedia (e.g., the entity Barack Obama
may be referred to using the anchortexts barack obama, obama, or president obama). Then:

Panchortext(a|E) =
count(links from a to E)∑

a′∈A(E) count(links from a′ to E)
(1)

where A(E) is the set of all anchortexts that link to E. We store each entity, along with its Wikipedia
article, pageview, anchortext distribution, and Wikidata categories9 in an ElasticSearch index.

After we receive the user’s utterance u, we assemble the set of candidate spans S. S contains
all n-grams in u with n ≤ 5, excluding n-grams that consist only of stopwords. We then query
ElasticSearch to fetch all entities E which have at least one span s ∈ S among its anchortexts. To
determine which entities the user is referring to, we wish to estimate P (E|s), the likelihood that a
span s is referring to an entity E. We model P (E|s) as a Bayesian system:

P (E|s) ∝ P (E)× P (s|E). (2)

We assume that P (E) is proportional to the pageview for the entity E, and P (s|E) = Panchortext(s|E).
Therefore, we define the score(s, E) of a span s and and entity E to be:

score(s, E) = pageview(E)× Panchortext(s|E). (3)
8https://dumps.wikimedia.org
9For each entity, we collected all its ancestors via the instance of and subclass of relations. For people

entities, we also used the occupation relation.
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The output of the entity linker is a priority-ordered list of (s, E) pairs. The ordering is calculated
using manually-curated rules and thresholds on the following features: (a) the score of (s, E), (b) the
maximum unigram frequency10 of s, (d) whether E is in a Wikidata category that is expected for this
turn11, (c) whether s is contained inside any other linked span (priority is usually given to the larger
span). The output of the entity linker is primarily used by the entity tracker (Section 3.2) to identify
the current entity under discussion.

Limitations We found the entity linker to be one of the hardest components of our bot to build.
One difficulty is that our notion of an entity – anything with a Wikipedia article (e.g. Cat or Musical
instrument in Table 1) – is much broader than the traditional definition of Named Entities (which is
typically restricted to particular types, such as people and locations). Our motivation in this definition
was to enable high-coverage world knowledge by enabling any Wikipedia article to become a focus
of discussion. However, this made the entity linker’s job much more difficult. The need to detect an
extremely broad range of entities, with no restriction to certain types, made it much more difficult to
find a good precision/recall tradeoff, leading to both false positive and false negative problems in the
bot. In the future, we will need to develop better approaches for identifying our expanded notion of
entities, or find a way to support high coverage of topics without relying as much on the entity linker.

ASR Error Robustness As we do not have access to original user audio, ASR errors are a major
source of difficulty, particularly when they occur within entity names. For example, if the user wants
to talk about the film Ford v Ferrari, but the ASR transcription is four v ferrari, our entity linker will
fail to identify the correct entity, as the span four v ferrari is not among the anchortexts for the entity
Ford v Ferarri. To address this, we adapted our entity linker to be robust to phonetically-similar spans
and anchortexts; our method is similar to Chen et al. (2018).

First, we converted all Wikipedia entity anchortexts to their phoneme and metaphone representations
(e.g., Harry Potter to ‘HH EH R IY P AA T ER’ and ‘HRPTR’) with a grapheme-to-phoneme
tool12 and the double metaphone algorithm,13 and indexed the mapping from anchortext phonemes to
Wikipedia entities in ElasticSearch. When running the entity linker, we convert all spans s ∈ S to
their phonetic representations and query the ElasticSearch index, which returns a set of anchortexts
Aphon that have similar phonetic representations to any of the spans queried. This allows us to
expand the candidate pool for each span s, from entities for which s is an anchortext, to entities for
which s is phonetically similar to an anchortext. Finally, we redefine P (s|E) as follows: for each
anchortext a ∈ Aphon, we start by finding its best-matching span s∗(a) = argmaxs∈S sim(s, a)
where sim(·, ·) is a phoneme similarity function14 between 0 and 1; then, we filter out anchortexts that
are phonetically too dissimilar to each span with a threshold of 0.8, resulting in a set of anchortexts
for each span A(s) = {a|a ∈ Aphon, s = s∗(a), sim(a, s) ≥ 0.8}. Finally:

P (s|E) ∝
{

maxa∈A(s) count(links from a to E)× sim(s, a) A(s) 6= ∅
0 otherwise (4)

This definition of P (s|E) replaces Panchortext(s|E) in Equation (3).

5 Response Generators

In this section, we describe our Response Generators (RGs). Additional minor RGs are described in
Appendix A. We also describe treelets (Section 5.1), a system we used to organize many of our RGs.

5.1 Treelets: A System to Organize Dialogue Graphs

Many of our response generators rely on treelets, a modular programming abstraction which represents
a single node in a dialogue graph. The treelet system is largely based on dialogue trees (Weizenbaum
et al., 1966) and dialogue-frame-based systems such as GUS (Bobrow et al., 1977). We define a
treelet to be a small, 1-turn dialogue ‘tree’ that manages all decisions necessary to produce a bot

10The maximum unigram frequency of s is the frequency of the most common unigram inside s, computed
using this unigram frequency list for spoken English: http://ucrel.lancs.ac.uk/bncfreq/flists.html

11For example, if the bot asked What’s your favorite movie?, an expected Wikidata category is film.
12https://pypi.org/project/g2p-en/
13https://pypi.org/project/metaphone/
14implemented on lists of phonemes with Python’s difflib.SequenceMatcher
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handle_movie_opinion_treelet

Previous bot utterance: Cool! What did you think of “Us”?

positive (e.g. “yeah it was so original”) negative (e.g. “no it was too scary”)

Bot response: Good to hear! Isn’t Lupita Nyong’o 
in that movie? What do you think about her?

Bot response: If you didn’t like “Us”, let’s not talk 
about it. What’s a film you love?

Next treelet: handle_actor_opinion_treelet Next treelet: handle_favorite_movie_treelet

User Utterance

1. Classify

2. Generate Bot Response

3. Select Next Treelet

Figure 2: An example treelet for the Movies RG.

response given a user’s utterance. This involves interpreting the user utterance, creating the bot’s
response, and specifying the treelet that should take control on the next turn.

Typically, a treelet performs three actions: (1) it classifies the user’s utterance into one of several
branches, (2) it produces an appropriate bot response for that branch, (3) it specifies the next treelet.
Treelets throughout our bot may classify user utterances by using regexes, outputs from our NLP
pipeline (the dialogue act classifier is frequently used for this purpose), or changes in entity (e.g., if
a treelet in the Movies RG detects that the current entity has changed to "food" after the user says
"let’s talk about food", the current Movies treelet may select a branch that returns no response). Bot
responses may be handwritten or dynamically generated (we use both throughout our system). An
example from the Movies RG is shown in Figure 2.

Like dialogue trees in general, treelets provide a well-controlled, predictable and easily interpretable
conversation flow. From an engineering and implementation perspective, treelets have several
advantages, such as allowing modular organization of code and dialogue, easily enabling cycles
when desired (by having treelets point to each other with repeats or loops), and minimizing code
duplication by allowing many treelets to point to the same successor.

5.2 Neural Chat

The Neural Chat RG’s goal is to empathetically discuss personal experiences and emotions with
the user, using responses generated by a GPT-2-medium (Radford et al., 2019) model finetuned
on the EmpatheticDialogues dataset (Rashkin et al., 2019). The dataset consists of conversations
between a speaker, who describes an emotional personal experience, and a listener, who responds
empathetically to the speaker’s story. Our model is trained in the listener role.

The Neural Chat RG has 7 discussion areas: current and recent activities, future activities, general
activities, emotions, family members, living situation, and food. A discussion begins by asking the
user a starter question (e.g, What do you like to do to relax? for the ‘general activities’ area). Some
starter questions are conditioned on the time of day (e.g. What did you have for breakfast/lunch/dinner
today? for the ‘food’ area). Starter questions can be asked as part of the launch sequence (Table 1,
Turns 2 and 3), as generic changes of topic, (Do you have any plans for the weekend?), or can be
triggered contextually (You mentioned your boyfriend. How did you guys meet?). On each subsequent
turn of the discussion, we generate 20 possible responses from the GPT-2 model using top-p sampling
with p = 0.9 and temperature 0.7. To provide a strong path forwards in the conversation, we generally
choose a GPT-2 response containing a question. However, if under a third of the sampled responses
contain questions, we interpret this as an indication that the model is not confident in asking a question
on this turn. In this case, we choose a non-question and end the Neural Chat discussion. Under this
strategy, each Neural Chat discussion contains 2.75 bot utterances on average.

The model was finetuned using the HuggingFace ConvAI code15 (Wolf et al., 2019b) and is hosted
on a GPU-enabled EC2 machine with one NVIDIA T4 Tensor Core GPU. To keep latency low we

15https://github.com/huggingface/transfer-learning-conv-ai
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Strategy Preamble
NO_SHARE I wanted to check in with you.
POS_OTHERS I’ve noticed that a lot of people are feeling pretty positive today!
POS_BOT I wanted to say that I’m feeling pretty positive today!
POS_BOT_STORY POS_BOT + I just went for a walk outside, and it felt great to get some fresh air.
NEG_OTHERS I’ve noticed that a lot of people are feeling kind of down recently.
NEG_BOT I wanted to say that I’ve been feeling kind of down recently.
NEG_BOT_STORY NEG_BOT + I’ve been missing my friends a lot and finding it hard to focus.
NEGOPT_OTHERS NEG_OTHERS + But I think its important to remember that things will get better.
NEGOPT_BOT NEG_BOT + But I think its important to remember that things will get better.
NEGOPT_BOT_STORY NEGOPT_BOT + Just earlier today I took a walk outside and the fresh air

helped me get some perspective.

Figure 3: Strategies for the emotion-focused Neural Chat starter question. POS/NEG/NEGOPT
refer to positive/negative/negative+optimistic emotion. OTHERS/BOT refer to whether the emotion
is attributed to other people, or to the bot. STORY indicates that the bot shares a personal anecdote.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
user response length (# characters)

NO_SHARE

POS_OTHERS

POS_BOT

POS_BOT_STORY

NEG_OTHERS

NEG_BOT

NEG_BOT_STORY

NEGOPT_OTHERS

NEGOPT_BOT

NEGOPT_BOT_STORY

st
ra

te
gy

Figure 4: Effect of Neural Chat emotion-focused starter question strategies on user response length.

truncate the conversational history supplied to the model, so that the total number of GPT-2 tokens is
below 800. Given that neural models have been shown to make poor use of longer conversational
history (Sankar et al., 2019), this truncation does not seem to be a limiting problem currently.

Emotion-focused Conversations As part of our goal to provide an emotionally-engaging expe-
rience (Section 1), we would like to give users space to share their genuine feelings, then respond
empathetically to them. This is especially important during the Coronavirus pandemic (Section A.1),
which is an emotionally challenging time for many. Given our basic starter question I hope you don’t
mind me asking, how are you feeling?, we tried several different preambles to precede the question
(Table 3). Figure 4 shows the effect of the different strategies on the length of the user’s response.
We find that the basic NO_SHARE strategy has the shortest average response length, indicating that
the bot’s emotional observations (whether about the bot or about other people) lead users to give
more substantive responses. Users tend to give longer responses when the bot expresses negative
emotions (NEG and NEGOPT) than positive (POS) – this may be because acknowledging negative
emotions makes users feel more comfortable to answer the question honestly, rather than superficially
(e.g. i’m fine). Furthermore, adding a personal anecdote (STORY) to the negative bot emotions
led to longer responses – users may have responded more because the bot was more specific or
relatable. For positive emotions (POS), users are more responsive when the bot attributes the positive
emotion to itself (BOT), than to other people (OTHERS). However, for negative emotions (NEG
and NEGOPT), the opposite is true. We also experimented with including the user’s name in the
starter question, but found that this made no difference to user response length.

Discussion Our neural generative model has several recurring weaknesses which impact overall
user experience. First, it frequently asks for already-provided information, asks nonsequitur questions,
makes unfounded assumptions about the user, and confuses its own previous responses with the user’s.
This demonstrates that incorporating commonsense reasoning is a priority in neural generation. Sec-
ond, while the model generally produces interesting and relevant responses to longer user utterances,
it performs poorly when the user utterance is short or low-content (e.g. okay, i don’t know, nothing) –
probably because these utterances are unlike the much longer and contentful EmpatheticDialogues
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training data. The model tends to respond to these with bland responses that further fail to drive the
conversation to any interesting substance. This problem with short user responses is one reason why
we focused on finding starter questions that lead to substantial user responses (Figure 4).

Due to these difficulties, most conversations with the GPT-2 model tend to fall apart after a few turns,
as the bot will eventually ask a question that doesn’t make sense, which will flummox the user. This
is one reason why we designed the Neural Chat module around shorter sub-conversations. However,
overall, we are excited that neural generation is now able to interact successfully with real people,
within certain constraints (such as keeping the discussion short, bookending it between handwritten
starter questions and wrapup phrases, and providing a strong path forward through questions).

5.3 Wiki

To support our goal of high-coverage world knowledge (Section 1), the Wiki RG uses Wikipedia
articles as grounding to discuss any entity that interests the user. Our goal is to allow the user to
conversationally discover interesting information about the entity.

Data To prepare the Wikipedia data, we downloaded the most recent Wikipedia dump,16 processed
it using MWParserFromHell17 and Spark,18 and uploaded it into an ElasticSearch index. The Wiki
RG can then query the ElasticSearch index to obtain the Wikipedia article for an entity.

Behavior On each turn, if it’s not already active, the Wiki RG can start to talk about the current
entity (Section 3.2) by asking the user an open ended question, such as What do you find interesting
about it?. If the entity is in one of 25 commonly-encountered types (determined using Wikidata
categories), such as books or foods, we use a more specific question, such as What did you think
of BOOK_ENTITY’s story? or I love trying out new flavor combinations. What do you like to have
FOOD_ENTITY with?. These questions are designed to elicit contentful user responses, which can
be matched to specific sentences in the Wikipedia article using TF-IDF overlap. The RG also offers
interesting facts (i.e. ‘TILs’) scraped from the /r/todayilearned subreddit, if available. If we have
given enough TILs or we have no TIL left to offer, we will start suggesting sections of the Wikipedia
article to the user. A short example Wiki interaction is shown in Turns 11-13 of Table 1.

Conversational Styling We use this RG as a testbed for our conversational paraphrasing system.
The system takes as input the truncated conversational history, and some knowledge context (either a
TIL about the current entity, or an excerpt of the Wikipedia article, selected based on TF-IDF similarity
to the user’s response to an open-ended question). It outputs a conversational-sounding paraphrase
of the knowledge context. The model was trained by finetuning a GPT-2-medium language model
(Radford et al., 2019) on a processed and filtered version of the TopicalChat dataset (Gopalakrishnan
et al., 2019). The paraphrases are generated using top-p decoding with p = 0.75 and temperature
τ = 0.9, and we pick the one which has the highest unigram overlap with the knowledge context.

Challenges One major challenge while performing conversational styling is that the model some-
times produces factually incorrect or nonsensical conversational paraphrases. Another challenge
is that integrating the paraphrasing model with the rest of the system requires explicit directives
such as "continue talking about same knowledge piece", "pick another fact", "change entity" which
the model currently does not produce. For instance, sometimes the generated paraphrase just asks a
question or mentions an incomplete piece of information, with the expectation of completing it in the
next turn. Currently we apply some heuristics such as presence of Did you know ... ? style questions
or low unigram overlap to determine that the same snippet needs to be paraphrased again.

More broadly, there are challenges around interestingness of content. The majority of content on
Wikipedia isn’t very interesting and social. While the TILs remedy that to some extent, finding
interesting parts of raw text is still an open question and quite important in the open-domain conversa-
tional setting. Another major challenge is content selection and discoverability. The user doesn’t
know the extent of the knowledge that our system possesses for an entity. In a visual interface, the
user can scroll through the article or look at a table of contents. While we partly remedy this by
suggesting section titles to illustrate the kind of content we can talk about, a better system could

16https://dumps.wikimedia.org/backup-index.html
17https://mwparserfromhell.readthedocs.io/en/latest
18https://spark.apache.org
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Policy Name Continuation Rate CI
CONVINCED_AGREE 0.526829 0.0348712
ALWAYS_AGREE 0.586638 0.0086009
LISTEN_FIRST_DISAGREE 0.587045 0.0127898

Table 5: Continuation rate for each agreement policy. The Confidence Intervals (CI) differ due
to different sample sizes (ALWAYS_AGREE receives 0.5 of traffic, LISTEN_FIRST_DISAGREE
receives 0.3, CONVINCED_AGREE receives 0.2).

perhaps understand what different parts of a Wikipedia article are talking about, and steer conversation
in that direction.

5.4 Opinion

Exchanging opinions is a core part of social chit-chat. To form a stronger sense of personality, and to
seem more relatable, it is important that our bot can also express its opinions. The Opinion RG’s goal
is to listen to users’ opinions on certain topics, and reciprocate with its ‘own’ opinions (sourced from
Twitter) on those topics.

Data To collect both positive and negative opinions, we queried a Twitter stream19 using a regex
to collect tweets of the form ‘i (love|like|admire|adore|hate|don’t like|dislike)
TOPIC because REASON’, where TOPIC and REASON can be any text. We collected 900,000
tweets, which are stored on a Postgres table hosted on AWS Relational Database Service (RDS). Of
these, we manually whitelisted 1012 reasons across 109 popular topics. To avoid speaking inappro-
priately about sensitive topics, we only whitelist uncontroversial entities (such as animals, foods,
books/movies/games, everyday experiences such as working from home, being sick, days of the
week, etc.), and ensured that all reasons, including negative ones, are inoffensive and good-spirited.

Behavior Currently, the Opinion RG activates when the user mentions one of the whitelisted entities
(e.g. Table 1, Turn 8). We ask whether the user likes the entity and classify their response using the
CoreNLP sentiment classifier (Section 4.1). We then either agree or disagree with the user. If we
disagree, we either ask the user for their reason for their opinion, or supply a reason why we disagree,
and ask what they think of our reason. Ultimately, we want the user to have a positive experience
with our bot, so regardless of whether we disagree or agree with the user, we will ask the user their
opinion on a related entity, and always agree with the user about the new entity. The conversation
may end earlier, as we detect on each turn whether the user is still interested via their utterance length.
If the utterance contains less than 4 words, and it does not contain any of the ‘agreement’ words (such
as ‘same’, ‘me too’, etc.) we will hand off the conversation to another RG. Even when the RG is not
active, it keeps track of whether the user has already expressed an opinion on an entity, by applying a
regex similar to that applied to the tweets.

Agreement Policies Disagreement is an unavoidable part of human-human conversations, and
we hypothesize that occasional disagreement is necessary in order for our bot to have a con-
vincing and individual personality. To test this, we implemented three policies (full details
in Appendix F): (i) ALWAYS_AGREE – we always agree with the user’s sentiment on the entity;
(ii) LISTEN_FIRST_DISAGREE – first we ask the user’s reason for liking/disliking the entity, then
we offer our reason for disagreeing with their sentiment; and (iii) CONVINCED_AGREE – we initially
disagree with the user’s sentiment on the entity, but after the user gives their reason for liking/disliking
the entity, we switch our sentiment to match the user’s (i.e. we are convinced by the user). To evaluate
the policies, we ask the user Would you like to continue sharing opinions? and interpret the desire to
continue is an indication of a successful policy. Table 5 shows that users prefer ALWAYS_AGREE and
LISTEN_FIRST_DISAGREE over CONVINCED_AGREE, and all policies have high continuation rates,
suggesting that disagreement can be a positive and stimulating part of a conversation, but that the
manner and delivery of the disagreement is an important factor.

19https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
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5.5 Movies

The Movies RG is designed to deliver a high-quality scripted conversation about a movie the user
specifies, using information drawn from the Alexa Knowledge Graph.20 Currently, the RG is activated
when the user asks to talk about movies, mentions a movie keyword (such as movies or film) or talks
about any movie-related entity (e.g. Saving Private Ryan, Meryl Streep, the Coen brothers, etc.).
Once activated, the RG typically asks the user to name a movie, asks the user’s opinion on it, gives a
fun fact about the movie, asks the user their opinion on an actor in the movie, then asks the user if
they’ve seen a different movie featuring that actor (See Turns 4-7 in Table 1). The RG uses treelets
(Section 5.1) to organize the dialogue graph, hand-written templates to form the bot utterances, and a
mixture of regexes and the CoreNLP sentiment classifier (Section 4.1) to classify the user’s responses.

The primary weakness of this RG is that, as a scripted dialogue graph, it does not offer very high
user initiative (one of our design goals – Section 1). However, this RG was important especially
early in the competition when our more flexible RGs were still under development, and we needed
more content. Another difficulty we faced was the latency of the Alexa Knowledge Graph, which
was sufficiently slow that we were limited to one query per turn; this limited the scope of interesting
information that we could pull about an entity and heavily influenced the design of our dialogue tree.

5.6 Music

Similar to the Movies RG, the Music RG is designed to deliver scripted conversations about musical
entities that the user specify. The RG is activated when a musician/band or a music keyword (such
as music or songs) is mentioned. Once activated, the Music RG engages in a conversation specific
to the type of the musical entity that was mentioned. Unlike the Movies RG, the Music RG has a
randomized internal prompting system that allows the conversation to be centered around music even
when a scripted conversation is exhausted for a specific entity. For example, after the Music RG
goes until the end of a scripted conversation for a musician, it can ask for an internal prompt, and
start a conversation about musical instruments, songs, or music in general. The randomized nature
of the internal prompting system makes the conversation more flexible, and mitigates some of the
weaknesses of scripted conversations mentioned in Section 5.5.

5.7 Neural Fallback

Our Fallback RG’s responses – e.g., Sorry, I’m not sure how to answer that (Section A.3) – are a poor
user experience, making the user feel ignored and not understood. The Neural Fallback RG aims to
generate a better fallback response using our GPT-2 EmpatheticDialogues model (Section 5.2) – to
be used only if every other RG (excluding Fallback) has no response. If the neural fallback response
is chosen, another RG immediately produces a prompt to move the conversation in another direction.
After some filtering (e.g. removing responses that ask questions or give advice), the neural fallbacks
can work well as a way to better acknowledge and show understanding of what the user said, such as
on Turn 11 of Table 1. A remaining issue is latency – generating from the GPT-2 model is typically
the slowest component in the turn, which is a poor tradeoff if we don’t use the neural fallback.

5.8 Categories

The Categories RG was originally designed to ask handwritten questions about certain categories;
for example, Where’s a place you would love to visit? for the ‘travel’ category. These questions
may be asked when the current topic is ‘travel’, or used as generic changes of topic (Table 1, Turn
7). The goal is for the user to name an entity (e.g. japan) that can form the basis for an interesting
discussion (e.g. with the Wiki or Opinion RGs). However, we found that repeatedly asking users to
think of entities led to decision fatigue, with many users failing to think of an entity.21 As alternatives
to the QUESTION strategy, we experimented with two other strategies: STATEMENT, in which the
bot just makes an observation about a relevant entity (e.g. Mexico is one of my favorite places. I
love the food and beaches!), and STATEMENT+QUESTION, which combines the other two strategies.
Table 6 shows that the statement followed by a question elicited the most new entities. This may be

20The Alexa Knowledge Graph is an Amazon-internal resource; our team was given access to parts of it.
21If the user does not name a new entity, we respond either with a handwritten acknowledgment and new

question (if the user said I don’t know or similar), or with the GPT-2 model (Section 5.7).
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Strategy Proportion of Turns with New User Entities CI
STATEMENT 0.272 0.012
QUESTION 0.264 0.027
STATEMENT+QUESTION 0.328 0.016

Table 6: Rate at which users suggest new entities, for different strategies in the Categories RG. The
entities are extracted using our Entity Linker (see Section 4.4). (CI: Confidence Interval)

Strategy Re-offense Rate Confidence Interval
WHY 0.520 ±0.049
WHY+NAME 0.638 ±0.07
AVOIDANCE 0.554 ±0.049
AVOIDANCE+NAME 0.391 ±0.061
AVOIDANCE+PROMPT 0.583 ±0.047
AVOIDANCE+NAME+PROMPT 0.346 ±0.066
COUNTER+PROMPT 0.567 ±0.042
EMPATHETIC+PROMPT 0.461 ±0.046

Table 7: Re-offense rates for different response strategies to offensive utterances. Italic and bold
denote the worst and best performing, respectively.

because the statement gives users an example, and takes the focus off the user for a moment, before
prompting them with a question. This is a more natural, mixed-initiative experience than simply
asking a question.

5.9 Offensive User

Users sometimes give offensive or critical utterances, and it is important for our bot to handle these
appropriately (Curry and Rieser, 2018, 2019). Unsurprisingly, there is an inverse relationship between
the presence of offensive user utterances in a conversation and the conversation rating (Figure 9). Our
goal is to redirect the user away from making offensive comments, towards topics the bot can discuss.

On each turn, the Offensive User RG checks the user’s utterance for offensive language using a
blacklist of offensive phrases.22 If the user’s utterance is more critical than offensive, we respond with
an apologetic strategy (see Turn 10 of Table 1). For offensive user utterances, we implemented two
immediate response strategies: asking the user why they made the offensive remark (WHY); or politely
avoiding the topic (AVOIDANCE). In addition, for AVOIDANCE, we experimented immediately changing
the topic by using a prompt in the same turn (AVOIDANCE+PROMPT). For each of these configurations,
we experimented with mentioning the user’s name (NAME), or not. We also implemented the strategy
COUNTER+PROMPT, inspired by Brahnam (2005), which directly confronts the user before changing
topic, and EMPATHETIC+PROMPT, inspired by Chin et al. (2020), which empathizes with the user
before changing topic. The full details can be found in Appendix E.

Table 7 shows the effect of each strategy on re-offense rate (i.e., the probability that the user says
another offensive utterance in the same conversation). We find that mentioning the user’s name
reduces the likelihood of re-offense when we use the avoidance strategy, but increases re-offense rate
when we ask the user why they made an offensive remark. We hypothesize that by using their name,
we motivate the user to defend themselves, which prolongs the offensive conversation. We find that
our AVOIDANCE+NAME+PROMPT method outperforms the empathetic method (EMPATHETIC+PROMPT)
and the confrontation method (COUNTER+PROMPT).

22https://www.freewebheaders.com/full-list-of-bad-words-banned-by-google/. Our offen-
sive classifier is also used by our RGs to check that externally-sourced content (e.g. news articles, Wikipedia
articles, fun facts) are inoffensive.
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6 Analysis

6.1 Relationship between Rating and Engagement

Figure 5: Engagement metrics vs rating

We measured four metrics of engagement: number of turns in the conversation, number of distinct
entities discussed during the conversation, average length of the user’s utterances, and average length
of the bot’s utterances. Figure 5 shows that rating increases with number of turns and number of
entities, but ultimately drops off. In an analysis of Alexa Prize bots, Venkatesh et al. (2018) found
that across all bots, conversation length was positively correlated with rating; however, one possible
explanation for our result is that our bot has limited content and at some point, the users become
dissatisfied as their experience is no longer novel.

In an analysis of the NeurIPS ConvAI2 challenge, Dinan et al. (2019) found a positive relationship
between user utterance length and rating. We expected a similar result, thinking more talkative users
would be more actively engaged. However, Figure 5 shows that rating increases with user utterance
length until about 12 characters, and then decreases. Since many of our bot’s questions encourage
short answers (e.g. What’s your favorite animal?; Would you like to talk about science?), and it is
generally more difficult for our bot to correctly understand and handle longer answers,23 users who
give longer answers may have a worse experience. For this reason, the result shown may reflect the
limitations of our bot, more than a user preference for giving shorter responses.

Average bot utterance length is positively correlated with average rating, with high variance in rating
for shorter bot utterances. A confounding factor is that different response generators have varying
average response lengths and relationship with user experience (Section 6.4) – e.g., the Offensive User
RG tends to give short responses, and has a negative relationship with ratings. Response generators
giving longer responses tend to have positive or neutral relationships with rating. Therefore, this
plot may more reflect the UX of our response generators than a user preference for longer responses.
These results may also reflect the inherent noise in user Likert-scale ratings (Liang et al., 2020).

6.2 Relationship between Rating and User Dialogue Acts

To understand how users’ dialogue acts relate to our bot’s performance, we applied a regression
analysis, using the statsmodels Seabold and Perktold (2010) implementation of Ordinary Least
Squares, to the distinct dialogue act classifier labels for all utterances of a conversation and the
ultimate rating of that conversation. These results are shown in Table 7. As we would expect,
appreciation is associated with higher ratings and complaint with lower ratings.

One of our design goals was having mixed-initiative dialogue. In general, dialogue acts associated
with low user initiative, such as comment, pos_answer, statement, and back-channeling were more
positively associated with rating than dialogue acts associated with high user initiative, such as
command, open_question_opinion, and open_question_factual. A possible explanation for this is that
users take more initiative when dissatisfied with the current conversational direction, for example
by giving a command to change the topic. On the other hand, users giving yes-answers or back-
channeling, are likely being compliant with the bot’s direction, which may reflect greater overall
satisfaction. It is possible that these results are more indicative of user satisfaction with our content
than of a user preference for low vs high initiative.

23As an exception, our neural generation models perform better on longer user utterances; see Section 5.2.
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Figure 6: Regression coefficients for Emo-
tion vs Rating

Figure 7: Regression coefficients for Dia-
logue Act vs Rating

Figure 8: Percentage of conversations in
which users initiated discussion of entities
with different popularity levels (pageview).

Figure 9: Regression coefficients for Re-
sponse Generator vs Rating. Launch RG is
not included as it is in every conversation.

6.3 Entity Coverage

As part of our design goal to offer high coverage of topics (Section 1), our bot is capable of discussing
any Wikipedia entity (Section 3.2), and discussed 7.5 distinct entities on average per conversation.
To support user initiative and engage users, we designed our bot to be able to discuss both popular
and lesser-known entities. We regard the Wikipedia pageview (Section 4.4) as a measure for an
entity’s popularity. To measure users’ desire to discuss less-common entities, Figure 8 shows the
percentage of conversations where users initiated discussion of an entity with different pageview
levels. These counts do not include entities initiated by the bot. As the plot shows, a significant
number of users wanted to discuss uncommon entities: in 8% of our conversations, users initiated
discussion of entities with fewer than 2000 views and 33% of conversations covered at least one
entity with fewer than 8000 views. Users who discussed rare entities with the bot appeared to have
favorable experiences. Conversations with rare entities (fewer than 16000 pageviews) had an average
rating of 3.88, while those without rare entities had an average rating of 3.64.

To understand which entities had the greatest impact on user experience, we used the top 100 most
frequent entities as features for a regression analysis, using an Ordinary Least Squares model. Of
the 100 most popular entities, 15 had a statistically significant (p ≤ 0.05) positive impact on rating.
These include animals (‘Cat’, ‘Dog’), movies (‘Film’, ‘Frozen 2’, ‘Onward (film)’), food (‘Korean
fried chicken’, ‘Pizza’, and ‘Ice cream’), and video games (‘Minecraft’, ‘Fortnite’).
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6.4 Effectiveness of Response Generators

We performed a regression analysis on the relationship between response generator use and rating,
using the number of turns each RG contributed as features. Figure 9 shows a statistically significant
positive relationship between rating and the Coronavirus, Acknowledgment, Movies, Opinion, and
Wiki RGs, and a statistically significant negative relationship for Red Question, Complaint, Fallback,
Neural Fallback, and Offensive User. The Complaint and Offensive User results may be explained by
the fact that users experiencing poor conversations may complain or be offensive, and conversely,
some adversarial users deliberately engage negatively and then give poor ratings. A possible cause
for the negative Fallback and Neural Fallback results is that these RGs are used when no other RG
has a high-quality response, so their use is likely correlated with a worse user experience. As we
expected, RGs designed for general conversation had more positive coefficients. Of these RGs, those
with more scripted content, i.e. Coronavirus, Acknowledgment, Movies, and Categories had larger
positive coefficients than those with less, such as Opinion and Wiki. However, the most significant
loss in performance occurs when the bot cannot answer contextually or has an adversarial user.

7 Discussion and Future Work

Full Stack NLP Most NLP research focuses on self-contained tasks. However, an open-domain
socialbot, served to a diverse range of customers in widely different contexts, is by no means a self-
contained task. Our socialbot is a tapestry of many such components, requiring a deep understanding
of each component and how they should work together – a setting we call Full Stack NLP. Often
the inputs and outputs of these components are inter-dependent, leading to cascading errors. We
made many design choices which delay hard decisions in pipelines, and maximize information
exchange between modules. Moving forward, the next avenue for advancing the state-of-the-art
would be research on models which perform these tasks jointly and methods which enable training
over multiple interdependent tasks with only a small amount of joint supervision.

Domain Shift As a recurring problem, we found that many existing NLP resources didn’t work
well out-the-box. The main reason for this is that the training data for these resources (typically
non-conversational, longform, traditionally-formatted written text) is misaligned with our setting
(conversational, shortform, uncased, punctuationless, spoken text). However, a deeper reason is the
constantly changing nature of dialogue agents themselves. Even for an extremely related resource
(the MIDAS dialogue model, developed for the Alexa Prize, Section 4.2), domain shift was a problem.
Recent advances in online- and meta-learning could provide a useful long term solution to this issue.

Conflict and Intimacy Bot-human conversations are fundamentally different to human-human
conversations. Users can be adversarial, deliberately testing the bot’s boundaries. As socialbot
designers, we are eager to avoid a disaster like Microsoft Tay, so we apply strict but overly simplistic
methods to block off sensitive topics (Sections 5.4, 5.9). However, this rules out sincere conversation
about difficult topics. We observed that users are actually quite resilient to conflict, and can find
disagreement stimulating (Section 5.4). We also found that emotional intimacy is reciprocal – users
are more inclined to share their feelings after the bot has shared its own (Section 5.2). Going forward,
we should continue to take seriously the dangers of speaking inappropriately, but keep in mind the
cost – to engagement and to intimacy – of not engaging in difficult topics.

Initiative As part of our goal to support user initiative, we focused on asking users questions to
find out which topics interested them. However, this puts pressure on the user to think of a response,
especially given the time constraints of Alexa devices. Thus we found that our attempts to let the
user take more initiative unfortunately led to decision fatigue. Separately, our ability to support user
initiative was limited by our ability to answer followup questions, and to correctly understand long or
unexpected user utterances. On balance, we found that asking the user open-ended questions about
interesting topics was a good strategy – easier to handle than spontaneous user questions, and less
pressuring than asking users to name topics. We see an opportunity for future work to build systems
which listen more to the user’s knowledge, rather than only providing knowledge.
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Appendix

A Additional RGs

A.1 Coronavirus

Our bot has been available to users since early December 2019 – thus covering the entire period of the
COVID-19 pandemic so far. As the pandemic progressed, users requested to talk about the pandemic
more and more, and showed more interest in discussing home life rather than outside activites. We
created the Coronavirus RG to meet users’ expectations that our bot should be fully aware of the
unfolding situation, on both an informational and emotional level.

The RG is activated when the user mentions or requests to talk about the Coronavirus. To be mindful
of the stress that the pandemic has placed on many people, we never initiate the topic ourselves. We
then give a comforting message acknowledging the emotional effect of the pandemic, and give the
user the option to hear up to 4 news updates. After that, we ask an uplifting open-ended question, and
handle the user’s response by generating a response from our GPT-2 model (Section 5.2). We then
perform a scripted transition to the Movies RG. For example after we’ve read out a news headline:

User: No thank you. I’m exhausted from listening to the news all the time.
Bot: No problem. I know this situation has been very stressful for many people;
I’ve read online that it can be helpful to remind ourselves of small, good things
that have happened to us lately. What’s something nice that’s happened to you in
April?
User: Well it was my birthday!
Bot: That’s great. Did you have fun?
. . .

A.2 News

The News RG provides the user with news stories that interest them, and discusses them. We set
up a cron job to query the Washington Post API24 and scrape several news-based subreddits25 every
day, and place the data in an ElasticSearch index. When the user asks to talk about news, the News
RG asks the user for a topic (e.g., Joe Biden), if it wasn’t already supplied. The RG then queries the
ElasticSearch index for news stories with the desired topic in the headline, selects the most recent
one, reads out the headline to the user, and asks if they’d like to hear more. If accepted, we read out
the first three sentences of the article.

Our original goal was to allow the user to ask follow-on questions about the article, and to answer
them with a Neural Question Answering model. We hoped this would help realize our design goals
of conversational phrasing and enabling user initiative (Section 1). To begin this process, the News
RG would invite the user to ask questions. We then used the SpaCy coreference resolution module
(Honnibal and Montani, 2017) to decontextualize the user’s question with respect to the last two
utterances from the News RG. For example, how many votes did he win? might be transformed
to how many votes did Joe Biden win? The decontextualized question, along with the entire news
article, was then sent to a BERT-Large model (Devlin et al., 2018) trained on the Stanford Question
Answering 2.0 dataset (Rajpurkar et al., 2018) by HuggingFace.26 The model would output either
a span in the article, or ‘no-answer’ – meaning the question cannot be answered by the provided
article.27

Unfortunately, in our internal testing, we found that this system had several substantial problems.
First, errors in the coreference module were common, and would cascade to the QA module. Second,
we found that users asked a very different distribution of questions, compared to the SQuAD training
questions. For example, users were likely to ask more open-ended or causal questions (e.g., what

24An API call to scrape Washington Post news articles provided by Amazon Alexa.
25/r/News, /r/Sports, /r/Politics, /r/Futurology, /r/Science, /r/Technology, /r/WorldNews
26https://github.com/huggingface/transformers
27Since the article was often much larger than the maximum context size for BERT, we ran the model on

chunks. Within each chunk, we discarded spans which were ranked lower than ‘no-answer’, then merged the
answers and re-ranked by confidence of the predictions.
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happened next?, why did they do that?). These are difficult for off-the-shelf QA models, which
tend to excel in answering factoid-style questions. Third, users were likely to ask questions whose
answers are not present in the news article. Though our model was trained on SQuAD 2.0 (which
contains unanswerable questions), it would often choose an irrelevant answer that type-checks with
the question, as Jia and Liang (2017) have also reported. Even when the QA model correctly
classified unanswerable questions, we would have needed to build a substantial open-domain question
answering system to handle these questions. Overall, these problems made our system a poor and
unreliable user experience; requiring more time and effort to fix than we had available.

A.3 Other RGs

Launch Handles the first few turns of the conversation (introducing the bot and learning the user’s
name). An example can be seen in Table 1.

Acknowledgment When the user changes topic to a new entity, this RG uses the entity’s member-
ship in certain Wikidata categories to select a one-turn scripted acknowledgment (e.g. Oh yeah, I
read ENTITY last year - I couldn’t put it down! if the entity is a book). This RG aims to give a natural
and conversational acknowledgment that a new topic has been raised, before handing over to another
RG (e.g. Wiki/Opinion/News) to discuss the entity in more depth.

Alexa Commands Users often try to issue non-socialbot commands (such as playing music or
adjusting smart home devices) to our socialbot. This RG detects such commands, informs the user
that they’re talking to a socialbot, and reminds them how they can exit.

Closing Confirmation Our bot stops the conversation when the user issues a command like stop or
exit. However, users indicate a possible desire to exit through many other more ambiguous phrases
(e.g., do you just keep talking, what’s happening). This RG detects such cases using the closing
dialogue act label (Section 4.2) and regex templates, asks the user if they’d like to exit, and stops the
conversation if so.

Complaint Provides an appropriate response when a user complaint is detected. This RG uses the
Dialogue Act classifier’s complaint label to detect generic complaints, and regular expressions to
detect misheard complaints (the user saying that Alexa misheard them), clarification complaints (the
user saying that Alexa is not being clear), repetition complaints (the user saying that Alexa is repeating
itself), and privacy complaints (the user saying that they don’t want to share information). We wrote
different responses for each type of complaint, to reflect understanding of the user’s concerns.

Fallback Always provides a response (Sorry, I’m not sure how to answer that) or prompt (So, what
are you interested in?) to be used when no other RG provides one.

One-Turn Scripted Responses Provides handwritten responses to common user utterances (e.g.
help, chat with me, hello) that can be handled in a single turn.

Red Question Detects if the user asks our bot a ‘red question’ – i.e., a question we are not permitted
to answer, such as medical, legal, or financial advice – and informs the user that we cannot answer.
To recognize these questions, we trained a multinomial logistic regression model on bag-of-words
features, using data from the /r/AskDoctor, /r/financial_advice, and /r/LegalAdvice subreddits.

B Tooling and Processes

B.1 Dashboard

We built a browser-based dashboard to provide ourselves with easy readable access to conversations
and the associated metadata. The landing page shows aggregate rating statistics broken down by
date and code version. The dashboard can filter conversations based on metadata such as number
of turns, ratings, entities and RGs used. For each conversation, the dashboard displays important
turn-level attributes, such as latency, entities, annotations, state information, RG results, and logs. It
can provide a link pointing to a specific turn, which is very useful for discussions and issue tracking.
The dashboard can rerun the conversation with the current version of our bot, to quickly test if our
local changes fixed the problem. Aside from displaying conversations, the dashboard also has tabs to
track errors and latencies, divided by severity level. Easy accessibility and visibility of errors made
us more aware and likely to fix these errors quickly.
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Figure 10: Screenshot of an example conversation (not with a real customer) in the dashboard. The
tags next to each utterance are annotations from the bot. The background color of the utterance is
the latency of that specific turn (white being normal and orange being slow). The pane on the right
shows the logs for the turn.

B.2 Processes

Code Review We realized early on that maintaining high code quality is important for maintain-
ability and extensibility. We set up a circular code review process to ensure that any code we write is
understandable by another team member and adheres to certain quality standards.

Integration Tests We also instituted integration tests, to ensure that our bot maintains certain core
functionality. We often found that some changes we made in one part of the bot had unexpected and
damaging effects in another part of the bot; integration tests helped to catch these issues.

Canary Testing We had two versions of our bot – mainline, which handled real customers, and
dev, which we used for developing new features. At first, new dev versions were solely tested by team
members, before being pushed to mainline. However, especially as the complexity of the bot grew,
this method became insufficient to identify problems in new dev versions – meaning that bugs were
being discovered in mainline. We set up a canary testing framework, which directs a controllable
percentage (typically 10%-50%) of customer traffic to dev. This was very useful in allowing us to
tentatively test out new features with larger numbers of people, before deploying to all customers,
thus protecting our ratings.

UX Officer Each week, we have a dedicated UX officer, whose primary responsibility is to monitor
the conversations, identify problems, and get a sense of the strengths and weaknesses of the current
system. This person is also responsible for alerting other team members to things that need to be
fixed, and communciating their overall findings to the rest of the team at the weekly meeting. The
role rotates every week so every team member has a chance to see the bot in action, and stay in touch
with the overall user experience.

Sprint Planning and Issue Tracking We use Jira to track issues to be fixed – each is assigned to
the person in charge of the relevant component. We have a weekly sprint planning meeting where we
prioritize the most important things to work on over the next week, and use Jira to track the sprint.
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C Dialogue Act Classifier

C.1 Modifications to Label Space

We modified this schema to better fit the needs of our bot, adopting 19 out of 23 dialogue act labels
from MIDAS paper, and creating 5 new labels: correction, clarification, uncertain, non-compliant,
and personal question to support UX-enhancement features such as the ability to respond to clarifiying
questions. We dropped the labels apology, apology-response, other, and thanks since there were very
few (n ≤ 80) examples of them in the original dataset and we rarely observed these dialogue acts in
our bot.

C.2 Labeling Procedure

To create our gold-labeled dataset from our bot, we first determined which classes we most wanted to
improve, based on per-class F1-Score for the baseline model and the new features we wanted to build.
For example, since we wanted to improve our complaint handling, we prioritized this category. Next,
we ran the baseline model on data from our bot to collect pseudo-labels. We randomly sampled 300
examples per label and then annotated whether the true label matched the predicted label. If not, we
annotated what the correct label was. Using the pseudo-labels as a starting point increased efficiency,
since the binary decision of "correct or incorrect" is much easier than the choice between 24 labels,
and this method significantly reduced the number of non-binary decisions necessary. It also improved
balance over classes, since it gave us greater control over the classes in the sample, and allowed us to
prioritize certain categories. The result of training with gold-labeled examples is reported in Table 4.

D Emotion classifier and analysis

In order to understand and analyze users’ emotions, we finetuned a RoBERTa model (Liu et al.,
2019; Wolf et al., 2019a) on the EmpatheticDialogues dataset (Rashkin et al., 2019), which contains
24,850 examples broken into an 80-10-10 train-dev-test split. In particular, our training and test data
consisted of the first utterance from each dialogue (as it is the only one with a label), along with its
label (one of 32 fine-grained emotions, listed in Figure 11).

The RoBERTa model achieves a top-1 accuracy of 61.5% and an F1-score of 0.596. However, many
of the misclassifications are due to the model choosing a label very similar to the gold label. For
example, in the confusion matrix in Figure 11, we see that angry is often misclassified as furious, and
terrified as afraid, among others. In contrast, the top-5 accuracy is 92%.

One difficulty in applying this classifier to our user utterances is domain shift. The EmpatheticDia-
logues training utterances all describe a strongly emotional personal situation in complete written
sentences, in a self-contained way (i.e., with no preceding context) – for example, A recent job
interview that I had made me feel very anxious because I felt like I didn’t come prepared. By contrast
our user utterances are spoken, typically not complete sentences, require conversational context to
understand, and encompass many different dialogue functions (such as giving commands, answering
questions, choosing topics, greeting and closing, etc.). Importantly, most utterances are emotionally
neutral. As the classifier has no ‘neutral’ label, it assigns spurious emotions to these neutral utterances.

D.1 Relationship between Rating and User Emotion

To understand users’ emotions and how they relate to our bot’s performance, we replicated our
experiment for dialogue act labels by applying a regression analysis, to the emotion classifier labels
and the ultimate rating of each conversation.

Before performing this analysis, we removed all one-word utterances, since we assumed that these
would not contain any emotion, and 66 common utterances that accounted for 40% of responses (e.g.
yes and no), assuming that they were also neutral.

Figure 6 shows that, as we would expect, positive emotions have the largest positive coefficients
and negative emotions have the largest negative ones. A possible explanation for the anomalies
(e.g. "terrified" having a relatively large positive coefficient) is that the emotion classifier strongly
associates certain entities with emotions and struggles to recognize when these entities are used in
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Figure 11: Confusion matrix for RoBERTa emotion classifier.

different contexts. For example, it associates "tiger" with "terrified", even when "tiger" is in a positive
context such as "I like tigers."

E Offensive User Experiment Details

E.1 Offense Type Detection

To determine the offense type, we hand-labeled 500 most common offensive utterances, which
accounted for 53% of all the offensive utterances we collected to the date. We used 6 categories:
sexual, insult, criticism, inappropriate topic, bodily harm and error. To classify the user utterance into
one of these categories, we built regular expressions checking if the given user utterance contains one
of the hand-labeled examples for an offense type. We then used the offense type to contextualize our
COUNTER+PROMPT and EMPATHETIC+PROMPT responses.

E.2 Response Strategy Configurations

This section gives a detailed description of the configurations used in the Offensive User experiments
(Section 5.9).

1. WHY: We ask the user why they made the offensive utterance (and this forms the entire bot
utterance for the turn). The Offensive User RG responds with OK to whatever the user says
next, then hands over to another RG to supply a prompt. For example: Bot: Why did you
say that?, User: because you weren’t understanding me, Bot: OK. So, who’s your favorite
musician?

2. WHY+NAME: Same as WHY, but we append the user’s name to the end of the bot utterance. For
example: Why did you say that, Peter?

3. AVOIDANCE: The bot politely avoids talking about the offensive topic, e.g. I’d rather not
talk about that. This forms the entire utterance for the turn; the bot does not give any prompt
to steer the conversation in a different direction.

4. AVOIDANCE+NAME: Same as AVOIDANCE, but we append the user’s name to the bot utterance.
For example: I’d rather not talk about that Peter.

5. AVOIDANCE+PROMPT: Same as AVOIDANCE, but we also give a prompt to change the topic.
For example: I’d rather not talk about that. So, who’s your favorite musician?
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6. AVOIDANCE+NAME+PROMPT: Same as AVOIDANCE+NAME, but append a prompt to the end of
the utterance. For example: I’d rather not talk about that, Peter. So, who’s your favorite
musician?

7. COUNTER+PROMPT: Strategy suggested by Brahnam (2005) and evaluated by Chin et al.
(2020). In our interpretation of the strategy, we point out the inappropriate nature of the user
utterance to the user, and attempt to move on to a different topic. For example, That is a
very suggestive thing to say. I don’t think we should be talking about that. Let’s move on.
So, who’s your favorite musician?

8. EMPATHETIC+PROMPT: Strategy suggested by Chin et al. (2020) as the most appropriate
strategy. In our interpretation of the strategy, we empathize with the user’s desire to talk
about inappropriate topics, and attempt to move on to a different topic. For example, If I
could talk about it I would, but I really couldn’t. Sorry to disappoint. So, who’s your favorite
musician?

For COUNTER+PROMPT and EMPATHETIC+PROMPT, unlike Brahnam (2005) and Chin et al. (2020), we
handwrote responses tailored for the type of the user offense (e.g. sexual, curse, etc.)

Note that WHY and AVOIDANCE cannot be combined because they are contradictory, and WHY and
CHANGE cannot be combined because we cannot ask two questions in one turn.

F Opinion Agreement Policy Details

Here we will show demonstrations of the 3 different Opinion Policies. All the demonstrations below
are generated by researchers and are not actual user conversations.

F.1 ALWAYS_AGREE Policy

We begin by asking the user their opinion on the entity. Then, we agree with the user on their
sentiment on the entity and share our reason, and ask the user their reason for liking/disliking the
entity. After that, we propose another reason for liking/disliking the entity, and ask whether the user
agrees with our reason or not. Finally, we switch to a related entity and repeat the same steps as
described before. A demonstration of the policy is shown below.

User: let’s talk about cats
Bot: Ok! Do you like cats?
User: cats are my favorite
Bot: Sounds like you like cats. Me too! I feel like cats are so fluffy. What about
you?
User: i like cats because they are very independent
Bot: That’s so true. That reminds me of another reason I love cats. I feel like they
treat you as an equal. Do you agree?
User: i totally agree
Bot: What about dogs? Do you like dogs?
User: yes
Bot: Me too! You know, I think the reason I’m a fan of dogs is because they love
you back no matter what. What do you think?
User: yeah i feel the same way
Bot: Totally. I also like dogs because of how nifty they are. Do you feel the same
way?
User: Yeah you are right they are pretty nifty.
Bot: Thanks for sharing! It’s nice to know your likes and dislikes. Do you want to
know more about dogs?

F.2 LISTEN_FIRST_DISAGREE Policy

We initially ask the user for their opinion and reason (i.e. "What do you think about cats?" followed
by "Why do you like cats?"), then we disagree with the user by giving our opinion and reason. After
that, we switch to a related entity and agree with the user on their sentiment on the new entity. A
demonstration of the policy is shown below.
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User: let’s talk about cats
Bot: Ok! Do you like cats?
User: cats are my favorite
Bot: What’s your favorite thing about cats?
User: i like cats because they are very independent
Bot: That make sense. I have to be honest though, I’m not a big fan of cats actually.
I feel like they don’t respect my personal space. Can we agree on that?
User: yeah i guess you are right on that one
Bot: What about dogs? Do you like dogs?
User: yes
Bot: Me too! You know, I think the reason I’m a fan of dogs is because they love
you back no matter what. What do you think?
User: yeah i feel the same way
Bot: Totally. I also like dogs because of how nifty they are. Do you feel the same
way?
User: Yeah you are right they are pretty nifty.
Bot: Thanks for sharing! It’s nice to know your likes and dislikes. Do you want to
know more about dogs?

F.3 CONVINCED_AGREE Policy

This is a stronger version of the previous policy in which we immediately disagree with the user and
give our opinion and reason (i.e. "What do you think about cats?" followed by "That’s good to know,
but I don’t quite get the appeal of cats. I feel like they are too independent. But I want to hear why
you like cats"). After receiving an answer from the user, we agree with the user and appear convinced.
After that, we switch to a related entity and agree with the user on their sentiment on the new entity.
A demonstration of the policy is shown below.

User: let’s talk about cats
Bot: Ok! Do you like cats?
User: cats are my favorite
Bot: Glad to meet a fan of cats! I have to be honest though, I’m not a big fan of
cats actually. I feel like they don’t respect my personal space. But I’m interested to
hear why you like cats?
User: i don’t agree i like that about cats because that’s how they show their love
Bot: That make sense. Now that I think about it, there are a few things I like about
cats. For example, they are very independent. What do you think?
User: yeah that’s right.
Bot: What about dogs? Do you like dogs?
User: yes
Bot: Me too! You know, I think the reason I’m a fan of dogs is because they love
you back no matter what. What do you think?
User: yeah i feel the same way
Bot: Totally. I also like dogs because of how nifty they are. Do you feel the same
way?
User: Yeah you are right they are pretty nifty.
Bot: Thanks for sharing! It’s nice to know your likes and dislikes. Do you want to
know more about dogs?
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